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Convergence of Pseudospectral Methods for a Class of Discontinuous
Optimal Control

Wei Kang, Qi Gong

Abstract— We consider the optimal control of feedback
linearizable dynamic systems subject to mixed state and control
constraints. The optimal controller is allowed to be discontinu-
ous including bang-bang control. Although the nonlinear system
is assumed to be feedback linearizable, in general, the optimal
control does not linearize the dynamics. The continuous optimal
control problem is discretized using pseudospectral (PS) meth-
ods. We prove that the discretized problem is always feasible
and that the optimal solution to the discretized, constrained
problem converges to the possibly discontinuous optimal control
of the continuous-time problem.

I. INTRODUCTION

Over the last decade, pseudospectral (PS) methods have
been used to solve a broad class of industrial-strength optimal
control problems arising in low-thrust orbit transfers [3],
spacecraft attitude control [17], ascent guidance [9], [11]
and many others [12]. One of the main reasons for the
popularity of PS methods is that they offer an exponential
convergence rate for the approximation of analytic functions
while providing Eulerian-like simplicity. This property is
particularly attractive for control applications as it places
real-time computation within easy reach of modern compu-
tational power [14]. PS methods also offer a ready approach
to exploiting differential-geometric properties of a control
system such as convexity and differential flatness [14]. For
a recent result on flatness-based PS method, see [12].

The essential idea of pseudospectral methods is to ap-
proximate the continuous optimal control problems by PS
discretization and solve the resulting optimization problem.
The simplicity of this approach masks a wide range of deeply
theoretical issues that lie at the intersection of approximation
theory and control theory. Significant progress has been made
in answering some fundamental questions. For instance, in
[3], [13] a detailed relation between the necessary conditions
of the continuous optimal control problem and the Karush-
Kuhn-Tucker (KKT) condition of the discrete optimization
problem is revealed. In [7], the feasibility of PS discretization
is proved with relaxed inequality constraints. In [6], the
existence and convergence results are proved for feedback
linearizable nonlinear systems in an approach similar to the
theory of consistent approximations [10]. All these results
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rely on a key assumption that the optimal controller is at
least continuous. Unfortunately, for many optimal control
problems, this assumption is not valid, especially when
the controller is constrained. In this situation, the optimal
controller is likely to be discontinuous.

The consideration of discontinuous controller in computa-
tional optimal control is a very challenging problem. In [15],
a PS knotting method is proposed to handle the discontinu-
ities. A careful analysis of this method requires tools from
nonsmooth analysis. Before such an analysis can be carried
out, it is necessary to analyze the convergence of smooth
approximations to nonsmooth functions. In the present pa-
per, we address this problem. We provide existence and
convergence results for a Legendre PS method for optimal
control problems with discontinuous controller and feedback
linearizable dynamics. We assume the dynamic system can
be written in normal form. It permits a modification of the
standard pseudospectral method [2], [13] in a manner that
is similar to dynamic inversion. That is, we seek polynomial
approximations of the state trajectories while the controls are
determined by an exact satisfaction of the dynamics. This
modification of a pseudospectral method permits us to prove
sufficient conditions for the existence and convergence of PS
discretizations with discontinuous controller. Furthermore,
our method allows one to easily incorporate state and control
constraints including mixed state and control constraints.
Note that we do not linearize the dynamics by feedback
control; rather, we find the optimal control for a generic
cost function. Such problems are particularly common in
astronautical applications where stringent performance re-
quirements demand that the control be optimal rather than
feasible as implied by the linearizing control. We show that,
under mild conditions, the PS discretized optimization prob-
lem always has a feasible solution even when the controller is
discontinuous. Further, we prove that the numerical solution
converges to the solution of the original continuous-time
constrained optimal control problem.

II. THE PROBLEM AND ITS DISCRETIZATION

We consider the following constrained nonlinear Bolza
problem (Problem B) with feedback linearizable dynamics.

