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Abstract— In this paper we discuss applications of the joint
spectral characteristics of finite dimensional linear operators
such as joint spectral radius, lower spectral radius, p-radius,
Lyapunov exponent etc. to some problems of functional analysis,
fractal geometry, probability theory and combinatorial number
theory.

I. INTRODUCTION

The joint spectral radius and the lower spectral radius of
liner operators have found a lot of applications in various
areas of mathematics. For the sake of simplicity in this paper
we consider the case of two operators, although most of
results can be easily generalized to an arbitrary finite family
of linear operators.

Definition 1: The joint spectral radius (JSR) of finite-
dimensional linear operators A0, A1 is the value

ρ̂ = lim
m→∞ max

d1,..., dm∈{0,1}
‖Ad1 · · ·Adm

‖1/m.

The lower spectral radius is

ρ̌ = lim
m→∞ min

d1,..., dm∈{0,1}
‖Ad1 . . . Adm

‖1/m

Both these limits exist and do not depend on the norm (see,
for instance, [1]). Many problems is reduced to computing or
estimating JSR or LSR of suitable linear operators. Although
the numerical computation of these values is hard, in some
practical cases it is possible to find them precisely. In this
paper we discuss mostly those applications, where JSR or
LSR can be found explicitly.

In nearly all cases when it is possible to compute the
values ρ̂ and ρ̌ precisely it is done by the same approach
using the following two simple statements. The first one is
well known:

Proposition 1: For any operators A0, A1 and for any
their product Πm = Ad1 · · ·Adm

we have

ρ̌ ≤ (
ρ(Πm)

)1/m ≤ ρ̂ .

(By ρ(A) we denote the usual spectral radius of the
operator A, which is the largest modulo of its eigenvalues).

Proof: For every k we have

min
d1,...,dkm

‖Πkm‖ ≤ ∥∥(Πm)k
∥∥ ≤ max

d1,...,dkm

‖Πkm‖.
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It remains to take the power 1/km of these three values and
to take the limit as k → ∞.

The second statement is less known, but is also simple.

Proposition 2: Suppose that linear operators A0, A1 act
in R

d, and λ is a positive value; then :
a) if there is a convex body (a convex compact set with a

nonempty interior) M ⊂ R
d symmetric with respect to the

origin and such that for some integer m ≥ 1 we have

ΠmM ⊂ λmM,

for all Πm = Ad1 · · ·Adm
, then ρ̂(A0, A1) ≤ λ

b) if there is a closed set Q ⊂ R
d not containing the origin

such that for some integer m ≥ 1 we have

ΠmQ ⊂ λmQ,

for all Πm = Ad1 · · ·Adm
, then ρ̌(A0, A1) ≥ λ.

Proof: a) Denote by ‖ · ‖M the Minkowski norm,
corresponding to the convex body M . Since ‖Πm‖M ≤ λm,
it follows that the norm of each product Ad1 . . . Adkm

is at
most λmk. Whence, ρ̂ ≤ λ.

b) Let h = inf{‖u‖, u ∈ Q}. Clearly, h > 0. Take an
arbitrary point a ∈ Q. For any d1, . . . , dmk we obtain

Ad1 . . . Admk
a ∈ λmkQ.

Consequently ‖Ad1 . . . Admk
a‖ ≥ hλmn, therefore ρ̌ ≥ λ.

The idea of computing of JSR and LSR is the following:
Proposition 2 gives an upper bound for ρ̂ and a lower bound
for ρ̌. To obtain this we need only to present an appropriate
convex body M and, respectively, a closed set Q. On the
other hand, Proposition 1 provides converse estimates: for
each product Πm the value

(
ρ(Πm)

)1/m
estimates ρ̂ from

below and ρ̌ from above. If we are “lucky”, then an upper
bound will coincide with the lower one, and the precise
values of LSR or JSR will be found. For this it suffices
to find a suitable product Πm and a set M (or Q).

In the next section we present a detailed analysis of
applications of JSR and LSR to the computing of the global
and local regularity of fractal curves. For this we involve
some other spectral characteristics of linear operators such
as the p-radius, the Lyapunov exponent and the JSR along
a sequence. These results is applied to study wavelets and
scaling functions (section III), the distribution of random
power series (chapter IV) and the asymptotic behavior of
the Euler partition function (section V).
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II. FRACTAL CURVES

In this section we analyse the regularity of fractal curves.
We devote much attention to this topic, because the further
applications (section III - V) will be based on the results of
this section.

