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Abstract— This paper considers the state feedback control of
parameterized discrete event systems consisting of N similar
processes for the problem of maintaining a predicate on the
state space of the system invariant under partial observation.
The basic idea underlying the proposed approach consists
in exploiting the symmetry of the system to be controlled,
the symmetry of the mask, and the symmetry of the control
specification, in order to avoid the exploration of the entire
state space. It is shown that it suffices i) to synthesize off-line
a controller for a small value (n0) of the parameter N ; and ii)
to infer on-line the control for a larger system, consisting of an
arbitrarily large number (n with n0 ≤ n) of processes, from
its current state and the small controller.

I. INTRODUCTION

In the last decade several approaches have been developed,
in the context of the Supervisory Control Theory (SCT),
to circumvent the state-space explosion problem, namely
modular synthesis [1], on-line control [2], Petri nets [3],
bisimulation [4], and symmetries and quotient structures [5],
[6]. Recently, we have investigated a new approach in which
the synthesis procedure of a state feedback control (SFBC)
for a given discrete event system (DES) under complete
observation relies on three main concepts introduced in
the verification domain: reduction, parameterization, and
symmetry [7]. It considers an uncontrolled parameterized
discrete event system (PDES) GN —occasionally written
(GN , xN

0 ) to exhibit the initial state—, consisting of N sim-
ilar processes, and a parameterized predicate QN . A SFBC
fn0

A is synthesized off-line for an instance of (GN , QN ) by
using a typical synthesis algorithm, the parameter N being
substituted by a small value n0. The SFBC fn

A for another
instance of (GN , QN ), with n ≥ n0, is computed on-line
from fn0

A and the current state of Gn in the following way:

fn
A(x) := Σn −

⋃
J∈J n

n0

θ−1
J (Σn0 − fn0

A (ΘJx)), (1)

where ΘJ is the composition of a projection operator (↑J )
and a substitution operator (θJ ). The expression Σn0 −
fn0

A (ΘJx) denotes the set of disabled events in the system
with n0 processes, while fn

A(x) is the set of enabled events
in state x of the system with n processes. The computational
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complexity for fn0
A is still exponential with respect to n0, but

as n0 is usually small this computational expense is totally
acceptable. The computation of fn

A(·) is tractable with worst
case computational complexity in O((n−n0+1)n0). As men-
tioned in [8], the only assumption needed is that the elapsed
time-period between event occurrences be longer than the
on-line computation time. These limitations are reasonable
in systems whose events do not occur very frequently, or
where computational resources are plentiful. The SFBC fn

A

calculated in this way exhibits a form of robustness, because
it can dynamically react to some perturbations (addition or
deletion of a process) occurring in the controlled system by
taking into account the number of processes that are alive.
It could also be appropriate for reliable systems with many
redundant components.

It is shown in [7] that this new synthesis method is sound,
in the sense that if fn0

A corresponds to the optimal (behav-
iorally least restrictive) SFBC for ((Gn0 , x′

0), Q
n0), then fn

A

corresponds to the optimal SFBC for ((Gn, x0), Qn), for all
n ≥ n0, under similarity assumptions and the condition that
all events shared by all processes be controllable. However,
this does not mean that the controllability property is pre-
served when the state space is expanded from dimension n0

to dimension n. Recall that a predicate Q on the state space
X is controllable if Q is Σu–invariant and every state that
satisfies Q can be reached from the initial state via states
satisfying Q (reachability) [9]. Actually, the Σu–invariance
property is preserved, but not the reachability property. This
is formally expressed by the following inequalities:

sup CP(Qn) ⊆ (sup CP(Qn0))n ⊆ Qn, where

(sup CP(Qn0))n denotes the supremal controllable predicate
stronger than Qn0 extended to the state space of dimension
n. Nevertheless, this fact is unimportant, because each state
for which (sup CP(Qn0))n holds, but sup CP(Qn) does not
hold, is unreachable under the control of fn

A. There are also
counterexamples that show that the nonblocking property is
not preserved.

This paper extends this approach to the case of partial
observation. This particular case raises, however, new diffi-
culties. On one hand, even though the supremal controllable
and normal subpredicate always exists [10], the normality
property is generally too restrictive for real systems. On
the other hand, the notion of strong M–controllability [11],
which is a stronger version of M–controllability [12] that en-
sures the existence of a supremal element supSC(Q), hides
several pitfalls that have a significant impact on the goal of
achieving optimality when the state space is expanded. First,
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supSC(Q) can only be expressed in its simplest form as an
iterative computational schema. Second, the notion of strong
M–controllability includes a kind of reachability property,
similar to the one for the notion of controllability, which
cannot be preserved. Third, it also depends on the concept of
bad event set, which merges together states that are observed
in the same way, whether they satisfy the predicate Q or not.

The rest of this paper is structured as follows. Section II
presents an overview of the SFBC problem in the case
of DESs under partial observation. Section III introduces
the notation and basic definitions which are required to
consider the SFBC problem in the case of PDESs under
partial observation, and illustrates the synthesis procedure
with the aid of a running example. Sections IV and V show
that the on-line procedure is safe and maximal under some
conditions, respectively. Finally, Section VI ends the paper
with some concluding remarks and related work.

II. PRELIMINARIES

The concepts and results introduced in this section are
part of the work originally developed by Ramadge and
Wonham [1] and Li and Wonham [9], [13], [14], and later
extended, among others, by Takai and Kodoma [11].

Let us assume that a DES is modeled by an automaton
G := (X, Σ, δ, x0, Xm), where X is a finite set of states; Σ is
a finite set of events divided into two disjoint subsets Σc and
Σu of controllable and uncontrollable events, respectively;
δ : X × Σ → X is the partial transition function; x0 is
the initial state; and Xm is the subset of marked states,
which represents the completed tasks. It is assumed that G
is accessible, that is, all states are reachable from x0 [11].