Problem B: Minimize
1
Jx(),u()] = / F(z(t),u(t)) dt + E(z(-1), (1)) (1)
J—1
subject to the dynamics

Bit) =
in(t) =

1}i+1(t), ’izl,...,T—l

f(@(®)) + g(z(t))u(t) 2
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almost everywhere on ¢ € [—1, 1], and the constraints

(@(t), u(t))
(( 1), z(1))

where z e R, vueR,and F:R" xR - R, £ : R" x
R -R, f:R >R, ¢g: R - R, e: R x R" —» R
and h : R" x R — R are Lipschitz continuous (over the
domain) with respect to their arguments. For controllability
reasons, we assume g(xz) # 0 for all z. We also assume that
an optimal solution, (z*(t),u*(t)), of Problem B exists.
Definition 1: A function ¥ (t) : [-1,1] — R* is called
piecewise C1, if there exist finite many points 79 = —1 <
71 < -+ < Tg¢+1 = 1 such that, on every subinterval
(i Tix1), © = 0,...,8, ¥(t) is continuously differentiable
and both 1) (t) and its derivative, v (t), are bounded. Further-
more, t(t) is continuous at 7; from at least one side, i.e.,
tim, .- 0(8) = () or lim,_, .+ (t) = (7).
Assumption 1: The optimal state, 2*(¢), is assumed to be
continuous and piecewise C'. The optimal control input,
u*(t), is assumed to be piecewise C!.
Note that, according to Definition 1 and Assumption 1,
u*(t) could have finite many discontinuous points.
Assumption 2: The set {(x,u)|h(z,u) < 0} is convex.
In the next, we apply a pseudospectral (PS) computa-
tional method to discretize the continuous optimal control
Problem B. We focus on the Legendre PS method for
the purpose of brevity; the extension to other PS methods
is trivial. The basic idea of Legendre PS method is to
approximate (z1(t),...,z,(t)) by N-th order polynomials
(xN(t),..., 2N (t)) based on Lagrange interpolation of their
values at the Legendre-Gauss-Lobatto (LGL) node points.
Letty = —1 <ty < --- <ty = 1be the LGL nodes defined
as,tgp = —1,ty = l,andfork = 1,2,...,N—1,1; are
the roots of Ly (t), where Ly (t) is the derivative of the N-
th order Legendre polynomial Ly (t). Let ZJ and %} be an
approximation of a feasible solution (z(t),u(t)) evaluated at

the node t. Then, 'V (t) is used to approximate z(¢) by,

0 A3)
0 “)

I IA

w(t) = aN(t) = o7k dk(t), &)
where ¢ (t) is defined by
1 (t? — 1)L (t)

or(t) = (6)

N(N 4+ 1)Ly (tx)

It is readily verifiable that ¢ (¢;) = 1, if k = j and ¢y (t;) =
0, if & # j. The precise nature of the approximation indicated
in (5) is the main focus of this paper. From (2), the control
that generates the approximate state is given by,

uM (1) = (@ (1) = f(=™ () /9(=" (1)) ™

Note that u” () is not necessarily a polynomial and hence
differs from a standard pseudospectral approximation. The
derivative of ¥ (¢) at the LGL node t}, is given by

.N N
i (tk) = Zj:oij xiv(tj):

where the differentiation matrix D is defined by

t— g

i=1,2,...,r

Ly (¢ e )
LJZ\\;((%)) tiitk ’ ?f 7’ # ks
Dip = —0.25N(N +1), if i=k=0;
’ 025N(N +1), if i=k=N;
0, otherwise

Throughout the paper, we use the “bar” notation to denote
corresponding variables in the discrete space, and the super-
script N to denote the number of nodes used in discretization.
Thus, let

N

Zo —[3310 m'rO] " IN—[iUlN UCrN]

Note that the subscript in Z2Y € IR" denotes an evaluation of
the approximate state, zV(¢) € R", at the node ¢;, whereas

xy(t) denotes the k-th component of the exact state.
With these preliminaries, it is apparent that the approxi-
mate solutions must satisfy the following algebraic equations

