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Héctor J. Sussmann
Department of Mathematics

Rutgers, the State University of New Jersey
Piscataway, NJ 08854-8019, USA
sussmann@math.rutgers.edu

Abstract— We present a version of the Pontryagin Maximum
Principle with state-space constraints and very weak technical
hypotheses. The result does not require the time-varying vec-
tor fields corresponding to the various control values to be
continuously differentiable, Lipschitz, or even continuous with
respect to the state, since all that is needed is that they be
“co-integrably bounded integrally continuous.” This includes
the case of vector fields that are continuous with respect to
the state, as well as large classes of discontinuous vector fields,
containing, for example, rich sets of single-valued selections
for almost semicontinuous differential inclusions. Uniqueness
of trajectories is not required, since our methods deal directly
with multivalued maps. The reference vector field and reference
Lagrangian are only required to be “differentiable” along the
reference trajectory in a very weak sense, namely, that of
possessing suitable “variational generators.” The conclusion
yields finitely additive measures, as in earlier work by other
authors, and a Hamiltonian maximization inequality valid also
at the jump times of the adjoint covector.

I. INTRODUCTION

In a series of previous papers (cf. [1], [2], [3], [4]), we
have developed a “primal” approach to the non-smooth
Pontryagin Maximum Principle, based on generalized
differentials, flows, and general variations. The method used
is essentially the one of classical proofs of the Maximum
Principle such as that of Pontryagin and his coauthors,
based on the construction of packets of needle variations,
but with a refinement of the “topological argument,” and
with concepts of differential more general than the classical
one, and usually set-valued.

In this note we describe the result of applying this
approach to optimal control problems with state-space
constraints. The paper is organized as follows. In §II we
introduce some of our notations, and in particular briefly
recall the simple but not widely known basic concepts about
finitely additive vector-valued measures on an interval. In §III
we review the notion of Generalized Differential Quotient
(GDQ), define the two types of variational generators that
will occur in the maximum principle, and state theorems
asserting that various classical generalized derivatives—
such as classical differentials, Clarke generalized Jacobians,
Michel-Penot subdifferentials, and, for functions defining
state-space constraints, the object often referred to as ∂>

x g in
the literature—are special cases of our variational generators.
In §IV we discuss the discontinuous vector fields studied in
detail in [5]. Finally, in §V we state the main theorem.
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Remark 1.1: For lack of space, we will omit the proofs,
which will be given in a much longer self-contained paper.
We point out, however, that the proof strategy is quite
straightforward, except for one crucial technical detail. We
make variations, which as usual are families of controls
depending on a finite-dimensional parameter �ε ; we associate
to each variation an “augmented terminal point map” E ;
we differentiate E at �ε = 0 in the sense of GDQ theory;
we use a set separation theorem to infer the existence of
an adjoint covector for the variation and, finally, we use a
compactness argument to get an adjoint covector that works
for all variations. The “technical detail” referred to above
is that, instead of dealing with the usual packets of needle
variations, we have had to introduce “chattering variations,”
which approximately convexify the set of velocities at each
point.

II. NOTATIONAL PRELIMINARIES AND BACKGROUND

The abbreviations “FDRLS” and “FDNRLS” will stand
for “finite-dimensional real linear space,” and “finite-
dimensional normed real linear space,” respectively. If X
and Y are real linear spaces, then Lin(X, Y ) will denote the
set of all linear maps from X to Y . We use X† to denote
Lin(X, R), i.e., the dual space of X .

Single- and set-valued maps. A set-valued map is a triple
F = (A,B,G) such that A and B are sets and G is a subset
of A×B. If F = (A,B,G) is a set-valued map, we say that
F is a set-valued map from A to B. In that case, the sets A,
B, G are the source, target, and graph of F , respectively,
and we write A = So(F ), B = Ta(F ), G = Gr(F ). If
x ∈ So(F ), we write F (x) = {y : (x, y) ∈ Gr(F )}. The set
Do(F ) = {x ∈ So(F ) : F (x) �= ∅} is the domain of F . If
A, B are sets, we use SV M(A,B) to denote the set of all
set-valued maps from A to B, and write F : A �→→ B to
indicate that F ∈ SV M(A,B). A ppd map from A to B
(where “ppd” stands for “possibly partially defined’) is an
F ∈ SV M(A,B) such that F (x) has cardinality zero or
one for every x ∈ A. We write F : A ↪→ B to indicate
that F is a ppd map from A to B. If F : A �→→ B, and
C ⊆ A, then the restriction of F to C is the set-valued map
F �C defined by F �C

def=(C,B,Gr(F ) ∩ (C × B)).

Epimaps and constraint indicator maps. If f : S ↪→ R

is a ppd function, then the epimap of f is the set-valued
map f̌ : S �→→ R whose graph is the epigraph of f , so that
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f̌(s) = {f(s)+ v : v ∈ R, v ≥ 0} whenever s ∈ Do(f), and
f̌(s) = ∅ if s ∈ S\Do(f). The constraint indicator map of
f is the set-valued map χco

f : S �→→ R such that χco
f (s) = ∅

if f(s) ≤ 0 or s ∈ S\Do(f), and χco
f (x) = [0, +∞ [ if

f(x) > 0 .