A SFBC for G is a total function f : X → Γ, where
Γ := {Σ′ ⊆ Σ | Σ′ ⊇ Σu}. If σ ∈ f(x), then σ is enabled
at x; otherwise, it is disabled. For σ ∈ Σ, the predicate fσ

on X is defined by fσ(x) :⇔ σ ∈ f(x). Thus, f may be
described by a family of predicates {fσ | σ ∈ Σ}.

Let δ(x, σ)! mean that δ(x, σ) is defined (for s ∈ Σ∗,
δ(x, s)! is defined in the usual way and in particular δ(x, ε)!
always holds). The controller, represented by f , and the DES,
represented by G, are embodied in a closed loop which is
defined by Gf := (X, Σ, δf , x0, Xm), where δf (x, σ) :=
δ(x, σ) if δ(x, σ)! and σ ∈ f(x), and is undefined otherwise.
Let Re(G|f) be the predicate that holds exactly at the
reachable states in Gf , according to the inductive definition:

1) Re(G|f)(x0) holds;
2) Re(G|f)(x) ∧ σ ∈ Σ ∧ δf (x, σ)! ⇒

Re(G|f)(δf (x, σ));
3) no other states x satisfy Re(G|f).
When the states of the system are not completely observed,

the state space X is partitioned into a set Y of equivalence
classes, called observability classes [10]. The membership
map M : X → Y , called the mask, is defined as a mapping
from the state space X to the observation space Y . At
the current state x ∈ X , the controller observes the value
M(x) ∈ Y . In some examples presented in this paper, we
denote the observability class of x ∈ X by its representative
element x′ ∈ X and simply write M(x) = x′.

Let Fo be the set of SFBCs that satisfy the following
assumption [10].

Assumption 1: Restriction of a SFBC to the observability
classes — For any x, x′ ∈ X ,

M(x) = M(x′) ⇒ f(x) = f(x′).
In this context, a state feedback controller f ∈ Fo selects

a control pattern f(x) based on M(x).
Let Pred(X) = {true, false}X be the set of all predicates

on the state space X . A predicate Q generally represents
the control specification to be fulfilled. A partial order on
Pred(X) is defined as follows1:

Q1 ≤ Q2 :⇔ (∀x | x ∈ X : Q1(x) ⇒ Q2(x)).

For a fixed σ ∈ Σ, the predicate transformer wlpσ :
Pred(X) → Pred(X) is defined by

wlpσ(Q)(x) :⇔ (¬δ(x, σ)! ∨ Q(δ(x, σ))).

The predicate transformer wlpf
σ is defined like wlpσ , but with

δf instead of δ. The predicate transformer 〈·〉 : Pred(X) →
Pred(X) is defined by

〈Q〉(x) :⇔ (∀s | s ∈ Σ∗
u : ¬δ(x, s)! ∨ Q(δ(x, s))).

It is worth noting that the predicate transformer 〈·〉 is
idempotent. Finally, for each y ∈ Y , the bad event set
Â(Q, y) ⊆ Σc is defined by [11]

Â(Q, y) := {σ ∈ Σc | (∃x | x ∈ X : y = M(x) ∧
¬wlpσ(Q)(x))}.

The function Â is antimonotone with respect to its first
argument, that is,

Q1 ≤ Q2 ⇒ Â(Q2, y) ⊆ Â(Q1, y). (2)

In order to deal with the predicate invariant control
problem formulated in the framework of SCT, the property
of control-invariance has been introduced [1]. A predicate
Q ∈ Pred(X) is control-invariant with respect to G if, for
some SFBC f , Q ≤ wlpf

σ(Q) for all σ ∈ Σ. A feedback in-
dependent characterization of the control-invariance property
is Σu-invariance. A predicate Q ∈ Pred(X) is Σu-invariant
with respect to G if Q ≤ wlpσ(Q) for all σ ∈ Σu. As shown
in [1], a predicate Q is control-invariant if and only if Q is
Σu-invariant.

When Q �= false is Σu-invariant, a SFBC f such that
Re(G|f) ≤ Q is given by (∀σ | σ ∈ Σc : fσ(x) ⇔ σ /∈
Â(Q,M(x))). If Q fails to be Σu-invariant, following the
conventional procedure [1], sup CI<(Q) is then targeted,
where

CI<(Q) := {Q′ ∈ Pred(X) | Q′ ≤ Q

and Q′ is Σu-invariant}.
1Quantifications have the form (quantifier bound variable | range

restriction : quantified expression) (see, e.g., [15]); an empty range in a
quantification means that the bound variable ranges over all possible values.
(∃x | P : Q) is read as there exists x such that P and Q. (∀x | P : Q) is
read as for all x such that P , Q holds or as for all x, P implies Q.
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Based on antimonotonicity, defined by Equation 2, the behav-
iorally least restrictive SFBC f∗ is synthesized. For all σ ∈
Σc, f∗

σ(x) :⇔ σ /∈ Â(νH,M(x)), where νH is the greatest
fixed point of the function H : Pred(X) → Pred(X) defined
by

H(T ) := Q ∧
∧

σ∈Σu

wlpσ(T )

(see [1], [16], and [17]). The following proposition shows
that the greatest fixed point of H is 〈Q〉.

Proposition 1: νH = 〈Q〉.
Proof: By a standard result of lattice theory [18], it

suffices to show (i) 〈Q〉 ≤ H(〈Q〉) and (ii) for any U ∈
Pred(X), U ≤ H(U) implies U ≤ 〈Q〉.

(i) Let x ∈ X and suppose that 〈Q〉(x) holds. Then Q(x)
must hold. Since 〈·〉 is idempotent and Σu ⊆ Σ∗

u,(∧
σ∈Σu

wlpσ(〈Q〉)) (x) also holds. This shows that
〈Q〉 ≤ Q ∧ ∧

σ∈Σu
wlpσ(〈Q〉) = H(〈Q〉).