Tl jﬁ\-r;-l,o

D : = : ,i=1,...,n—1 (8
Tin TN
0 f(

) + g(@))al
|l | = :
Ty F(@N) + 9(@N)an
for feasibility with respect to the dynamics. In a standard

pseudospectral method, it is quite common [14], [3], [2],
[12] to discretize the mixed state- and control constraints as,

hzy,uy) < 0, k=0,1,...,N ©)

Here, we propose the following relaxation,
hE,ad) < (N—r)"3-1, k=0,1,...,N (10)

where 1 denotes [1,...,1]7. When N tends to infinity, the
difference between (9) and (10) vanishes. The purpose of
this relaxation will be evident later. Similarly, we relax the
endpoint condition e(z(—1), (1)) = 0, to an inequality, i.e.,

1

ez, 2Nl < (N —7)714. (11

Finally, the cost functional J{x(-),u(-)] is approximated
by the Gauss-Lobatto integration rule,
J] = JNX,0) =
where wy, are the LGL weights given by

2 1

N(N +1) [Ln(t)]*’
and X = [&,....2N], U = [a@},...,u¥]. Hence, the
optimal control Problem B can be approximated by a

nonlinear programming with J~ as the objective function
and (8)-(10)- (11) as constraints; this is summarized as:

ao F(@X, @ wk + E(z8, 7))

wr =

Problem BN: Find z} € R" and @} € R that minimize

JNX,0) = Zk o FEY, al)w, + EE@Y,zY) (12
subject to
Z¥ 10 i
D : = : ,i=1,...,r—1 (13)
i'i\i.l,N ( ff\zrv
0% ( f(@) + 9(z)ag
pl | = z
Ty f(@N) +9(zx)ay
hay,aY) < (N-r)"%-1, (14)
le@, 3Nl < (N—7) 4 (15)
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forall 0 <k < N.

Problem BN can be solved by an appropriate globally-
convergent algorithm [5], for example, a sequential-quadratic
programming method. This approach has been successfully
used in solving an impressive array of problems (see for
example, [9], [2], [11]).

III. EXISTENCE RESULTS

For Problem BY, a fundamental question that needs to be
answered is the following: does a feasible solution satisfying
the discretized constraints exist around a feasible solution of
the continuous problem? In [6], the feasibility of Problem
BY is guaranteed under a critical assumption: the controller
u(t) is continuous. However, in many problems, the op-
timal controller is discontinuous, for instance, bang-bang
controller. In this section, we extend the result in [6], and
show that Problem BN is always feasible even the optimal
control of Problem B is discontinuous.

Let (z(t),u(t)) be any feasible solution of Problem B, i.e.,
(z(t),u(t)) satisfying differential equation (2), constraint (3)
and endpoint condition (4). Suppose Assumption 1 holds for
(x(t),u(t)). Let =1 < 7 < .-+ < 75 < 1 represent the
discontinuity points of u(¢), and define

Is = [_171]\U;:1(Tj —5,’7']' +§) (16)
where § = (N — r)~=. In other words, I represents the
closed set in [—1, 1] by removing a § neighborhood around
the discontinuous points of u(t).

Lemma 1: For any feasible solution, (x(t),u(t)), of Prob-
lem B, satisfying Assumption 1-2, there exist continuous
and piecewise C'* functions (zy(t), ..., 2,(t),v(t)), such that
(z1(t),...,2r(t),v(t)) satisfy differential equation (2) and
the following conditions

h(z(t),0(t)) < Ci(N—r)"%.1 (17
le(z(=1),2(1)]lec < Co(N —7)7% (18)
2(t) —2(®)lle < Cy(N—7)"% (19)
lu(t) —v(t)] < Cu(N—r)"2, Vtels (20)
YOl < Cs+ Co(N - 1) 1)

where C’i,l 1 <4 <6, are positive constants independent of
N and z,(f) denotes the i-th order distribution derivative of

zr(t) (see [1] for the definition of distribution derivative).
Proof: Define a continuous function (t) as follows,

ifte[n—06m+46, 1<i<s;
u(t), otherwise

{ 1 - a)u(r —0) + au(ri +9),
(22)

