
On the Use of the Averaging Method for the Characteristic
Multiplier Placement Problem

Ichiro Jikuya and Ichijo Hodaka

Abstract— This paper proposes a novel approach for de-
signing a periodic state feedback control law for a class of
continuous-time linear periodic systems. The control law gener-
ates the sufficiently high frequency sinusoidal in the coefficient
of the closed loop systems, then the closed loop solution is shown
to be exponentially stable based on the averaging method. It
is also shown that the closed loop solution is approximated by
the solution of the average system.

I. INTRODUCTION

The specification of the characteristic multipliers is one of

the fundamental problems for linear periodic systems and has

been addressed by a number of authors from the following

perspectives:

i) When can we arbitrarily assign the characteristic mul-

tipliers by continuous periodic state feedback ?

ii) How can we practically compute the continuous feed-

back gain ?

iii) How can we improve the transient response during a

period ?

In his fundamental paper, Brunovsky [2] gave the com-

plete solution for the first question above: if the system is

controllable, there exists a continuous periodic feedback that

allows all the characteristic multipliers to be freely assigned.

However this approach does not give any solution for the

other problems. Since the implicit function theorem is used in

his constructive proof, it is difficult to compute the periodic

feedback gain. Since the periodic gain becomes impulsive,

the transient response is stimulated by the impulsive input.

Kabamba [3] gave the alternative solution for the first two

questions in the framework of sampled control. He gave the

explicit formula for designing the control law by reducing

this problem into the pole placement problem for discrete-

time linear-time-invariant systems. In addition, the use of

piecewise continuous gains are proposed to answer the last

question [1], [5]. The transient response can be improved at

finite points during a period, but it is still vibrating except

for those points. So this modification is not sufficient for

iii). In addition, the sampled control law can not be always

implemented by continuous time feedback. So this approach

is not satisfactory for i). Since the state transition matrix

and the controllability Gramian are used, it is necessary to

numerically integrate them in general. So this approach is

also unsatisfactory for ii).
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Tornambe [7] also gave the alternative solution for the

first question. He gave the explicit procedure to shift the

characteristic multiplier to the desired place (under the strong

assumption that all the characteristic multiplies are positive

and real). It is necessary to compute the left eigenvector and

indefinite integral, so this approach is not acceptable for ii)

in addition to iii).

Therefore we restrict our attention to the following system

ẋ = Ax + b g(t)u (1)

g(t) :=
L∏

l=1

sin
(

2π

ω
(t − φlω)

)
(2)

where A ∈ Rn×n, b ∈ Rn are constant matrices, L is a

positive integer and φl (0 ≤ φl < 1) are rational numbers

which are assumed to be different to each other for simplicity.

We note that this class is restrictive but significant, since

a class of attitude stabilization problems for small satellites

can be described in this framework as shown in Section

IV. We also note that it is not possible to apply the input

transformation such as u = 1
g(t)v for a new input v, since

1
g(t) becomes unbounded.

The aim of this paper is to give answers for the three

questions above for the system (1). The proposed method

consists of two steps. In the first step, a constant matrix is

selected to specify the desired trajectory. In the second step, a

scalar periodic function is selected to generate a sufficiently

high frequency trigonometric function in the coefficient of

the closed loop system. A linear periodic gain is constructed

as the multiplication of the selected constant matrix and the

selected scalar periodic function. Based on the averaging

method [4], it is shown that the closed loop system is

exponentially stable. Furthermore the closed loop solution

is approximated by the solution of the average system.

In summary, we give the explicit formula for designing

a linear periodic state feedback control law such that (see

Section III)

i’) the characteristic multipliers are arbitrarily asymptoti-

cally assigned

ii’) the periodic feedback gain is computed by symbolic

computations

iii’) the transient response is arbitrarily approximated by

that of the linear time invariant system
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II. BASIC IDEA

In this section we introduce our basic idea with an unstable

scalar AR model with the sinusoidal coefficient

ẋ = ax + sin
(

2π

ω
t

)
u, a > 0 (3)

where x ∈ R is the state variable, u ∈ R is the input. The

control objective is to find a stabilizing state feedback control

as well as to improve the transient response during a period.

A. Proportional Control

Let us start with the proportional control

u = kx.

The initial response of the closed loop system is given by

x(t) = exp
(

at +
ωk

2π

(
1 − cos

(
2π

ω
t

)))
x(0),

whose absolute value is bounded from below

|x(t)| ≥ exp
(

at − ω|k|
π

)
|x(0)|.