Cones. A cone in a FDRLS X is a nonempty subset C of
X such that r · c ∈ C whenever c ∈ C, r ∈ R and r ≥ 0.
The polar of a cone C ⊆ X is the closed convex cone
C† = {λ ∈ X† : λ(c) ≤ 0 for all c ∈ C}.

If X is a FDRLS, S ⊆ X , and x ∈ S, a Boltyanskii
approximating cone to S at x is a convex cone C in X
such that there exist an n ∈ Z+, a closed convex cone D
in R

n, a neighborhood U of 0 in R
n, a continuous map

F : U ∩ D �→ S, and a linear map L : R
n �→ X , such

that F (h) = x + L · h + o(‖h‖) as h → 0 via values in
D, and C = L · D. A limiting Boltyanskii approximating
cone to S at x is a closed convex cone C such that C is
the closure of an increasing union

⋃∞
j=1 Cj such that each

Cj is a Boltyanskii approximating cone to S at x.

Tubes. If X is a FDNRLS, a, b ∈ R, a ≤ b,
ξ ∈ C0([a, b], X) and δ > 0, we use T X(ξ, δ) to denote
the δ-tube about ξ in X , defined by

T X(ξ, δ) def= {(x, t) :x∈X, a≤ t≤b, ‖x−ξ(t)‖≤δ} . (1)

Finitely additive measures. If a, b ∈ R, a < b, and X
is a FDNRLS, we use Pc([a, b];X) to denote the set of
all piecewise constant X-valued functions on [a, b], so that
f ∈ Pc([a, b];X) iff f : [a, b] �→ X and there exists a finite
partition P of [a, b] into intervals such that f is constant
on each I ∈ P . We let Pc([a, b];X) denote the set of all
uniform limits of members of Pc([a, b];X), so Pc([a, b];X)
is a Banach space, endowed with the sup norm. Furthemore,
Pc([a, b];X) is exactly the space of all f : [a, b] �→ X
such that the left limit f(t−) = lims→t,s<t f(s) exists for
all t ∈ ]a, b], and the right limit f(t+) = lims→t,s>t f(s)
exists for all t ∈ [a, b [ .

We define Pc0([a, b];X) to be the set of all
f ∈ Pc([a, b];X) that vanish on the complement of a
countable (i.e., finite or countably infinite) set. (Then
Pc0([a, b];X) is the closure in Pc([a, b];X) of the space
Pc0([a, b];X) of all f ∈ Pc([a, b];X) such that f vanishes
on the complement of a finite set.)

We let pc([a, b];X) be the quotient space
Pc([a, b];X)/Pc0([a, b];X). Then every equivalence
class F ∈ pc([a, b];X) has a unique left-continuous member
F−, and a unique right-continuous member F+, and of
course F− ≡ F+ on the complement of a countable set.
So pc([a, b];X) can be identified with the set of all pairs
(f−, f+) of X-valued functions on [a, b] such that f− is
left-continuous, f+ is right-continuous, and f− ≡ f+ on the
complement of a countable set.

If X is a FDNRLS, an additive X-valued inter-
val function of bounded variation on [a, b] is a

member of the dual space pc([a, b];X†)†def= bvadd([a, b];X).
A member µ of bvadd([a, b];X) gives rise to a set

function µ̂ : I([a, b]) �→ X (where I([a, b]) is the set of all
subintervals of [a, b]), defined by 〈µ̂(I), y〉 = µ(χy

I
) for

y ∈ X†, where χy
I
(t) = 0 if t /∈ I and χy

I
(t) = y if

t ∈ I . We then associate to µ its cumulative distribution
cdµ, defined by cdµ(t) = −µ̂([t, b]) for t ∈ [a, b]. Then
cdµ belongs to the space bvfn0;b([a, b];X) of all func-
tions ϕ : [a, b] �→ X that are of bounded variation and
such that ϕ(b) = 0. (We call ϕ of bounded variation
if ‖ϕ‖bv < ∞, where ‖ϕ‖bv is the supremum of all the
sums

∑m
j=1 ‖ϕ(tj) − ϕ(sj)‖, for all m ∈ N and {sj}m

j=1,
{tj}m

j=1 such that a≤s1≤ t1≤s2≤ t2≤· · ·≤sm≤ tm≤b.)
The map bvadd([a, b];X) � µ �→ cdµ ∈ bvfn0;b([a, b];X)
is a bijection. The dual Banach space norm ‖µ‖ of a µ ∈
bvadd([a, b];X) coincides with ‖cdµ‖bv .

A µ ∈ bvadd([a, b];X) is a left (resp.right) delta function
if there exist an x ∈ X and a t ∈ ] a, b] (resp. a t ∈ [ a, b [ )
such that µ(F ) = 〈F (t−), x〉 (resp. µ(F ) = 〈F (t+), x〉) for
all F ∈ pc([a, b], X). We call µ left-atomic (resp. right-
atomic) if it is the sum of a convergent series of left (resp.
right) delta functions.