where o = 2 (t—7;+6) and § = (N —7)~ 2. So, 1(t) agrees
with w(t) if ¢ is not close to any point of discontinuity. If ¢
is in a ¢ neighborhood of discontinuity, 4(t) interpolates the
points (7; — 6, u(r; — 9)) and (7; + 6, u(7; +9)) by a straight
line. A similar concept has been used in [15] to justify the
PS knotting method. Let q(t) = f(x(t)) + g(z(t))u(t), t €
[—1,1]. Both @(t) and ¢(t) are bounded, continuous, and

piecewise C''. Next, define

2o (t) = /_tl q(T)dT + x,(0)
sa(l) = /_1 si()dr 4 251 (0), i =1, .2
v(t) = [q(t) — f(z(®)]/g(2(1)

Apparently, (z(t),v(t)) satisfy differential equation (2). In
the next we will show that they also satisfy (17)-(20).

Denote M; as the upper bound of |u(t)| for ¢ € [—1,1].
From the definition of (), we have

id Ti+6
u() — a@®)ll = 3 / I = @)(u(r = )~ u(t)

+a(u(r +6) —u(t)|dt < 4sMi(N — r)_%
Therefore,

l£r () —q@®)ller = [lg((®))(ut) — @)l
AsMiMa(N — 1) 2

IA

(23)

where M, is an upper bound of |g(x(t))| for t € [—1,1].
From (23), it is not difficult to show, V¢ € [—1,1],

lzi(t) — 2:(8)] < 27TRSMIMa(N — 1) (24)

where ¢ = 1,2,...,r. Hence, (19) holds with C5 =
2"+ s My My. Next, Vt € [—1,1],
o - |4 = f(=z(#)  q(t) = fz(t)
o)~ PED) 9@()
< 2 s My MoKy (N —7)"2  (25)

< rKalz(t) — z(t) ]

where K is determined by the upper bound of ¢(t) and the
Lipschitz constants of 1/g(x) and f(z)/g(z). By definition,
u(t) = a(t) for all t € I; therefore, (20) is true with Cy =
27>+1ST'M1M2K1.
For constraint (17), if |t — 7;| > ¢,
h(z(t),a(t)) = h(z(t),u(t)) < 0
If |t — 7;] <6, the convexity Assumption 2 implies

h(z(t),a(t)) = h((1 —a)x(ri — ) + az(r + §),4(t))
+h(z(t),a(t)) — h((1 — @)z(r — 0) + ax(ri + ), 4(t))
0+ rKs|z(t) — (1 — a)x(ri — ) + azx (i + §))]| oo

<
< 2 KyMs(N —1)"2

(26)

In the above derivation, K5 represents a Lipschitz constant
of h(-); M3 is an upper bound of |&;(¢)|, for i = 1,--- ,r
and t € [—1, 1]. From (24)-(25)-(26),

h(z(t),v(t)) = h(z(t), (1)) + h(z(t),v(t)) — h(z(t), 0(t))
< 2 KaMs(N —1)"2 - 1+ Ka(r||2(t) — 2(t)]| e +

lv(t) = a(t)]lec) - 1
< (2Ms + (K1 +1)27  sMyMo)r Ko (N — )72 - 1

Hence, constraint (17) holds with C; = (2M3 + (K7 +
1)27 s My My)r K. Similarly, (18) can be verified with K3
be the Lipschitz constant of e(-). Finally, from the fact that
Z-(t) = ¢(t), and using the definition of (¢), one can easily
show (21). |

With Lemma 1 in hand, we can further prove the following
existence result.
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Theorem 1: Given any feasible solution (z(t),u(t)) of
(2)-(3)-(4) in Problem B. Suppose Assumption 1-2 hold.
Then there exists a positive integer /N7 such that, for arll\?/
N > Nj, the constraints (1]\/) -(14)-(15) of Problem B
has a feasible solution ( xk , 4y, ). Furthermore, the feasible
solution satisfies

<k<N

0 27)
(N*T')7 , Vit €ls

(28)

(k) = 2R lloo
lu(tr) — |
where I is defined in (16).