(ii) Suppose U ≤ H(U). We have to show U ≤ 〈Q〉.
So, assume U(x). We show 〈Q〉(x) by proving that
if δ(x, s)!, then Q(δ(x, s)), for any s ∈ Σ∗

u. Because
U ≤ H(U) ≤ Q, it suffices to prove that if δ(x, s)!,
then U(δ(x, s)), for any s ∈ Σ∗

u.
Base case, s = ε: This is direct by U(x) ⇔ U(δ(x, ε)).
Induction step: Let s = tσ, for some t ∈ Σ∗

u and
σ ∈ Σu. Assume δ(x, s)!. Then, δ(x, t)!, so that, by
the induction hypothesis, U(δ(x, t)). Because U ≤
H(U) ≤ wlpσ(U), we then have U(δ(δ(x, t), σ)), that
is, U(δ(x, s)).

The following proposition states that if no sequence of
uncontrollable events leading to a state violating Q can occur
in the initial state, then the same thing is true of all the states
reachable under the control of f∗.

Proposition 2: If 〈Q〉(x0) holds then
Re(G|f∗) ≤ 〈Q〉 ≤ Q.

Proof: See [12] for the first inequality. The second
inequality follows directly from the definition of 〈·〉.

III. NOTATION AND DEFINITIONS

Let us consider a PDES GN , where N is a parameter
that denotes the number of processes, defined from the finite
composition of a replicated structure

Pi := (Xi,Σ ∪ Σi, δi, Xm,i),

where Xi is a finite set of indexed states; Σ is a finite set of
non-indexed, controllable events; Σi is a finite set of indexed
events, Σi = Σc,i ∪ Σu,i; δi : Xi × (Σ ∪ Σi) → Xi is the
partial transition function; and Xm,i is the subset of marked
states. The replicated structure represents the behavior of
similar processes. The parameter N can be substituted by
any number n ∈ N. The events that belong to Σ are shared
by all processes and allow synchronization.

The concept of replicated structure is translated into a
process similarity assumption [19]. Formally, let θ := 〈j/i〉
be a substitution such that i.θ = j (1 ≤ i, j ≤ N ).

Assumption 2: Process Similarity Assumption (PSA) —
(∀i, j | 1 ≤ i, j ≤ N : Pj = Pi.θ), where

Pi.θ := (Xi.θ,Σ ∪ Σc,i.θ ∪ Σu,i.θ, δi.θ,Xm,i.θ);
Xi.θ := Xi.θ := {xi.θ | xi ∈ Xi};

Σc,i.θ := Σc,i.θ := {σi.θ | σi ∈ Σc,i};
Σu,i.θ := Σu,i.θ := {σi.θ | σi ∈ Σu,i};

δi.θ := δi.θ :=
{(xi.θ, σ, x′

i.θ) | σ ∈ Σ ∧ (xi, σ, x′
i) ∈ δi} ∪

{(xi.θ, σi.θ, x
′
i.θ) | σi ∈ Σi ∧ (xi, σi, x

′
i) ∈ δi};

Xm,i.θ := Xm,i.θ := {xi.θ | xi ∈ Xm,i}.
Therefore, a process can be derived from any other process

by index substitution. A global state x ∈ XN is represented
by a tuple of N local states. Let x[i] denote the i-th
component of x. The transition structure GN is defined
from a synchronous composition for events in Σ and an
interleaving composition for events in each Σi. Thus, GN :=
(XN ,ΣN , δN , XN

m ), where ΣN = Σ ∪ Σ1 ∪ · · · ∪ ΣN and
(δN (x, σ))[i] = δi(x[i], σ) if σ ∈ Σ∪Σi and (δN (x, σ))[i] =
x[i] otherwise. An instance of a PDES, GN , is denoted by
(Gn, x0), where x0 ∈ Xn is the initial state.

Definition 1: Let x := 〈x[1], x[2], . . . , x[n]〉 ∈ Xn. Then
Mn(x) := 〈M1(x[1]),M2(x[2]), . . . ,Mn(x[n])〉, where
Mi : Xi → Yi is the mask for process i.

Example 1: Consider a unidirectional rectangular railway
with N trains. The track is divided into ten different sections.
The train i in section k, 0 ≤ k ≤ 9, is represented by a state
sk,i and the passage of train i from section k to the adjacent
section k ⊕ 1 by the event skTOsk⊕1 ti, where k ⊕ 1 =
(k + 1) mod 10. Formally, δi(sk,i, skTOsk⊕1 ti) = sk⊕1,i.
The events skTOsk⊕1 ti, with k odd, are controllable.

The mask function is derived from the fact that sections
2 and 3 are in a tunnel and sections 7 and 8 are in another
tunnel.

Mi(sk,i) =

⎧⎨
⎩

sk,i : k ∈ {0, 1, 4, 5, 6, 9}
T1,i : k ∈ {2, 3}
T2,i : k ∈ {7, 8}

The replicated structure for train number i is depicted in
Fig. 1. �

Definition 2: Let n0, n ∈ N, where n0 ≤ n, J n
n0

:= {J |
(∃j1, . . . , jn0 | J = {j1, . . . , jn0} : 1 ≤ j1 < j2 < · · · <
jn0 ≤ n)}.

Definition 3: Let J ∈ J n
n0

(in the sequel, the expression
“Let J ∈ J n

n0
” means “Let J = {j1, . . . , jn0} and 1 ≤ j1 <

· · · < jn0 ≤ n”). The projection operator ↑J on a global
state x ∈ Xn is a function ↑J : Xn → Xj1 ×· · ·×Xjn0

that
is defined as ↑J x := 〈x[j1], . . . , x[jn0 ]〉.