It then follows that

lim
t→∞ |x(t)| = ∞

for any k and x(0) �= 0, therefore there exists no stabilizing

proportional feedback for (3).

B. Periodic Control

The main difficulty arises from the sign indefiniteness

of the input coefficient, which prevents negative feedback

control. In order to avoid this difficulty, let us continue with

the periodic control

u = 2k sin
(

2π

ω
t

)
x.

The initial response of the closed loop system is given by

x(t) = exp
(

(a + k)t − ωk

4π
sin

(
4π

ω
t

))
x(0), (4)

whose absolute value is bounded from above

|x(t)| ≤ exp
(

(a + k)t +
ω|k|
4π

)
|x(0)|.

It then follows that

lim
t→∞ |x(t)| = 0

for any k < −a and x(0). We note that the pole of the

average system

ẋ = (a + k)x (5)

is shifted by the use of the identity

1 − cos(2p) = 2 sin2(p),

and this is the key idea to stabilize the closed loop system.

Now we have the freedom of the choice of k. Let us

compare two extreme cases to choose an appropriate k.

Case 1: For sufficiently small k, i.e. k → −∞, the closed

loop solution (4) converges to 0 sufficiently fast. However,

since |ωk
4π | → ∞, the closed loop solution (4) is extremely

corrupted by ωk
4π sin(4π

ω t).
Case 2: If we could choose k satisfying |ωk| � 0, the closed

loop solution (4) converges to the solution of the average

system (5). However, for fixed a and ω, the closed loop

system becomes unstable for k � 0. Hence it is not possible

to choose such k.

Therefore the choice of k involves a certain trade-off

between the stabilizability and the improvement of the closed

loop solution.

C. Periodic Control by Raising Frequency

In order to achieve the additional freedom to shape the

closed loop solution, let us continue with the periodic control

u = 2k

L∑
l=1

sin
(

(2l − 1)
2π

ω
t

)
x (6)

where L is the positive integer. The closed loop solution is

given by

x(t) = exp
(

(a + k)t − ωk

4πL
sin

(
4πL

ω
t

))
x(0) (7)

by the use of the following identity

2(sin p)
L∑

l=1

sin((2l − 1)p) = 1 − cos(2Lp).

The closed loop system is stabilized by choosing k satisfying

k < −a. In addition, the closed loop solution (7) converges

to the solution of its average system (5) by choosing suffi-

ciently large L.

III. MAIN RESULTS

In this section we extend the idea of the feedback control

by raising frequency in (6) to a multidimensional case. Since

the closed loop solution cannot be explicitly derived for

this case, the averaging method is applied to prove the

closed loop stability as well as to show the asymptotic

approximation by its average system.

Firstly we introduce the key lemma.

Lemma 1: Given a positive integer N and a periodic

function g(t) defined in (2). Factor rational numbers φl

contained in g(t) as the ratio of coprime integers νl and

δl (≥ νl) for each l = 1, · · · , L, i.e.

φl =:
νl

δl
.

There exists a function f(t, N) which is ω-periodic and

continuous for t, and satisfies

g(t)f(t, N) = 1 − cos
4πNG

ω
t, (8)

where G is the least common multiple of δl.
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Proof: φl is represented by the following fractional form

φl =
ψl

2NG

ψl :=
2νlNG

δl

for each l. We note that ψl are nonnegative integers by their

construction. Then there exist nonnegative integers ϕm (m =
1, · · · , 2NG−L) such that the set {ϕm} is a complementary

of {ψl} in {0, · · · , 2NG − 1}. Define a function

f(t, N) :=
22NG−1

(−1)NG

2NG−L∏
m=1

sin
(

2π

ω

(
t − ϕmω

2NG

))
,

then it is clear that f(t, N) is ω-periodic and continuous for

t. Since the identity

s∏
r=1

sin
(

z +
2(r − 1)π

n

)
= (−1)

n
2 2−(n−1)(1 − cosnz)

is satisfied for even s > 0, it can be shown that f(t, N)
satisfies the identity (8). �
Remark : For even G, it can be shown that there exists a

function f(t, N) which is ω-periodic and continuous for t,
and satisfies the identity

g(t)f(t, N) = 1 − cos
2πNG

ω
t. (9)

�
Next the periodic feedback control law is derived for the

linear periodic system (1). The candidate of the periodic

feedback control law is given by

u = f(t, N) k x, (10)

where k ∈ R1×n is the constant matrix and f is the scalar

continuous function satisfying (8) for a given positive integer

N . The choice of k and N will be clear in the subsequent

of this section. The closed loop system consisted of (1) and

(10) is given by

ẋ =
(

A + bk − bk cos
4πNG

ω
t

)
x. (11)

Define the parameter

ε :=
ω

4πNG

and transform the time scale as follows

τ =
t

ε
.