Proof: From Lemma 1, there exist continuous and
piecewise C'! function pair (z(t),v(t)) satisfying the dif-
ferential equations (2) and inequalities (17)-(20). Let p(t)
be the (N — r)-th order best approximation polynomial of

Z-(t) in the norm of L°°(—1,1). The following estimation
has been proved in the literature of spectral methods [1]

J2n(t) = p(t)] < Co(N =) 7 210 (—11)  (29)
Vt € [—1,1]. Substituting (21) to (29) leads to
|2r(t) — p(t)| < CoCs(N — 1)~
Let us define

1

L4 CoCs(N =172 (30)

Bo(t) = /_1p(7)d7+x,«(_1)
Bial) = /_1£i(7)dr+xi_1(—1), i=r....2
. _ o) = f@i(@), .-, 0 (2))
M= TG0, 5 D)
From (30), it is easy to show, V¢ € [—1, 1]
2:(t) — 2:(8)] < 27 Co[C5(N — 1) ' + Co(N — 1)~ 2] (31)
and
o) = () = f(z(t)  p@) = f(E())
lo() =50 PE0) 9 (1)
< K (12:(t) — p®)] +rll=() —i(t)ll )
< CoK1(147r2")(Cs(N — )" 4+ Cs(N )‘%) (32)
Define 7 = 4(ty), 4 = 9(tx). In the following, we

prove that (z),ul) is a feasible solution of (13)-(14)-
(15) Apparently, &1 (t),...,&.(t) are polynomials of degree
less than or equal to N. Moreover, (Z(t),0(t)) satisfies the
differential equation (2) and has the same initial condition as
z(—1). Given any polynomial of degree less than or equal
to IV, it is known (see [1]) that its derivative at the nodes
to,...,tn is exactly equal to the value of the polynomial at
the nodes multiplied by the differential matrix D. Thus

i'i\or Zﬁz(to) jﬁl’o
D . = : =
Iy zi(tn) TN

where i=1,2,...,r — 1 and zZ is the i-th component of
DAt =17, we have

zh f(@(to)) + g(2(to))d(to)

N, F(@(tn) + (@ (tn))o(tn)

Therefore (x NoaY), k=0,1,...,N, satisfy the constraint
equations in (13). In the next we prove that the mixed

state-control constraint (14) is also satisfied. Because h(-)
is Lipschitz continuous, the following estimation holds.

|h(2(t), v(t)) — h(2(t), (t)) |l
< Kao(r||2(t) — 2(t)]|oo + [v(t) — (1))
< KaCo(r2" + K1 + 12" K1) [Cs(N — 1) ! + Co(N — 1) 2]
Hence, by (17),
h@(t),0(t) < (LN —r) "+ La(N =) 72) 1

where

L1 = KQCOCE(T2r+K1 —‘r’I’QTKl)

Ly = KQCOCG(T2r+K1 +T27‘K1)+01

Since constants L1 and L, are independent of IV, there exists
a positive integer N; such that, for all N > Ny,

1

Li(N—r) "4+ Loy(N—71)"2 < (N—r) 1

Therefore &1 (tg), - .., Zr(tx), 4(tx), k = 0,1,..., N, satisfy
mixed state and control constraint (14) for all N > N;. The
end-point condition (15) can be proved in the same way.
Thus, (Z7,ul ) is a feasible solution to Problem BN .

As for (27)-(28), they can be easily deduced from (31)-
(32) and (19)-(20) in Lemma 1. |

Remark 1:  Theorem 1 guarantees that Problem BY
is well-posed with a nonempty feasible set as long as a
sufficient number of nodes are chosen. More importantly,
(27)-(28) show the existence of a feasible discrete solution
inside any neighborhood around the continuous trajectory.

Remark 2: In the proof of Theorem 1 and Lemma 1, we
actually established a stronger result than (27)-(28). That is
(N—r)"%,Vte|[-1,1]

|z(t) = 2(t)[le <
< (N—T)_ , Ytels

|u(t) —o(t)]

These properties will be used later in the proof of the
convergence of Legendre PS method.