Definition 4: Let J ∈ J n
n0

. The substitution operator θJ

on a state x ∈ Xj1 × · · · × Xjn0
is a function θJ :

Xj1 × · · · × Xjn0
→ Xn0 that expresses the simultane-

ous replacement of process indices j1, . . . , jn0 by process
indices 1, . . . , n0, respectively. It is defined as θJx :=
〈x[1].〈1/j1〉, . . . , x[n0].〈n0/jn0 〉〉 (writing the substitutions as
subscripts emphasizes the fact that they are to be applied to
indices).
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��������s0,i
s0TOs1 ti �� ��������s1,i

s1TOs2 ti �� ��������s2,i
s2TOs3 ti �� ��������s3,i

s3TOs4 ti

��
��������s9,i

s9TOs0 ti

��

��������s4,i

s4TOs5 ti

��
��������s8,i

s8TOs9 ti

��

��������s7,i
s7TOs8 ti�� ��������s6,i

s6TOs7 ti�� ��������s5,i
s5TOs6 ti��

Fig. 1. Replicated structure for train number i

Definition 5: Let J ∈ J n
n0

. The projection operator ↑J on
an event σ ∈ Σn is a function ↑J : Σn → Σ ∪ Σj1 ∪ · · · ∪
Σjn0

∪{ε} that is defined as follows: ↑J σ := σ, if σ ∈ Σ or
σ ∈ Σi and i ∈ J ; and ↑J σ := ε, if σ ∈ Σi and i �∈ J .

Definition 6: Let J ∈ J n
n0

. The substitution operator θJ

on an event σ ∈ Σ ∪ Σj1 ∪ · · · ∪ Σjn0
∪ {ε} is a function

θJ : Σ∪Σj1 ∪ · · · ∪Σjn0
∪ {ε} → Σn0 ∪ {ε} that is defined

as θJσ := σ, if σ ∈ Σ; θJσ := σ.〈k/jk〉 if σ ∈ Σjk
and

jk ∈ J ; and θJε := ε.

Definition 7: Let Ω ⊆ Σn and J ∈ J n
n0

. The operator θJ

on a set of events is a function θJ : 2Σn → 2Σn0∪{ε} defined
by θJΩ := {θJσ | σ ∈ Ω}.

Let ΘJ := θJ ◦ ↑J . If x ∈ Xn, ΘJx is well defined and
ΘJ : Xn → Xn0 . Furthermore, if σ ∈ Σn, ΘJσ is well
defined and ΘJ : Σn → Σn0 ∪ {ε}.

Definition 8: Let J ∈ J n
n0

. The operator ΘJ on a string of
events is a function ΘJ : (Σn)∗ → (Σn0)∗ that is recursively
defined as follows: ΘJε := ε and ΘJsσ := (ΘJs)(ΘJσ),
where σ ∈ Σn and s ∈ (Σn)∗.

Example 2: Let n0 = 2, n = 4, and consider the train sys-
tem introduced in Example 1. Let x = 〈s1,1, s3,2, s6,3, s9,4〉
and s = s6TOs7 t3 · s3TOs4 t2 · s1TOs2 t1. If J = {2, 4},
then ΘJx = 〈s3,1, s9,2〉 and ΘJs = s3TOs4 t1. �

Remark 1: Let s ∈ (Σn0)∗, J ∈ J n
n0

, and θJ =
{1/j1, . . . , n0/jn0}. Then θ−1

J s exists, since θ−1
J =

{j1/1, . . . , jn0/n0}. Also, ΘJ(θ−1
J s) = θJ(θ−1

J s) = s. It
should be noted that an element of (Σn0)∗ is also an element
of (Σn)∗.

A SFBC is synthesized from a particular instance of GN ,
say Gn, and a control specification. The latter can be given in
two ways: i) by a parameterized predicate QN ∈ Pred(XN )
or ii) by a predicate Qn0 ∈ Pred(Xn0) with n0 ≤ n. In
the first case, Qn0 and Qn are instances of QN . In the
second case Qn is deduced from Qn0 by similarity. In both
cases, Qn0 and Qn must satisfy the following similarity
assumption.

Assumption 3: Specification Similarity Assumption
(SSA) — Let x ∈ Xn. The assumption is

Qn(x) ⇔ (∀J | J ∈ J n
n0

: Qn0(ΘJx)).
Intuitively, SSA imposes the following restriction to a

predicate Qn: a state x ∈ Xn of the global system satisfies
Qn if and only if all the projections of x on the state space
of dimension n0 satisfy Qn0 .

Example 3: The behavior of the trains must be restrained
to prevent the trains from colliding. Therefore, any two trains
must be separated by at least one section to ensure that an
incoming train can stop at a proper distance. This constraint
is formally defined by the following predicate:

QN (x) ⇔ (∀i, j | 1 ≤ i, j ≤ N ∧ i �= j :
¬(x[i] = sk,i ∧ x[j] = sk,j) ∧
¬(x[i] = sk,i ∧ x[j] = sk⊕1,j)).

This predicate satisfies SSA, with n0 = 2. �
The mask must also satisfy a similarity assumption.
Assumption 4: Mask Similarity Assumption (MSA) —

Let y ∈ Y n and x ∈ Xn. The assumption is

y = Mn(x) ⇔ (∀J | J ∈ J n
n0

: ΘJy = Mn0(ΘJx)).
Intuitively, MSA ensures that the mask is the same for

every independent process of the global system up to index
substitution.

As mentioned in the introduction, the synthesis method
includes two parts: an off-line synthesis and an on-line
synthesis.

The off-line synthesis consists in calculating a SFBC fn0
A ,

with respect to Qn0 , Mn0 , and (Gn0 , x0), where x0 ∈ Xn0 ,
such that Re(Gn0 |fn0

A ) ≤ sup CI<(Qn0). In general, this
problem is undecidable, but it can be solved, by using an
appropriate synthesis algorithm that mechanically constructs
a correct solution and ensures that fn0

A ∈ Fn0
o , for some

particular forms of predicates (e.g., predicates represented
by a set of forbidden states, linear predicates).