A µ ∈ bvadd([a, b];X) is continuous if the function cdµ

is continuous. Every µ ∈ bvadd([a, b];X) has a unique
decomposition into the sum of a continous part µco, a
left-atomic part µat,− and a right-atomic part µat,+. (This
resembles the usual decomposition of a countably additive
measure into the sum of a continuous part and an atomic
part. The only difference is that in the finitely additive setting
there are left and right atoms rather than just atoms.)

If Y is a FDNRLS, a bounded Y -valued measurable
pair on [a, b] is a pair (γ−, γ+) of bounded Borel
measurable functions from [a, b] to Y such that
γ− ≡ γ+ outside a countable set. If X, Y, Z are
FDNRLSs, Y × X � (y, x) �→ 〈y, x〉 ∈ Z is a bilinear
map, µ ∈ bvadd([a, b], X), nand (γ−, γ+) is a bounded
Y -valued measurable pair on [a, b], then the product measure
γ ·µ is a member of bvadd([a, b], Z) defined by multiplying
the continuous part µco by γ− or γ+, the left-atomic part
by γ−, and the right-atomic part by γ+. In particular, the
product γ · µ is a well defined member of bvadd([a, b], X)
whenever µ ∈ bvadd([a, b], R) and γ is a bounded X-valued
measurable pair on [a, b].

Finally, we need to study the solutions of an “adjoint”
Cauchy problem represented formally as

dy(t) = −y(t) · L(t) · dt + dµ(t) , y(b) = ȳ , (2)

where µ∈bvadd([a, b], X†) and L∈L1([a, b], Lin(X, X)).
We do this by rewriting our Cauchy problem as the integral
equation y(t) − V (t) =

∫ b

t
y(s) · L(s) · ds, where V = cdµ.

This is easily seen to have a unique solution π, given by

π(t) = ȳ · ML(b, t) −
∫

[t,b]

dµ(s) · ML(s, t) , (3)

where ML : [a, b] × [a, b] �→ Lin(X, X) is the fundamental
solution of Ṁ = M · L, characterized by the identity
ML(τ, t) = IX +

∫ τ

t
L(r) · ML(r, t) dr.
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III. GENERALIZED DIFFERENTIAL QUOTIENTS (GDQS)
AND VARIATIONAL GENERATORS

Cellina continuosly approximable maps. If K, Y are metric
spaces and K is compact, then SV Mcomp(K, Y ) will denote
the subset of SV M(K, Y ) whose members are the set-
valued maps from K to Y that have a compact graph. We say
that a sequence {Fj}j∈N of members of SV Mcomp(K, Y )
inward graph-converges to an F ∈ SV Mcomp(K, Y )—and

write Fj
igr−→ F—if for every open subset Ω of K ×Y such

that Gr(F ) ⊆ Ω there exists a jΩ ∈ N such that Gr(Fj) ⊆ Ω
whenever j ≥ jΩ.

If X and Y are metric spaces and F : X �→→ Y , then F
is compactly graphed if for every compact subset K of X
the restriction F �K of F to K has a compact graph.

Definition 3.1: Assume that X , Y are metric spaces. A
Cellina continuously approximable set-valued map (abbr.
“CCA map”) from X to Y is a compactly graphed set-valued
map F : X �→→ Y such that

• for every compact subset K of X , F �K is a limit—in
the sense of inward graph-convergence—of a sequence
of continuous single-valued maps from K to Y .

We use CCA(X; Y ) to denote the set of all CCA set-valued
maps from X to Y .

GDQs. The precise definition of “generalized differential
quotient” is as follows. Let us assume that (i) X and
Y are FDNRLSs, (ii) F : X �→→ Y is a set-valued map,
(iii) x̄∗ ∈ X , (iv) ȳ∗ ∈ Y , and (v) S ⊆ X . We say
that Λ is a generalized differential quotient (abbreviated
“GDQ”) of F at (x̄∗, ȳ∗) in the direction of S, and write
Λ ∈ GDQ(F ; x̄∗, ȳ∗; S), if (I) Λ is a compact subset of
Lin(X, Y ), (II) for every neighborhood Λ̂ of Λ in Lin(X, Y )
there exist U , G such that (II.1) U is a neighborhood of x̄∗
in X; (II.2) ȳ∗+G(x)·(x−x̄∗) ⊆ F (x) for every x ∈ U∩S;
and (III.3) G is a CCA set-valued map from U ∩ S to Λ̂.

Variational generators. It will be convenient to define two
types of “variational generators.” We will assume that

(VGA) X and Y are FDNRLSs, a, b ∈ R, a ≤ b
ξ∗ ∈ C0( [a, b] ; X ), σ∗ : [a, b] ↪→ Y , S ⊆ X × R,
and F : X × R �→→ Y .

We recall that the distance dist(S, S′) between two subsets
S, S′ of a metric space M with distance function dM is
defined by dist(S, S′) = inf{dM (s, s′) : s ∈ S, s′ ∈ S′} .