W=

IV. CONVERGENCE RESULTS

Let (z,uy), k= 0,1,..., N, be a feasible solution to
Problem BY , and 2%V (¢) € R" be the Nth order interpolating
polynomials of (z{Y,...,zY), ie.

eV(t) = TloZh ok(t),
where ¢ (t) is defined by (6). Also denote

u™(8) = a7 (8) — f(=™ (8))/9(z™ (¢)
N

By the definition of u™ (t), it is easy to show u®¥ (t;) = @l.

Now consider a sequence of discrete feasible solution
{(z,a)),k = 0,...,N}%¥_y, and the corresponding
interpolating polynomlal sequence {x™V( t)}¥—n, and the
non-polynomial sequence {u™ (t)}3_y;, -

Assumption 3: (a) For all 1 < ¢ < r, the sequences
{f%}?vc:zvl converges as N — oo; (b) @Y (t) is uniformly
bounded for N > N; and ¢t € [—1,1]; (c) there exists a
piecewise C! function ¢(¢) such that, for any fixed € > 0,
N (t) converges to q(t) uniformly on interval I, where

o= LI\ U (7 - (34)

(33)

€,7; +¢€)
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and -1 <71 <---
q(t).

Theorem 2:  Consider a sequence of feasible solutions
(@Y, af), k = 0,1,..., N, of (13)-(14)-(15) in Problem
BN . Suppose Assumptlon 3 holds. Then there exists a feasi-
ble solution, (x> (), u>(t)), of (2)-(3)-(4) in the continuous
optimal control Problem B such that the limit

< Ts < 1 are the discontinuity points of

limy oo (zV(t) —2%°(t)) = 0 (35)
converges uniformly on [—1, 1], and the limit
limy oo (ul¥ (t) —u(#)) = 0 (36)
converges uniformly on any closed set /..
Proof: Let ;9 be the limit of {Z}} } ;_ ~, - Then, define

the following functions

zo(t) = /_t1 q(T)dT + 20

zio 1 (t) = /t i (T)dT + 2im10, T=71,...,2
. _oqt) — f(l»’i’o()y--~793r (1)

O =TGR W, e )

Obviously, (z*(t),u*(t)) sat1sﬁes the differential equa-
tion (2). Next, we prove (35)-(36) and the fact that
(x%°(t),u(t)) satisfies both the mixed constraints in (3)
and end-point condition (4).
Let N(t) be the

H interpolating  polynomial of

i, ,zN,. Because (zVV,ul) satisfies discrete state
equation (13), it is easy to see
i} (to) Zi0 241 (to)
= D : = :
@} (tw) ziN CARIGY)
for: =1,2,...,r — 1. Hence the N-th order polynomial:

@i (t) — 2y (t) (37)

has N + 1 different roots: tg,...,ty. Therefore, &V (t) =
aN ((t), i =1,...,r — 1. Under Assumption 3, & () is a
bounded sequence that converges to ¢(t) almost everywhere,
then 2 () converges to ¢(t) in L'. Therefore,

- |f s

lim |z (t) —22°(t)] = lim
e <T>—q<t>>\dr =0

N —o0

< lim

N—oco [_

Moreover, the limit converge uniformly in ¢. Hence, the
following limit is also uniformly convergent
t

lim z) {(t) = lim e (T)dr + 210 = 222, (t)

N —o0 N—oo [ 4
Following the same procedure, one can show
Nli_r)noomfv(t) = z°(t), i=1,2,...,r

uniformly in ¢. Thus, (35) is proved. As for (36), it follows
by the following inequality

w ) -] = (a: O ICIT)
Loal) a(t) — t))’
g(zN(t)) g(x
< Kala (1) - <>|+7~K1||x (1) — (1)l

and the fact that both &N (¢) — ¢(t) and =V (t) — 2°°(t)
converges to zero uniformly on any closed set I..
The endpoint condition e(z*°(—1),2°°(1)) = 0 fol-

lows directly from the convergence property. Now, to
show (z°(t),u*(t)) is a feasible solution of Problem B,
it is enough to prove the mixed state-control constraint
h(z>°(t),u>(t)) < 0. Using contradiction argument, sup-
pose at a time instance 7 € (—1,1), there is a constraint
hi(+), i€ {1,2,...,1}, so that

hi(z™(7"),u™(7")) > 0. (38)