Let Ã0, Ã1 be affine operators acting in the d-dimensional
Euclidian space R

d. By Ai we denote the linear part of
the operator Ãi, i = 0, 1. So, Ai is a linear operator. We
always assume that this pair of affine operators is irreducible
(the operators have no common invariant affine subspaces)
otherwise one can consider the restriction of these operators
on the invariant subspace.

Definition 2: Fractal (self-similar set) of two affine oper-
ators Ã0, A1 is a compact set K ⊂ R

d such that

Ã0K ∪ Ã1K = K.

According to the classical results of J.Hutchinson [2] if the
operators Ãi are both contraction, i.e., ‖Ai‖ < 1, i = 0, 1,
then this pair of operators possesses a unique fractal K.
This sufficient condition for the existence of a fractal can
be sharpened to almost a criterion by means of JSR, which
was proved in [3]:

Proposition 3: Let Ã0, Ã1 be an irreducible pair of affine
operators acting in R

d. If ρ̂(A0, A1) < 1, then this pair
possesses a unique fractal. Conversely, it the pair Ã0, A1

possess a fractal, then ρ̂(A0, A1) ≤ 1.

Everywhere below we assume ρ̂(A0, A1) < 1. This, in
particular, yields ρ(Ai) < 1, i = 0, 1, where ρ is the usual
spectral radius. This, in turn, implies that each affine operator
Ãi is contraction in a suitable norm, hence it possesses a
unique fixed point vi. Thus, Ãivi = vi , i = 0, 1.

Theorem 1: Let an irreducible pair of affine operators
Ã0, Ã1 satisfy the following two assumptions:
1) ρ̂(A0, A1) < 1 ;
2) Ã0v1 = Ã1v0 (vi is the fixed point of the operator Ãi),
then the fractal K of these operators is an image of a con-
tinuous curve in R

d. There is a unique continuous function
v : [0, 1] → R

d (a fractal curve) such that

v(x) = Ãi v(2x − 1), x ∈
[ i

2
,

i + 1
2

]
, i = 0, 1, (1)

and therefore v
(
[0, 1]

)
= K. The values of the function are

given by the formula

v(x) = lim
m→∞ Ãd1 · · · Ãdm

v0, (2)

where d1, . . . , dm, . . . are digits in the binary expansion of
the number x, so x = 0.d1 . . . dm . . .. In particular, at diadic
points x = 0.d1 . . . dm one has

v(x) = Ãd1 · · · Ãdm
v0, (3)

Conversely, if for irreducible pair of affine operators
A0, A1 equation (1) possesses a continuous solution, then
ρ̂(A0, A1) < 1, the both operators Ãi has fixed points vi

and Ã0v1 = Ã1v0.

It turns out that the JSR not only gives the criterion of
existence for continuous fractal curves, but also allows us to
express precisely their regularity.

Let us recall some notation. The modulus of continuity of
a function v(x) is the value

ω(v, t) = sup
x∈[0,1], |h|≤t

‖v(x) − v(h + h)‖

The Hölder exponent of a function v(x) is

αv(x) = sup
{

α ≥ 0, ω(v, t) ≤ Ctα
}

.

Theorem 2: Under the assumptions of Theorem 1 we have

αv = − log2 ρ̂(A0, A1). (4)

Moreover, if the pair of linear operators A0, A1 is irreducible
(they do not have a nontrivial common invariant linear
subspace), then

C1t
αv ≤ ω(v, t) ≤ C2t

αv , (5)

where C1, C2 are positive constants.

Remark 1: The expression for the Hölder exponent of
fractal curves was first derived (under some stricter con-
ditions) in [4], [5]. Theorem 2 gives in addition the ex-
plicit asymptotic for the moduli of continuity. Moreover,
the constants C1, C2 can be effectively estimated for every
irreducible pair of operators [3].

We give the common proof of Theorems 1 and 2.
Proof: We begin with proving the convergence of the
limit (2). Simultaneously we establish that the function given
by that formula is continuous and αv ≥ − log2 ρ̂.

First we define the function v(x) at diadic points x by
formula (3). Let x < y be dyadic points, and (x, y) 	= (0, 1).
Denote by z the dyadic number of the smallest order (that
has the form z = k2−q with the smallest possible q) such
that x ≤ z ≤ y. Such z is clearly unique. We have

z = 0.d1 . . . dq , y = 0.d1 . . . dqdq+1 . . .