Definition 3.2: Assume that (VGA) holds. An L1 fixed-
time GDQ variational generator of F along (ξ∗, σ∗) in the
direction of S is a set-valued map Λ : [a, b] �→→ Lin(X, Y )
such that,

• there exist a positive number δ̄ and a family {κδ}0<δ≤δ̄

of measurable functions κδ : [a, b] �→ [0, +∞] such that
limδ↓0

∫ b

a
κδ(t) dt = 0 and, in addition,

dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) ≤ δκδ(t) (4)

if h∈X , t∈ [a, b], (ξ∗(t)+h, t)∈S, and ‖h‖≤δ.

We will use the expression V GL1,ft
GDQ(F ; ξ∗, σ∗; S) to denote

the set of all L1 fixed-time GDQ variational generators of F
along (ξ∗, σ∗) in the direction of S.

Definition 3.3: Assume that (VGA) holds. A pointwise
robust GDQ variational generator of F along (ξ∗, σ∗) in the
direction of S is a set-valued map Λ : [a, b] �→→ Lin(X, Y )
such that,

• there exist positive numbers δ̄, s̄, and a family
{κδ,s}0<δ≤δ̄,0<s≤s̄ of functions κδ,s : [a, b] �→ [0, +∞]
such that

lim
δ↓0,s↓0

κδ,s(t) = 0 for every t ∈ [a, b] (5)

and, in addition,

dist(σ∗(t + s) + Λ(t) · h, F (ξ∗(t + s) + h, t + s))
≤ δκδ,s(t) (6)

whenever h ∈ X , ‖h‖ ≤ δ, t ∈ [a, b], t+ s ∈ [a, b], and
(ξ∗(t + s) + h, t + s) ∈ S.

We write V Gpw,rob
GDQ (F ; ξ∗, σ∗; S) to denote the set of all

pointwise robust GDQ variational generators of F along
(ξ∗, σ∗) in the direction of S.

Examples of variational generators. We now state four
propositions giving important examples of variational
generators, omitting the proofs. In their statements, we use
∂xf(q, t) to denote the Clarke generalized Jacobian at x = q
of the map x �→ f(x, t), and ∂o

xf(q, t)—if f has scalar
values—to denote the Michel-Penot subdifferential of x �→
f(x, t) at x = q.

We recall that the notions of epimap and constraint
indicator map were defined in §II.

If (S,A) is a measurable space (that is, S is a
set and A is a σ-algebra of subsets of S), X is
a FDNRLS, and Λ:S �→→X , then Λ is measurable if
{s ∈ S : Λ(s) ∩ Ω �= ∅} ∈ A for every open subset Ω of
X . If (S,A, µ) is a nonnegative-measure space (that is,
(S,A) is a measurable space and µ : A �→ [0, +∞] is a
nonnegative measure) then Λ is integrably bounded if there
exists a µ-integrable function k : S �→ [0, +∞] such that
Λ(s)⊆{x∈X :‖x‖≤k(s)} for µ-almost all s∈S.

In the first three propositions, we will assume that
(#) X and Y are FDNRLSs, f : X × R ↪→ Y ,

ξ∗ ∈ C0([a, b], X), δ̄ > 0, T X(ξ∗, δ̄) ⊆ Do(f), and
each partial map t �→ f(x, t) is measurable.

Proposition 3.4: Assume that (#) holds and each partial
map x �→ f(x, t) is Lipschitz with a Lipschitz constant
C(t) such that the function C(·) is integrable. Let
Λ(t) = ∂xf(ξ∗(t), t), and let σ∗(t) = f(ξ∗(t), t). Then Λ is
an integrably bounded measurable set-valued function with
a.e. nonempty compact convex values, and Λ is an L1 fixed-
time variational GDQ of f along (ξ∗, σ∗) in the direction of
X × [a, b].

Proposition 3.5: Assume that (#) holds, Y = R, and
each partial map x �→ f(x, t) is Lipschitz with a Lipschitz
constant C(t) such that the function C(·) is integrable. Let
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Λ(t) = ∂o
xf(ξ∗(t), t), and let σ∗(t) = f(ξ∗(t), t). Let F be

the epimap of f . Then Λ is an integrably bounded measurable
set-valued function with a.e. nonempty compact convex
values, and Λ is an L1 fixed-time variational GDQ of F
along (ξ∗, σ∗) in the direction of X × [a, b].

Proposition 3.6: Assume that (#) holds and each
partial map x �→ f(x, t) is continuous. Also,
assume that (i) for each t the map x �→ f(x, t) is
differentiable at ξ∗(t), and (ii) there exists a nonnegative
integrable function [a, b] � t �→ C(t) ∈ R such that
‖f(ξ∗(t) + h, t) − f(ξ∗(t), t)‖ ≤ C(t)‖h‖ whenever
t ∈ [a, b], h ∈ X , and ‖h‖ ≤ δ̄. Let Λ(t) = {Dxf(ξ∗(t), t)},
and let σ∗(t) = f(ξ∗(t), t). Then Λ is an L1 fixed-time
variational GDQ of f along (ξ∗, σ∗) in the direction of
X × [a, b].