Example 4: For the trains example, the SFBC f2
A has been

synthesized. In order to present the results in a concise form,
let f N

A (·) := ΣN−fN
A (·) be the set of prohibited controllable

events. Here are some entries for f 2
A.

〈s2,1, s5,2〉 : {s3TOs4 t1} 〈s3,1, s5,2〉 : {s3TOs4 t1}
〈s2,1, s9,2〉 : {s9TOs0 t2} 〈s3,1, s9,2〉 : {s9TOs0 t2}
〈s5,1, s9,2〉 : { } 〈s7,1, s9,2〉 : {s7TOs8 t1}

�
From now on, we assume that the algorithm used to

compute the nonprohibited events in the system with n0

processes is optimal. That is, we assume fn0
A = fn0∗. The

on-line synthesis of fn
A ∈ Fn

o in the context of partial
observation is done by using the following equation. It is
similar to Equation 1, with an additional term.

fn
A(x) := Σn −⋃

J∈J n
n0

(
θ−1

J (Σn0 − fn0∗(ΘJx)) ∪
{σ ∈ Σn

c | ΘJσ = ε ∧ (∃x′ | x′ ∈ Xn0 :
Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}

)
(3)
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The term θ−1
J (Σn0 − fn0∗(ΘJx)) yields events that are

prohibited because they occur in a projection J for which
they may lead (as determined by observing under the mask)
to a state violating 〈Qn〉, either directly or after transitions
by uncontrollable events.

The other term (the one inside {}) contains events not
occurring in the projection J that is considered, but that must
nevertheless be prohibited because the projection of the state
on J is in an observability class that contains a state x′ that
is not safe (that does not satisfy 〈Qn0〉). Because the event
does not occur in the projection J , the J-component of x′ is
not changed by the transition and so does not satisfy 〈Qn0〉
after the transition.

The computational complexity is still in O((n−n0+1)n0)
because the additional term (with respect to Equation 1) can
be calculated in a constant time for a given J as far as the
information required in the lower space of dimension n0 is
precomputed before system execution.

Example 5: This example shows how
f 3

A(〈s2,1, s5,2, s9,3〉) is calculated.

f 3
A(〈s2,1, s5,2, s9,3〉) = θ−1

{1,2}f
2∗
A (Θ{1,2}〈s2,1, s5,2, s9,3〉)

∪
θ−1
{1,3}f

2∗
A (Θ{1,3}〈s2,1, s5,2, s9,3〉)

∪
θ−1
{2,3}f

2∗
A (Θ{2,3}〈s2,1, s5,2, s9,3〉)

= θ−1
{1,2}f

2∗
A (〈s2,1, s5,2〉) ∪

θ−1
{1,3}f

2∗
A (〈s2,1, s9,2〉) ∪

θ−1
{2,3}f

2∗
A (〈s5,1, s9,2〉)

= θ−1
{1,2}{s3TOs4 t1} ∪

θ−1
{1,3}{s9TOs0 t2} ∪ θ−1

{2,3}{ }
= {s3TOs4 t1} ∪ {s9TOs0 t3}
= {s3TOs4 t1, s9TOs0 t3}.

In this example, because all projections of 〈s2,1, s5,2, s9,3〉
belong to a safe observability class, no forbidden event is
due to the additional term in (3). �

IV. SOUNDNESS OF THE SYNTHESIS METHOD

Many relationships may be established between a sys-
tem of n processes and a system of n0 processes under
the assumptions PSA, MSA, and SSA. Some of them are
presented in this section, especially those required to prove
the soundness of the synthesis method.

Lemma 1: Let x ∈ Xn and J ∈ J n
n0

. Then
Mn0(ΘJx) = ΘJMn(x).

Lemma 2: Let x ∈ Xn, σ ∈ Σn, and J ∈ J n
n0

.
If δn(x, σ)!, then δn0(ΘJx,ΘJσ) = ΘJδn(x, σ).

Lemma 3: Let x ∈ Xn, s ∈ (Σn)∗, and J ∈ J n
n0

.
If δn(x, s)!, then δn0(ΘJx,ΘJs) = ΘJδn(x, s).

Lemma 4: Let x ∈ Xn and σ ∈ Σn. Then
δn(x, σ)! ⇔ (∀J | J ∈ J n

n0
: δn0(ΘJx,ΘJσ)!).

Lemma 5: Let x ∈ Xn and s ∈ (Σn)∗. Then
δn(x, s)! ⇔ (∀J | J ∈ J n

n0
: δn0(ΘJx,ΘJs)!).

The following proposition establishes that the predicate
〈Qn〉 satisfies the assumption SSA [7].

Proposition 3: Let x ∈ Xn. Then
〈Qn〉(x) ⇔ (∀J | J ∈ J n

n0
: 〈Qn0〉(ΘJx)).

Proof: The (⇒) part: The proof is by contraposition.
Suppose that there exists a J ∈ J n

n0
for which 〈Qn0〉(ΘJx)

does not hold. Then, there must exist s ∈ (Σn0
u )∗ and x′ :=

δn0(ΘJx, s) for which Qn0(x′) does not hold (definition
of 〈Qn0〉). Let x′′ = δn(x, θ−1

J s). Assumption 2 (PSA)
ensures that x′′ is well defined (note that if uncontrollable
synchronous events were allowed, this would not be true; n0

processes might be able to synchronize while n processes
might not). Since x′ = ΘJx′′ and Qn0(x′) does not hold,
Assumption 3 (SSA) implies that Qn(x′′) does not hold
either, which in turn implies that 〈Qn〉(x) does not hold,
because θ−1

J s ∈ (Σn
u)∗.