Then the closed loop system is transformed to be

dx

dτ
= ε(A + bk − bk cos τ)x. (12)

Now we choose k and N so that the linear periodic

system (12) becomes exponentially stable. In the first step,

we choose k such that A + bk is stable, i.e. the real parts

of all eigenvalues of A + bk are negative. Then the average

system

dx

dτ
= ε(A + bk)x. (13)

becomes exponentially stable. In the second step, we choose

sufficiently large N such that the closed loop system (11)

becomes exponentially stable. Since we have chosen k such

that the average system (13) is exponentially stable, it follows

from the averaging method that the linear periodic system

(12) is exponentially stable for sufficiently small ε [4].

Transforming the time scale into the original time scale t,
the closed loop system (11) becomes exponentially stable

for sufficiently large N .

The aim of this paper to propose a linear periodic state

feedback control law satisfying the properties i’)–iii’). In

order to prove those properties for (10), we need to qualita-

tively evaluate the statements of the averaging method (see

Appendix). Based on this result, the closed loop stability is

proved and the requirement iii’) is shown to be satisfied as

follows:

Theorem 1: Assume that A + bk is stable. Let P and Q
be the solutions of the Lyapnov equation

(A + bk)T P + P (A + bk) = −Q. (14)

Let M be a scalar constant satisfying

M >
ω

4πGc
(15)

c := ‖bk‖(2(2‖A + bk‖ + ‖bk‖)PminQ
−1
min + 1, (16)

where Pmax, Pmin, Qmin are the maximum, minimum eigen-

values of P and the minimum eigenvalue of Q respectively.

Then the closed loop system (11) is exponentially stable

for all integer N ≥ M . Furthermore if the initial condition

satisfy

‖x(0, N) − xave(0)‖ ≤ ρ1

N
(17)

‖x(0, N)‖ ≤ ρ2, (18)

where x is the solution of (11) and xave is the solution of

its average system

ẋave = (A + bk)xave, (19)

the initial response of (11) is approximated by

‖x(t, N) − xave(t)‖ ≤ κ(ρ1, ρ2)
N

(20)

κ(ρ1, ρ2) :=
P

1
2
max

P
1
2
min

(ρ1 + ρ3ρ2) (21)

ρ3 := ‖bk‖ +
cPmax

Pmin
(22)

for all t ≥ 0 and for all integer N ≥ M . �
In this method, two independent designing parameters k

and N are available. Firstly k is used to stabilize the average

system. Then N is used to shape the closed loop solution

by generating the sufficiently high frequency trigonometric

function in the coefficient of the closed loop system. Both

procedures are easily carried out via simple symbolic com-

putations and the requirement ii’) is satisfied.

Lastly we show that the requirement i’) is satisfied. Let

Φ(t, N) denotes the fundamental matrix of the closed loop
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system (11), i.e. Φ is the solution of the following initial

value problem:

Φ̇ =
(

A + bk − bk cos
4πNG

ω
t

)
Φ, Φ(0, N) = I.

Consider the same initial condition x(0, N) = xave(0) =: x0

for (11) and (19). Substitute t = ω into (20), we have

‖(Φ(ω, N) − e(A+bk)ω)x0‖ ≤ ρ3P
1
2
max

NP
1
2
min

‖x0‖,

then it follows that Φ(ω, N) uniformly converges to

e(A+bk)ω, i.e.

lim
N→∞

‖Φ(ω, N) − e(a+bk)ω‖ = 0.

If the system (1) is controllable, (A, b) becomes controllable

and the characteristic multipliers of (19) can be specified

to the desired place. Then the characteristic multipliers of

the closed loop systems asymptotically converge to those

specified ones, therefore the requirement i’) is satisfied.

Corollary 1: Suppose that the system (1) is controllable.