Proposition 3.7: Assume that X is a FDNRLS,
ξ∗ ∈ C0([a, b], X), δ̄ > 0, T = T X(ξ∗, δ̄), and g : T �→ R

is a single-valued everywhere defined function. Assume
that (a) g(ξ∗(t), t) ≤ 0 for all t ∈ [a, b], (b) each
partial map t �→ g(x, t) is upper semicontinuous on
{t ∈ R : (x, t) ∈ T}, (c) each partial map x �→ g(x, t) is
Lipschitz on {x ∈ X : ‖x − ξ∗(t)‖ ≤ δ̄}, with a Lipschitz
constant C which is independent of t for t ∈ [a, b]. Let
Avg = {(x, t) ∈ T : g(x, t) > 0} so Avg = Do(χco

g ).
For each t ∈ [a, b], let Λ(t) = ∂>

x g(ξ∗(t), t), where

(*) ∂>
x g(x̄, t) is the convex hull of the set of all limits

limj→∞ ωj , for all sequences {(xj , tj , ωj)}j∈N such
that limj→∞(xj , tj) → (x̄, t) and, for all j,

(*.i) (1) (xj , tj) ∈ Avg , (2) the function x �→ g(x, tj) is
differentiable at xj , and (3) ωj = ∇xg(xj , tj),

Let K = {t ∈ [a, b] : (ξ∗(t), t) ∈ Clos Avg}.
Let σ∗(t) = 0 for t ∈ [a, b]. Then (I) Λ is an upper
semicontinuous set-valued map with compact convex values,
(II) K is compact, (III) K = {t ∈ [a, b] : Λ(t) �= ∅}, and
(IV) Λ is a pointwise robust GDQ variational generator of
χco

g along (ξ∗, σ∗) in the direction of Avg .

IV. DISCONTINUOUS VECTOR FIELDS

Integral boundedness and integral continuity. If X is a
FDRLS, BLe(X, R) will denote the σ-algebra of subsets of
X × R generated by (a) all the products B × L, with B a
Borel subset of X and L a Lebesgue-measurable subset of
R, together with (b) all the subsets S of X × R such that
the set {t ∈ R : (∃x ∈ X)((x, t) ∈ S)} is Lebesgue-null.

Let X, Y be FDNRLSs, let f be a ppd map from X × R

to Y , and let K be a compact subset of X × R.

1. We say that f is essentially Borel×Lebesgue
measurable on K, or BLe(X, R)-measurable on K,
if K ⊆ Do(f) and f−1(U) ∩ K ∈ BLe(X, R) for all
open subsets U of Y .

2. An integrable bound for f on K is an integrable funtion
R � t → ϕ(t) ∈ [0, +∞] such that ‖f(x, t)‖ ≤ ϕ(t) for
all (x, t) ∈ K.

3. If Y = R, an integrable lower bound for f on K is an
integrable funtion R � t → ϕ(t) ∈ [0, +∞] such that
f(x, t) ≥ −ϕ(t) for all (x, t) ∈ K.

4. We call f integrably bounded (IB)—resp. integrably
lower bounded (ILB)—on K if f is BLe(X, R)-
measurable on K and there exists an integrable bound—
resp. an integrable lower bound—for f on K.

5. We write IB(X × R,K; Y ), ILB(X × R,K; R) to
denote, respectively, the sets of (i) all ppd maps from
X × R to Y that are IB on K, and (ii) all ppd maps
from X × R to R that are ILB on K.

If S ⊆ X × R, we write Arc (S) to denote the set of
all ξ such that, for some nonempty compact interval Iξ,
(i) ξ∈C0( Iξ ; X ), and (ii) (ξ(t), t) ∈ S for all t ∈ Iξ.
If k : R �→ [0, +∞] is a locally integrable function, then
Arc k(S) denotes the set of all ξ ∈ Arc (S) such that ξ
is absolutely continuous and ‖ξ̇(t)‖ ≤ k(t) for a. e. t ∈ Iξ.

The sets Arc (S) are metric spaces, with the distance
d(ξ, ξ′) of two members ξ : [a, b] �→ X , ξ′ : [a′, b′] �→ X of
Arc (S) defined by

d(ξ, ξ′) = |a − a′| + |b − b′| + sup{‖ξ̃(t) − ξ̃′(t)‖ : t ∈ R}

where, for any continuous map γ : [α, β] �→ X , γ̃ is the
extension of γ to R which is identically equal to γ(α) on
] −∞, α] and to γ(β) on [β, +∞[.

If X, Y are FDNRLSs, K ⊆ X × R is compact, and
f ∈ IB(X × R,K; Y ), then we define a real-valued
integral map If,K : Arc (K) �→ R, by letting
If,K(ξ) =

∫
Do(ξ)

f(ξ(s), s) ds for every ξ ∈ Arc (K). If
S ⊆ Arc (K), we call f integrally continuous (abbr. IC)
on S if If,K � S is continuous. If f ∈ ILB(X × R,K; R),
then If,K is still well defined as a map into R∪{+∞}, and
we call f integrally lower semicontinuous (abbr. ILSC) on
S if If,K � S is lower semicontinuous.