Since 2°°(t) is continuous and u*°(t) is piecewise C!, we
can choose 7' that is not in the set {1, -, 75} without loss
of generality. By the fact that the nodes ¢, are getti ]\g dense
as N tends to infinity [4], there ex1st a sequence 7' and a
sufficiently small e such that, 0 < 4N < N, the LGL nodes

tiv € Ic and limy oo tjn = 7', Then (35) and (36) imply

lim h;(Z; N,uNN) = hi(z™(7),u™(7) > 0

N —oo

It contradicts the mixed state-control constraint (14), in
which the right side of the inequality approaches zero as
N approaching infinity. [ ]

In Theorem 2, we proved a sufficient condition under
which a sequence of discrete feasible solutions of Problem
BY converges to a feasible solution of the original continu-
ous optimal control problem. Next, we study the optimal so-
lution sequence of discrete Problem BN . Before introducing
our finial convergence result, we need the following lemmas.
Lemma 2-3 are known results (see [4]). The proof of Lemma
4 is omitted to save the space.

Lemma 2: Let tg, k=0,1,..., N, be the LGL nodes,
and wy be the LGL weights. Suppose £(¢) is Riemann
integrable; then, f_ll E()dt = limy oo Song E(tr) W

Lemma 3: Given any interval [a,b] C [—1,1]. Then

hm Z wr=b—a

tke a,b]

(39)

where ¢, are LGL nodes.

Lemma 4: Suppose {z% ()} n>1, () are continuous and
{uN(t)}n>1, u(t) are piecewise C'. Suppose u™(t) is
uniformly bounded for all N > 1 and ¢ € [—1,1]. More-
over, assume the limit, limy_. 2™ (t) = x(t), converges
uniformly on [—1,1] and the limit, limy_ o v () = u(t),
converges uniformly on any I, the closed set defined by ¢
and the discontinuous points of u(t). Then we have

N
. N
i, {Z Fle
k=0
1
— [ Plat)u®)di+ Ba(-1),2(1)
-1
Theorem 3:  Suppose Problem B satisfies Assumption
1-2. Let (z;N,aN), k = 0,1,...,N, be a sequence of
discrete optimal solutions of Problem B”. Assume the se-
quence satisfies Assumption 3. Then, there exists an optimal

solution (z*(¢t),u*(t)) of the continuous optimal control
Problem B such that the following limits converge uniformly

— () = 0
—ui(t) = 0,
J(@ (). u" ()

te))wr + E(™ (1), fEN(l))}

lim (z;
N—»oo( k
N—oo

lim JY(X*,0%) =

N —oo
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for all 0 < k < N and any fixed € > 0.

===
A N . —— Analytic optimal controller 'Y
Proof: According to Theorem 2, we know that the o |
discrete optimal solutions uniformly converge to a feasible 1 |

trajectory of the continuous problem. More specifically, there ‘ ‘ ‘ ‘ ‘
exists a continuous feasible solution, (z*°(t),u*(t)), of (2)- “ 05 w s 2 25 s
(3)-(4) in Problem B such that 1 : : : ‘ ‘

lim (z, —z™(tx)) = 0 «
N —oo ok 4
. _ — Analytic optimal controller
lim (uz —u™ (tk)) = 0, tx €l * _Discrete optimal controller
N—oo -05 L ! !

0 0.5 1 15 2 25 3

uniformly for 0 < k£ < N and any fixed ¢ > 0. In the
next, we prove that (z°°(¢),u>(t)) is indeed an optimal
solution of the continuous optimal control problem. To this
end, denote JN(X* U*) and J(x*(-),u*(-)) the optimal
cost of Problem BY and Problem B respectively, i.e.,

N
jN(X*,U*) _ E(fa’j}«v) + ZF(EZ;QZ)U% Fig. 1. Optimal solutions
k=0
1
J(@(),w () = B (=1,2" (1)) + [ F(a" (), (8))dt
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