Choose the constant matrix k such that the characteristic

multipliers of (19) are specified to the desired place. Then,

as the integer N → ∞, the characteristic multipliers of the

closed loop system consisted of (1) and (10) converge to the

desired ones. �

IV. ILLUSTRATIVE EXAMPLE

In this section we study the problem of attitude stabiliza-

tion for small satellites with magnetic actuators. Observing

the periodic nature of the geomagnetic field, the Euler’s

equation linearlized around the yaw axis is given by

ẋ = Ax + bg(t)u

A =
[

0 1
28.8 0

]
, b =

[
0
1

]
, g(t) = cos(2πt)

where x := [ γ γ̇ ]T consists of the yaw angle γ and the yaw

rate γ̇. The period ω is normalized to be ω = 1. The control

objective is to design a linear periodic state feedback control

law such that the satellite is stabilized within a half period.

So the requirement iii’) have importance in this application.

In addition, the magnitude of the control input is restricted

to be less than 10 [A-m2] from the practical reason [6].

The 1-periodic function g is represented by the form (2)

g(t) = sin
(

2π

(
t − 3π

4

))
,

the least common divisor G is chosen to be 4.

Since (A, b) is controllable, a linear periodic state feed-

back control law is designed based on Corollary 1. In the

first step, we design the state feedback gain to be k =[
8.52 1

]
such that the average system (almost) converges

to 0 at t = 0.5 and the magnitude of the input for the average

0.2 0.4 0.6 0.8 1

-0.005

0.005

0.01

0.015

0.02

Fig. 1. Yaw Angle γ (N = 1)

0.2 0.4 0.6 0.8 1

-0.005

0.005

0.01

0.015

0.02

Fig. 2. Yaw Angle γ (N = 4)

system to be less than 10 [A-m2]. In the second step, we

compute the periodic coefficient f(t, N) based on (9), e.g.

f(t, 1) = 2(cos 2πt − cos 6πt)
f(t, 4) = 2(cos 2πt − cos 6πt + cos 10πt

− cos 14πt + cos 18πt − cos 22πt

+ cos 26πt − cos 30πt).

A set of simulation is carried out to evaluate the effec-

tiveness of the proposed method. The initial response is

computed for N = 1 and N = 4 with the initial value

γ(0) = 2π/360 [rad], γ̇(0) = 0 [rad/period]. The initial

responses of γ, γ̇ (blue solid line) converge to those of the

average system (red dot line) by raising frequency (see Fig.

1–4). The magnitude of the input u is bounded by 10 [A-m2],

therefore the control objective is satisfied (see Fig. 5–6).

V. CONCLUSION

The novel periodically time-varying control law was pro-

posed for a class of continuous-time linear periodic systems.

The designing procedure consists of two steps. A constant

matrix is selected to specify the desired closed loop solution

at first. Then a scalar periodic coefficient is selected to

stabilize the closed loop systems as well as to make the

closed loop solution to asymptotically converge to the solu-

tion of the average system. Both procedures are computed

via symbolic computations, therefore the proposed controller

can be easily computed.
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Fig. 3. Yaw Rate γ̇ (N = 1)
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Fig. 4. Yaw Rate γ̇ (N = 4)
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Fig. 5. Input u (N = 1)
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Fig. 6. Input u (N = 4)

APPENDIX: AVERAGING METHOD

The averaging method was proved for general periodically

time-varying nonlinear systems [4]. But it is described quan-

titatively and cannot be applied to prove the required property

i’)–iii’). Therefore we give an alternative proof for linear

periodic systems and make a quantitative evaluation.

Lemma 2: Let Aave denotes the stable matrix and Ap(t)
denotes the continuous ω-periodic function satisfying∫ ω

0

Ap(t)dt = 0. (23)

Let P = PT > 0 and Q = QT > 0 denote the solution of

the Lyapnov equation

AT
aveP + PAave = −Q. (24)

Choose a scalar ε∗ > 0 satisfying

0 < ε∗ < c−1
4 (25)

where c4 is defined by

c1 := sup
0≤t

‖F (t)‖ (26)

c2 := ‖Aave‖ (27)

c3 = sup
0≤t

‖Ap(t)‖ (28)

c4 := c1(2(2c2 + c3)PmaxQ
−1
min + 1) (29)

F (t) :=
∫ t

0

Ap(τ)dτ (30)

and Pmax, Pmin, Qmax are the maximum, minimum eigen-

values of P and the maximum eigenvalue of Q respectively.