We will be particularly interested in maps f that, for
some integrable function k, are both integrably bounded with
integral bound k and integrally continuous on Arc k(K).

Definition 4.1: If X , Y are FDNRLSs, K is a compact
subset of X × R, and f : X × R ↪→ Y , we call f co-IBIC
(“co-integrably bounded and integrally continuous”) on K if
f ∈ IB(X × R,K; Y ) and there exists an integrable bound
k : R �→ [0, +∞] for f on K such that f is IC on Arc k(K).
If f : X × R ↪→ R, we call f co-ILBILSC (“co-integrably
bounded and integrally lower semicontinuous”) on K if
f ∈ ILB(X ×R,K; R) and there exists an integrable lower
bound k : R �→ [0, +∞] for f on K such that f is ILSC
on Arc k(K).

Points of approximate continuity. Suppose that X
and Y are FDNRLSs, f : X × R ↪→ Y ,
and (x̄∗, t̄∗) ∈ X × R. A modulus of approximate
continuity (abbr. MAC) for f near (x̄∗, t̄∗) is a function
] 0, +∞ [×R � (β, r) �→ ψ(β, r) ∈ ] 0, +∞ ] such that

(MAC.1) the function R � r �→ ψ(β, r) ∈ ] 0, +∞ ] is
measurable for each β ∈ ] 0, +∞ [ ,

(MAC.2) lim(β,ρ)→(0,0),β>0,ρ>0
1
ρ

∫ ρ

−ρ
ψ(β, r) dr = 0,
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(MAC.3) there exist positive numbers β∗, ρ∗, such that

(MAC.3.a) f(x, t) is defined whenever ‖x − x̄∗‖ ≤ β∗
and |t − t̄∗| ≤ ρ∗,

(MAC.3.b) whenever β∈R, x∈X , t∈R, |t− t̄∗|≤ρ∗,
and ‖x−x̄∗‖≤β≤β∗, it follows that
‖f(x, t) − f(x̄∗, t̄∗)‖ ≤ ψ(β, t − t̄∗).

Definition 4.2: A point of approximate continuity (abbr.
PAC) for f is a point (x̄∗, t̄∗) ∈ X×R such that there exists
a MAC for f near (x̄∗, t̄∗).

An important example of a class of maps with many points
of approximate continuity is given by the following corollary
of the well-known Scorza-Dragoni theorem.

Proposition 4.3: Suppose X , Y are FDNRLSs, Ω is open
in X , a, b ∈ R, a < b, and f : Ω × [a, b] �→ Y is such that
(a) the partial map [a, b] � t �→ f(x, t) ∈ Y is measurable
for every x ∈ Ω, (b) the partial map Ω � x �→ f(x, t) ∈ Y
is continuous for every t ∈ [a, b], and (c) there exists
an integrable function [a, b] � t �→ k(t) ∈ [0, +∞]
such that the bound ‖f(x, t)‖ ≤ k(t) holds whenever
(x, t) ∈ Ω × [a, b]. Then there exists a subset G of [a, b]
such that meas([a, b]\G) = 0, having the property that every
(x̄∗, t̄) ∈ Ω × G is a PAC of f .

Another important example of maps with many PACs is
given by the following result, proved in [5].

Proposition 4.4: Suppose X , Y are FDNRLSs, a, b ∈ R,
a < b, and F : X × [a, b] �→→ Y is an almost lower
semicontinuous set-valued map with closed nonempty values
such that for every compact subset K of X the function
[a, b] � t �→ sup{min{‖y‖ : y ∈ F (x, t)} : x ∈ K}
is integrable. Then there exists a subset G of [a, b] such
that meas([a, b]\G) = 0, having the property that, whenever
x∗ ∈ X , t∗ ∈ G, v∗ ∈ F (x∗, t∗), and K ⊆ X is compact,
there exists a map K × [a, b] � (x, t) �→ f(x, t) ∈ F (x, t)
which is co-IBIC on K × [a, b] and such that (x∗, t∗) is a
PAC of f and f(x∗, t∗) = v∗.

V. THE MAXIMUM PRINCIPLE

We consider a fixed time-interval optimal control problem
with state space constraints, of the form

minimize ϕ(ξ(b)) +
∫ b

a

f0(ξ(t), η(t), t) dt

subject to the conditions: (i) ξ(·) ∈ W 1,1([a, b], X),
(ii) ξ̇(t) = f(ξ(t), η(t), t) for a.e. t, (iii) ξ(a) = x̄∗,
(iv) gi(ξ(t), t)≤ 0 for t∈ [a, b], i = 1, . . . ,m, (v) ξ(b) ∈ S,
(vi) hj(ξ(b)) = 0 for j = 1, . . . , m̃, (vii) η(t) ∈ U for all
t ∈ [a, b], (viii) η(·) ∈ U

and a reference trajectory-control pair (ξ∗, η∗).