The (⇐) part:

(∀J | J ∈ J n
n0

: 〈Qn0〉(ΘJx))
= (∀J | J ∈ J n

n0
: (∀w | w ∈ (Σn0

u )∗ :
δn0(ΘJx,w)! ⇒
Qn0(δn0(ΘJx,w)))) (def. of 〈·〉)

= (∀J | J ∈ J n
n0

: (∀w | ΘJ(θ−1
J w) ∈ (Σn0

u )∗ :

δn0(ΘJx,ΘJ (θ−1
J w))! ⇒

Qn0(δn0(ΘJx,ΘJ (θ−1
J w))))) (Remark 1)

= (∀J | J ∈ J n
n0

: (∀s | ΘJs ∈ (Σn0
u )∗ :

δn0(ΘJx,ΘJs)! ⇒ Qn0(δn0(ΘJx,ΘJs))))
(changing dummy, s = θ−1

J w ⇔ w = θJs)

⇒ (∀J | J ∈ J n
n0

: (∀s | s ∈ (Σn
u)∗ :

δn0(ΘJx,ΘJs)! ⇒ Qn0(δn0(ΘJx,ΘJs))))
(by Def. 8: ΘJs ∈ (Σn0

u )∗ ⇔ s ∈ (Σn
u)∗)

= (∀s | s ∈ (Σn
u)∗ : (∀J | J ∈ J n

n0
:

δn0(ΘJx,ΘJs)! ⇒ Qn0(δn0(ΘJx,ΘJs))))
(exchanging quantifiers)

⇒ (∀s | s ∈ (Σn
u)∗ :

(∀J | J ∈ J n
n0

: δn0(ΘJx,ΘJs)!) ⇒
(∀J | J ∈ J n

n0
: Qn0(δn0(ΘJx,ΘJs))))

(∀-monotonicity)

= (∀s | s ∈ (Σn
u)∗ : δn(x, s)! ⇒ Qn(δn(x, s)))

(Lemmas 3, 5, and SSA)

= 〈Qn〉(x) (def. of 〈·〉).

The following proposition gives another expression for fn
A.

This is mainly for use in the proof of Theorem 1, but it
also reveals something that is not apparent in the definition
of fn

A (Equation 3). We consider that fn
A is (a specification

of) the algorithm for computing enabled events under partial
observation, but in (3), it seems that the algorithm uses
the system state x, which it is not supposed to see. In the
following proposition, the expression of fn

A clearly shows
that only the observed Mn(x) is needed.
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Proposition 4: Let x ∈ Xn. Then

fn
A(x) = Σn

u ∪
{

σ | σ ∈ Σn
c ∧

(∀J | J ∈ J n
n0

∧ ΘJσ �= ε : ΘJσ /∈ Â(〈Qn0〉,ΘJMn(x)))
∧ (∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) : 〈Qn0〉(x′)))
}

Proof:

fn
A(x)

= Σn −
⋃

J∈J n
n0

(
θ−1

J (Σn0 − fn0∗(ΘJx)) ∪

{σ ∈ Σn
c | ΘJσ = ε ∧ (∃x′ | x′ ∈ Xn0 :

Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}
)

(Eq. 3)

= Σn −
⋃

J∈J n
n0

(
{θ−1

J σ′ | σ′ ∈ Σn0 ∧ ¬fn0∗
σ′ (ΘJx)} ∪

{σ ∈ Σn
c | ΘJσ = ε ∧ (∃x′ | x′ ∈ Xn0 :

Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}
)

(def. of fσ and Def. 7)

= Σn −
⋃

J∈J n
n0

(
{σ | θJσ ∈ Σn0 ∧ ¬fn0∗

θJσ (ΘJx)} ∪

{σ ∈ Σn
c | ΘJσ = ε ∧ (∃x′ | x′ ∈ Xn0 :

Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}
)

(changing dummy, Remark 1)

= Σn −
⋃

J∈J n
n0

(
{σ | ΘJσ �= ε ∧ ¬fn0∗

ΘJσ(ΘJx)} ∪

{σ | σ ∈ Σn
c ∧ ΘJσ = ε ∧ (∃x′ | x′ ∈ Xn0 :

Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′))}
)

(Def. 5 and 7, def. of ΘJ )

= Σn −
{

σ |
(
(∃J | J ∈ J n

n0
:

σ ∈ Σn
c ∧ ΘJσ �= ε ∧ ¬fn0∗

ΘJσ(ΘJx)) ∨
(∃J | J ∈ J n

n0
: σ ∈ Σn

c ∧ ΘJσ = ε ∧
(∃x′ | x′ ∈ Xn0 :

Mn0(ΘJx) = Mn0(x′) ∧ ¬〈Qn0〉(x′)))
)}

(because ΘJσ �= ε ∧ ¬fn0∗
ΘJσ(ΘJx) ⇒

ΘJσ �= ε ∧ ΘJσ �∈ Σn0
u ⇒ σ ∈ Σn

c )

=
{

σ | σ �∈ Σn
c ∨

(
¬(∃J | J ∈ J n

n0
∧ ΘJσ �= ε : ¬fn0∗

ΘJσ(ΘJx)) ∧
¬(∃J | J ∈ J n

n0
∧ ΘJσ = ε :

(∃x′ | x′ ∈ Xn0 ∧ Mn0(ΘJx) = Mn0(x′) :

¬〈Qn0〉(x′)))
)}

(J not free in σ ∈ Σn
c and distributivity)

= Σn
u ∪

{
σ | σ ∈ Σn

c ∧
(∀J | J ∈ J n

n0
∧ ΘJσ �= ε : fn0∗

ΘJσ(ΘJx)) ∧
(∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ Mn0(ΘJx) = Mn0(x′) :

〈Qn0〉(x′)))
}

= Σn
u ∪

{
σ | σ ∈ Σn

c ∧
(∀J | J ∈ J n

n0
∧ ΘJσ �= ε :

ΘJσ /∈ Â(νHn0 ,Mn0(ΘJx))) ∧
(∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ Mn0(ΘJx) = Mn0(x′) :

〈Qn0〉(x′)))
}

(def. of f∗)

= Σn
u ∪

{
σ | σ ∈ Σn

c ∧
(∀J | J ∈ J n

n0
∧ ΘJσ �= ε :

ΘJσ /∈ Â(〈Qn0〉,ΘJMn(x))) ∧
(∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) :

〈Qn0〉(x′)))
}

(Prop. 1, Lemma 1)

The next proposition shows that if an event σ has to be
disabled for the system with n processes in a state viewed as
y under the mask, then either it is disabled in a system with
n0 processes for some projection J or there is a projection
J of y unchanged by the occurrence of σ and such that this
projection of y is equivalent under the mask to an illegal
state.