Then the linear periodic system

ẋ(t, ε) = εA(t)x(t, ε) (31)

A(t) := Aave + Ap(t) (32)

is exponentially stable for

0 < ε ≤ ε∗. (33)

In addition, if the initial condition satisfies

‖x(0, ε) − xave(0, ε)‖ ≤ ερ1 (34)

‖x(0, ε)‖ ≤ ρ2, (35)

where xave is the solution of the average system

ẋave(t, ε) = εAavexave(t, ε), (36)

the initial response of (31) is approximated by

‖x(t, ε) − xave(t, ε)‖ ≤ εκ(ρ1, ρ2) (37)

where κ is defined by

κ(ρ1, ρ2) :=
P

1
2
max

P
1
2
min

(ρ1 + ρ2ρ3) (38)

ρ3 := c1 +
c4Pmax

Pmin
. (39)
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Proof: Firstly we prove that (31) is exponentially stable for

ε satisfying (33). Consider the change of variables

x(t, ε) = (I + εF (t))y(t, ε).

Differentiating both sides with respect to t, we obtain

ẏ(t, ε) = (εAave + ε2B(t, ε))y(t, ε) (40)

B(t, ε) =
1
ε
((I + εF (t))−1 − I)Aave

+ (I + εF (t))−1A(t)F (t).

Then it can be shown that B(t, ε) is uniformly bounded

sup
0≤t,0<ε≤ε∗

‖B(t, ε)‖ ≤ c1(2c2 + c3)
1 − ε∗c1

.

Let

V (y) := yT Py

be the Lyapnov function candidate for (40). The derivative

of V along the trajectories of (40) satisfies

V̇ ≤ εc5‖y‖2

c5 := −Qmin +
2ε∗Pmaxc1(2c2 + c3)

1 − ε∗c1
.

Note that c5 < 0. By the comparison lemma, it can be shown

that y(t, ε) satisfies the inequality

‖y(t, ε)‖ ≤ P
1
2
max

P
1
2
min

exp
(

c5ε

2Pmax
t

)
‖y(0, ε)‖. (41)

Hence (31) is shown to be exponentially stable

‖x(t, ε)‖ ≤ c6 exp
(

c5ε

2Pmax
t

)
‖x(0, ε)‖.

c6 := (1 + ε∗c1)
P

1
2
max

P
1
2
min

Next we prove the asymptotic convergence of the initial

response. Approximate the linear periodic system (40) by the

average system (36) and define the approximation error

e(t, ε) := y(t, ε) − xave(t, ε).

Differentiating both sides with respect to t, we obtain

ė(t, ε) = εAavee(t, ε) + ε2B(t, ε)y(t, ε). (42)

Let

U(e) := eT Pe

be the Lyapnov function candidate for (42). Differentiate U
along the trajectories of (42), we obtain

U̇ ≤ −Qminε

Pmax
U + ε2c7

√
U‖y‖.

c7 :=
2c1(2c2 + c3)Pmax

(1 − ε∗c1)P
1
2
min

To obtain a linear differential inequality, we take

W (e(t, ε)) :=
√

U(e(t, ε)),

then it can be shown that

D+W ≤ −Qminε

2Pmax
W +

ε2c7

2
‖y‖

where D+W is the upper right-hand derivative of W with

respect to t [4]. Substitute (41) into the right hand side of

the above equation, it can be shown that

W (e(t, ε))

≤ exp
(
−Qminε

2Pmax
t

)
W (e(0, ε)) + εη(t, ε)‖y(0, ε)‖

η(t, ε)

:=
εc7

2

∫ t

0

exp
(
−Qminε

2Pmax
(t − τ)

) ‖y(τ, ε)‖
‖y(0, ε)‖dτ

=
P

3
2
max

ε∗Pmin

(
exp

(
c5ε

2Pmax
t

)
− exp

(
−Qminε

2Pmax
t

))

by the comparison lemma. Since η(t, ε) is uniformly

bounded on [0,∞) × (0, ε∗], we obtain

‖e(t, ε)‖ ≤ P
1
2
max

P
1
2
min

exp
(
−Qminε

2Pmax
t

)
‖e(0, ε)‖ + c8ε‖y(0, ε)‖

c8 :=
P

3
2
max

ε∗P
3
2
min

Approximate the linear periodic system (31) by its average

system (36), we obtain

‖x(t, ε) − xave(t, ε)‖
≤ ‖e(t, ε)‖ + ε‖F (t)‖‖y(t, ε)‖

≤ P
1
2
max

P
1
2
min

(‖x(0, ε) − xave(0, ε)‖ + ερ3‖x(0, ε)‖).

Hence the initial response of (31) is shown to asymptotically

converge to that of the average system (36). �
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