The technical hypotheses. We assume that the data 14-tuple
D = (X, m, m̃, U, a, b, ϕ, f0, f, x̄∗,g,h, S,U) satisfies:

(H1) X is a FDNRLS, m ∈ Z+, m̃ ∈ Z+; U is a set,
a, b ∈ R, a < b, x̄∗ ∈ X and S ⊆ X;

(H2) f0 is a ppd function from X × U × R to R;
(H3) f is a ppd function from X × U × R to X;

(H4) g = (g1, . . . , gm) is an m-tuple of ppd functions
from X × R to R;

(H5) h = (h1, . . . , hm̃) is an m̃-tuple of ppd functions
from X to R;

(H6) ϕ is a ppd function from X to R;
(H7) U is a set of ppd functions from R to U such that

the domain of every η ∈ U is a nonempty compact
interval.

Given such a D, a controller is a ppd function η : R ↪→ U
whose domain is a nonempty compact interval. (Hence (H7)
says that U is a set of controllers.) An admissible controller
is a member of U . If α, β ∈ R and α ≤ β, then we
use W 1,1([α, β], X) to denote the space of all absolutely
continuous maps ξ : [α, β] �→ X . A trajectory for a controller
η : [α, β] �→ U is a map ξ ∈ W 1,1([α, β], X) such that, for
almost every t ∈ [α, β], (ξ(t), η(t), t) belongs to Do(f) and
ξ̇(t) = f(ξ(t), η(t), t). A trajectory-control pair (abbr. TCP)
is a pair (ξ, η) such that η is a controller and ξ is a trajectory
for η. The domain of a TCP (ξ, η) is the domain of η, which
is, by definition, the same as domain of ξ. A TCP (ξ, η) is
admissible if η ∈ U .

A TCP (ξ, η) with domain [α, β] is cost-
admissible if (i) (ξ, η) is admissible, (ii) the function
[α, β] � t �→ f0(ξ(t), η(t), t) is a. e. defined and

measurable, (iii)
∫ β

α
min

(
0, f0(ξ(t), η(t), t)

)
dt > −∞,

and (iv) ξ(β) ∈ Do(ϕ).
It follows that if (ξ, η) is cost-admissible then the number

J(ξ, η) = ϕ(ξ(β)) +
∫ β

α
f0(ξ(t), η(t), t) dt (called the cost

of (ξ, η)) is well defined and belongs to ]−∞, +∞].
A TCP (ξ, η) with domain [α, β] is constraint-admissible

if it satisfies all our state space constraints, that is, if
(CA1) ξ(α) = x̄∗,
(CA2) (ξ(t), t) ∈ Do(gi) and gi(ξ(t), t) ≤ 0 for all

t ∈ [α, β], and all i ∈ {1, . . . ,m},

(CA3) ξ(β) ∈ S ∩
(
∩m̃

j=1 Do(hj)
)

(CA4) hj(ξ(β)) = 0 for j = 1, . . . , m̃.
We use ADM(D) and ADM[a,b](D) to denote the sets of
(i) all cost-admissible, constraint-admissible TCPs (ξ, η), and
(ii) all (ξ, η) ∈ ADM(D) whose domain is [a, b].

The hypothesis on the reference TCP (ξ∗, η∗) is that it is
a cost-minimizer in ADM[a,b](D). In other words,

(H8) (ξ∗, η∗) ∈ ADM[a,b](D), J(ξ∗, η∗) < +∞, and
J(ξ∗, η∗) ≤ J(ξ, η) for all (ξ, η) ∈ ADM[a,b](D) .

The “cost-augmented dynamics” f : X×U×R ↪→ R×X
and the “epi-augmented dynamics” f̌ : X×U×R �→→R×X
are defined by taking Do(f) = Do(f̌) = Do(f0) ∩ Do(f),
and then letting, for z = (x, u, t) ∈ X×U×R,

f(z) = (f0(z), f(z)) and f̌(z) = [f0(z), +∞[×{f(z)} .

We will also use the constraint indicator maps
χco

gi
: X × R �→→ R, for i = 1, . . . ,m, and the epimap

ϕ̌ : X �→→ R. (These two notions were defined in §II.)
For i ∈ {1, . . . ,m}, we let

σf
∗(t)= f(ξ∗(t), η∗(t), t) and σgi∗ (t)=0 if t ∈ [a, b],

Avgi
={(x, t) ∈ X × [a, b] : gi(x, t) > 0} ,
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(so the Avgi are the “sets to be avoided”). We then define
Ki to be the set of all t ∈ [a, b] such that (ξ∗(t), t) belongs
to the closure of Avgi

. Then Ki is obviously compact..
We now make technical hypotheses on D, ξ∗, η∗, and

five new objects called Λf , Λg, Λh, Λϕ, and C. To state
these hypotheses, we let Uc;[a,b] denote the set of all
constant U -valued functions defined on [a, b], and define
Uc;[a,b];∗ = Uc;[a,b] ∪ {η∗}.