Proposition 5: Let y ∈ Y n and σ ∈ Σn
c . Then

σ ∈ Â(〈Qn〉, y) ⇒
(∃J | J ∈ J n

n0
∧ ΘJσ �= ε : ΘJσ ∈ Â(〈Qn0〉,ΘJy)) ∨

(∃J | J ∈ J n
n0

∧ ΘJσ = ε :
(∃x′ | x′ ∈ Xn0 ∧ ΘJy = Mn0(x′) : ¬〈Qn0〉(x′))).

The following proposition is of great importance to prove
the soundness of the synthesis method. It establishes a
fundamental link between the enabled events of a SFBC
maintaining sup CI<(Qn) invariant and the projections from
which these events can be recovered.

Proposition 6: Let x ∈ Xn and σ ∈ Σn
c . Then

fn∗
σ (x) ⇐

(∀J | J ∈ J n
n0

∧ ΘJσ �= ε : ΘJσ /∈ Â(〈Qn0〉,ΘJMn(x)))
∧ (∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) : 〈Qn0〉(x′))).
Proof:

fn∗
σ (x)
⇔ σ /∈ Â(νHn,Mn(x)) (def. of fn∗

σ )

⇔ σ /∈ Â(〈Qn〉,Mn(x)) (Prop. 1)

⇐ (∀J | J ∈ J n
n0

∧ ΘJσ �= ε :

ΘJσ /∈ Â(〈Qn0〉,ΘJMn(x))) ∧
(∀J | J ∈ J n

n0
∧ ΘJσ = ε :

(∀x′ | x′ ∈ Xn0 ∧ ΘJMn(x) = Mn0(x′) :
〈Qn0〉(x′))) (Prop. 5)
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The following proposition states that, under the assump-
tion SSA, a predicate Qn0 is Σn0

u -invariant if and only if Qn

is Σn
u-invariant.

Proposition 7: (∀σ | σ ∈ Σn0
u : Qn0 ≤ wlpσ(Qn0)) ⇔

(∀n | n ≥ n0 : (∀σ | σ ∈ Σn
u : Qn ≤ wlpσ(Qn))).

Proof: Since the (⇐) part is trivial, we prove the (⇒)
part. Suppose that there exists n > n0 and σ ∈ Σn

u for
which Qn �≤ wlpσ(Qn). By definition of Σn

u, σ = σi ∈ Σu,i

for some i such that 1 ≤ i ≤ n. Then, there exists a state
s = 〈x[1], . . . , x[i], . . . , x[n]〉 such that Qn(s) holds, and a
state t = 〈x[1], . . . , δi(x[i], σi), . . . , x[n]〉 such that Qn(t)
does not hold. Thus, there exists J ∈ J n

n0
, with i ∈ J ,

for which Qn0(ΘJ t) does not hold (SSA). If there were
no such J , this would contradict the fact that Qn(s) holds,
since the state does not change for processes other than
i. Furthermore, Qn0(ΘJs) holds (SSA), δn0(ΘJs,ΘJσ) =
ΘJ t (Lemma 2), and ΘJσ ∈ Σn0

u (PSA). But this implies
that Qn0 �≤ wlpσ(Qn0). This is a contradiction.

The following two theorems constitute the main result
of this paper. They characterize the soundness property and
establish that the synthesis method is sound in the case of
partial observation.

Theorem 1: Let x ∈ Xn. Then fn
A(x) ⊆ fn∗(x).

Proof: This follows from Propositions 4 and 6, and the
fact that Σn

u ⊆ fn∗(x), for any x.
Theorem 2: If 〈Qn〉(x0) holds, then Re(G|fn

A) ≤ 〈Qn〉.
Proof: This is a direct consequence of Theorem 1 and

Proposition 2.
The result stated in the previous theorem means that the

approach is sound: the theorem shows that in the state space
with n components, only safe states are reached when using
the algorithm computing fn

A. Note that such an algorithm
computes fn

A only by looking at a reduced number n0 ≤ n
of components (by using fn0∗).

V. MAXIMALLY-ALLOWABLE BEHAVIOR

There is generally a strong interest in synthesizing the
least restrictive SFBC. As mentioned in [20] and [21], it
is advantageous to aim for a kind of maximality. In fact,
the off-line part of the method, which synthesizes fn0

A such
that Re(Gn0 |fn0

A ) ≤ sup CI<(Qn0), is precisely motivated
by restricting the plant as little as possible while still sat-
isfying the control specification. Even though Theorem 2
guarantees that Re(G|fn

A) ≤ Qn, asserting that Re(G|fn
A) =

Re(G|fn∗) is questionable. When the last equality is met,
fn

A is said to be maximal. In fact, even though fn0
A is the

least restrictive SFBC for Qn0 , this does not imply that fn
A is

maximal. The following example, which has been elaborated
from the second disjunct of the consequent of proposition 8
below, shows that fn

A may be too restrictive when Σ �= ∅,
that is, when synchronization is allowed.