The technical hypotheses are as follows.
(H9) For each η ∈ Uc;[a,b];∗. there exist a positive

number δη such that
(H9.a) f(x, η(t), t) is defined whenever (x, t) belongs

to T X(ξ∗, δη),
(H9.b) the map T X(ξ∗, δη) � (x, t) �→ f(x, η(t), t)

is co-IBIC on T X(ξ∗, δη), and the function
T X(ξ∗, δη)�(x, t) �→f0(x, η(t), t)∈R is
co-ILBILSC on T X(ξ∗, δη),

(H10) The number δη∗ can be chosen so that (i) each
function gi is defined on T X(ξ∗, δη∗), and
(ii) for each i ∈ {1, . . . ,m}, t ∈ [a, b], the
set {x ∈ X : gi(x, t) > 0, ‖x − ξ∗(t)‖ ≤ δη∗}
is relatively open in the ball
{x ∈ X : ‖x − ξ∗(t)‖ ≤ δη∗},

(H11) Λf is a measurable integrably bounded set-
valued map from [a, b] to X† × Lin(X, X)
with compact convex values such that
Λf ∈ V GL1,ft

GDQ(f̌ ; [a, b]; ξ∗, σf
∗; X × R),

(H12) Λg is an m-tuple (Λg1 , . . . ,Λgm) such that,
for each i ∈ {1, . . . ,m}, Λgi is an upper
semicontinous set-valued map from [a, b] to
X† with compact convex values, such that
Λgi ∈ V Gpw,rob

GDQ (χco
gi

; ξ∗, σ
gi∗ , Avgi

),

(H13) Λh ∈ GDQ
(
h;

(
ξ∗(b),h(ξ∗(b))

)
; X

)
,

(H14) Λϕ ∈ GDQ
(
ϕ̌;

(
ξ∗(b), ϕ(ξ∗(b))

)
; X

)
.

(H15) C is a limiting Boltyanskii approximating cone of
S at ξ∗(b).

Our last hypothesis requires the concept of an “equal-
time interval-variational neighborhood” (abbr. ETIVN) of a
controller η. We say that a set V of controllers is an ETIVN
of a controller η if

• for every n ∈ Z+ and every n-tuple u = (u1, . . . , un)
of members of U , there exists a positive number ε =
ε(n,u) such that whenever η′ : Do(η) �→ U is a
map obtained from η by selecting an n-tuple I =
(I1, . . . , In) of pairwise disjoint subintervals of Do(η)
such that

∑n
j=1 meas(Ij) ≤ ε, and substituting the

constant value uj for the value η(t) for every t ∈ Ij ,
j = 1, . . . , n, it follows that η ∈ U .

We will then assume
(H16) The class U is an equal-time interval-variational

neighborhood of η∗.

We are now ready to state our version of the maximum
principle. First, we define the Hamiltonian to be the function
Hα :X×U×X†×R ↪→R (depending on α∈R) given by
Hα(x, u, p, t)=p · f(x, u, t)−αf0(x, u, t).

Theorem 5.1: Assume that (H1-16) hold, and let
I = {i ∈ {1, . . . ,m} : Ki �= ∅}. Then there exist

1. a covector π̄ ∈ X†, a nonnegative real number π0, and
an m̃-tuple λλλ = (λ1, . . . , λm̃) of real numbers,

2. a measurable map [a, b] � t �→ (L0(t), L(t)) ∈ Λ(t),
3. measurable pairs (cf. §II) γi = (γi

−, γi
+) of selections

of the set-valued maps Λgi , defined on Ki, for i ∈ I ,
4. a member Lh = (Lh1 , . . . , Lhm̃) ∈ (X†)m̃ of Λh,
5. a member Lϕ of Λϕ,
6. a family {νi}i∈I of nonnegative additive measures

νi ∈ bvadd([a, b]; R) such that support(νi) ⊆ Ki,

such that the following three conditions are satisfied:

I. Hamiltonian maximization: the inequality
Hπ0(ξ∗(t̄), η∗(t̄), π(t̄)) ≥ Hπ0(ξ∗(t̄), u, π(t̄)) holds
whenever u ∈ U , t̄ ∈ [a, b] are such that (ξ∗(t̄), t̄)
is a point of approximate continuity of both
augmented vector fields (x, t) �→ f(x, u, t) and
(x, t) �→ f(x, η∗(t), t),

II. transversality: −π̄ ∈ C†,
III. nontriviality: ‖π̄‖+ π0 +

∑m̃
j=1 |λj |+

∑
i∈I ‖νi‖ > 0,

where π : [a, b] �→ X† is the unique solution of{
dπ(t)=(−π(t) · L(t)+π0L0(t))dt+

∑
i∈I γi(t)dνi(t)

π(b) = π̄ −
∑m̃

j=1 λjL
h
j − π0L

ϕ

Remark 5.2: The adjoint covector π can also be expressed
using (3). The result is the formula

π(t) = π(b)−
∫ b

t

ML(s, t)†
(
π0L0(s) ds+

∑
i∈I

d(γi·νi)(s)
)

,

where π(b) = π̄ −
∑m̃

j=1 λjL
h
j − π0L

ϕ, and ML is the
fundamental solution of Ṁ = L · M .
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