Example 6: Only the relevant elements of a PDES (with
n = 3 and n0 = 2) are considered. Let Σ = {r}.
For 1 ≤ i ≤ 3, let Xi = {a′

i, b
′
i, c

′
i, ai, bi, ci},

where M(a′
i) = M(ai), M(b′i) = M(bi), and

M(c′i) = M(ci). Suppose that ¬δ3(〈a′
1, b

′
2, c

′
3〉, r)!,

δ3(〈a1, b2, c3〉, r)!, 〈Q3〉(δ3(〈a1, b2, c3〉, r)), δ2(〈a′
1, b

′
2〉, r)!,

¬〈Q2〉(δ2(〈a′
1, b

′
2〉, r)), and Re(G|f3

A)(〈a1, b2, c3〉) all hold.
One can verify that such a system satisfies all the similarity
assumptions. Obviously, r /∈ Â(〈Q3〉,M3(〈a1, b2, c3〉)),
so Re(G|f3∗)(δ3(〈a1, b2, c3〉, r)) holds too. Since
r /∈ θ−1

{1,2}f
2
A(〈a′

1, b
′
2〉), then r /∈ f3

A(〈a1, b2, c3〉) and
Re(G|f3

A)(δ3(〈a1, b2, c3〉, r)) does not hold. Hence, f3
A is

not maximal. �
The following proposition characterizes three cases when

fn
A prohibits a controllable event. The first disjunct is the

negation of fn∗
σ (·). The second disjunct concerns the case

where the controllable event is a synchronized event. The
third disjunct represents the case in which the controllable
event is erased in the lower dimension by a projection and
acts as a self loop on a bad state even if the transition is not
defined in the upper dimension.

Proposition 8: Let x ∈ Xn and σ ∈ Σn
c . Then

¬fn∗
σ (x) ∨

(σ ∈ Σ ∧
(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ¬δn(x′, σ)! ∧

(∃J | J ∈ J n
n0

: δn0(ΘJx′, σ)! ∧
¬〈Qn0〉(δn0(ΘJx′, σ)))) ∨

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ¬δn(x′, σ)! ∧
(∃J | J ∈ J n

n0
: ΘJσ = ε ∧ ¬〈Qn0〉(ΘJx′)))

⇐ σ /∈ fn
A(x).

Proposition 8 brings the natural question as whether or not
fn

A is maximal if no synchronization is allowed. Theorem 3
shows that under this restriction, fn

A is maximal.
Theorem 3: If Σ = ∅, then Re(G|fn

A) = Re(G|fn∗).
Proof: First, Re(G|fn

A) ≤ Re(G|fn∗) by Theorem 1.
Next, assume that Re(G|fn

A) < Re(G|fn∗). Then there
exists x ∈ Xn and σ ∈ Σn

c satisfying σ /∈ fn
A(x) and fn∗

σ (x),
so that the following predicate must hold (by Proposition 8):

(∃x′ | x′ ∈ Xn : Mn(x) = Mn(x′) ∧ ¬δn(x′, σ)! ∧
(∃J | J ∈ J n

n0
: ΘJσ = ε ∧ ¬〈Qn0〉(ΘJx′))).

Thus, one can choose x′ ∈ Xn and J ∈ J n
n0

such that

Mn(x) = Mn(x′) ∧ ΘJσ = ε ∧ ¬〈Qn0〉(ΘJx′).

From ΘJσ = ε, there exists i /∈ J , 1 ≤ i ≤ n, such that
σ = σi. Now, either ¬δn(x, σi)! or δn(x, σi)!. In the first
case, no transition can occur whether the system is controlled
by fn∗ or by fn

A, thus contradicting the assumption; hence,
suppose δn(x, σi)!. Because the transition is allowed by fn∗,
〈Qn〉(δn(x, σi)) holds.

Consider the state x′′ := 〈x′[1], x′[2], . . . , x[i], . . . , x′[n]〉.
The assumption PSA ensures that x′′ ∈ Xn and δn(x′′, σi)!
and the assumption MSA ensures that Mn(x′′) = Mn(x);
thus, 〈Qn〉(δn(x′′, σi)) holds, since otherwise fn∗

σ (x) would
be false. But the assumption SSA implies the opposite,
that 〈Qn〉(δn(x′′, σi)) does not hold (because ΘJx′ =
ΘJδn(x′′, σi) and ¬〈Qn0〉(ΘJx′)).

3505



VI. CONCLUSION

The synthesis method proposed in this paper was mo-
tivated by the issue of scalability arising from synthesis
algorithms. It has been shown that, under some assumptions,
the method ensures safety and maximality. This new result
represents a fundamental step in the solution of the afore-
mentioned issue.

The closest work to our approach is described in [19]. It
exhibits a method that synthesizes a program, for a system
consisting of K similar interconnected sequential processes
executing in parallel, from a temporal logic specification
based on the calculation of a solution for a pair-system.
In addition to the use of a different paradigm (SCT),
our method allows to express safety properties with the
aid of general predicates which are not limited to pair-
systems (e.g., the mutual exclusion problem in which at
most p > 2 processes can simultaneously use the resource).
It does not only consider the case where the states of the
system are completely observed, but also the case where
they are partially observed. A general method, based on
heuristics, has been proposed in [22], [23]. It encompasses
the one described in this paper, but the problem of preserving
soundness is more difficult and remains an open problem
for the general case. Finally, a sound synthesis method
has been recently suggested for bounded-data parameterized
systems [24]. It integrates a verification technique [25] into
a synthesis procedure. The verification technique is based on
a heuristics for an algorithmic construction of an inductive
assertion, but it is incomplete because the algorithm may fail
after two trials.

Finally, this new approach raises several interesting open
problems. For instance, it could be generalized to a PDES
consisting of multiple classes of an arbitrarily large number
of similar processes. It could also be reconsidered for the
case where the control specifications are expressed by tempo-
ral logic formulas and PDES have nonterminating behaviors
in order to take liveveness properties into consideration.
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