Let us denote by r the smallest number such that r > q and
dr = 1. It is easy to see that |y−z| > 2−r. Let P ⊂ N be the
set of all indices p such that the pth digits after the dyadic
point (in the expansions of y and z) are different. Clearly, r
is the smallest element of the set P . We have
∥∥v(y)−v(z)

∥∥ =
∥∥∥∑

p∈P

v(0, d1 . . . dp−11)−v(0, d1 . . . dp−10)
∥∥∥

≤
∥∥∥∑

p≥r

v(0, d1 . . . dp−11) − v(0, d1 . . . dp−10)
∥∥∥

=
∑
p≥r

∥∥∥Ad1 · · ·Adp−1(v1 − v0)
∥∥∥ ≤

∑
p≥r

Cε(ρ̂ + ε)p−1

=
Cε(ρ̂ + ε)r

(ρ̂ + ε)(1 − ρ̂ − ε)
≤ Cε

(ρ̂ + ε)(1 − ρ̂ − ε)
·|y−z|− log2(ρ̂+ε)
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where the constant Cε depends only on ρ̂ and ε. Having
estimated the value ‖v(z) − v(x)‖ in the same way we get

‖v(y) − v(x)‖ ≤ C̃ε|y − x|− log2(ρ̂+ε), (6)

where C̃ε depends only on ρ̂ and ε. This inequality holds
for all dyadic x, y, therefore the function v(x) is uniformly
continuous on the set of dyadic numbers. Hence this function
is continuously extended by formula (2) onto the whole
segment [0, 1], and for all x, y inequality (6) holds. Thus,

αv ≥ − log2 ρ̂.

If the pair of operators A0, A1 is irreducible, then we use
the inequality C1ρ̂

m ≤ max
d1,...,dm

‖Ad1 · · ·Adm
‖ ≤ C2ρ̂

m [3].

Repeating our proof and setting ε = 0, Cε = C2, we obtain

‖v(y) − v(x)‖ ≤ C2|y − x|− log2 ρ̂.

It remains to establish te inverse inequality αv ≤ − log2 ρ̂.
Consider the set L of all points u ∈ R

d such that

max
d1...,dm

‖Πmu‖ = o(1) ρ̂m , as m → ∞, (7)

where Πm = Ad1 · · ·Adm
, o(1) → 0. Clearly, L is a linear

subspace in R
d invariant with respect to both A0, A1. Let us

denote a = v1 − v0. If a ∈ L, then L = R
d, otherwise the

affine plane v0 + L would be a nontrivial common invariant
subspace of A0, A1. Thus, (7) holds for all u ∈ R

d. Taking
an orthonormal basis {uj}d

j=1 in R
d and applying (7) to its

elements, we get

max
d1,...,dm

‖Πmuj‖ ≤ rm ρ̂ , m ∈ N, j = 1, . . . , d,

where rm → 0 as m → ∞. Therefore, for any element of

the unit sphere u =
d∑

j=1

βjuj ,
d∑

j=1

β2
j = 1 we have

max
d1,...,dm

‖Πmu‖ ≤
d∑

j=1

βj‖Πmuj‖ ≤ rm

d∑
j=1

βj ≤
√

d rm ρ̂.

Thus, max
d1,...,dm

‖Πm‖1/m ≤ [
√

d rm ρ̂]1/m, which becomes

less than ρ̂ as m → ∞. This contradiction shows that a /∈ L.
Whence there exists a constant C1 > 0 and arbitrarily long
sequences d1, . . . , dm, for which

‖Ad1 · · ·Adm
(v1 − v0)‖ ≥ C1 ρ̂m.

Therefore, for the points x = 0.d1 . . . dm0 and
y = 0.d1 . . . dm1 we have

‖v(y) − v(x)‖ ≥ C1 ρ̂m = C1 (y − x)− log2 ρ̂, (8)

and hence αv ≤ − log2 ρ̂.
Conversely, if equation (1) possesses a continuous so-

lution v(x), then the left hand side of (8) tends to zero,
and therefore ρ̂ < 1. Furthermore, it follows from (1) that
vi = v(i) is a fixed point of the operator Ãi , i = 0, 1 and

v
(
1/2

)
= A0v(1) = A1v(0).

The spectral characteristics of the operators A0, A1 ex-
press not only the global regularity of the fractal curves on
the whole segment [0, 1], but also a local behavior at each
point x. For given x ∈ [0, 1] the local Hölder exponent of
the function v at the point x is defined as

αv(x) = sup
{

α ≥ 0, ‖v(x + h) − v(x)‖ ≤ Chα
}

. (9)

In contrast to the global exponent of regularity αv , the local
exponent can take arbitrary large values, including +∞. The
local exponent is expressed in terms of the so-called JSR
along a sequence.

Definition 3: Let A0, A1 be two linear operators and
(x) = d1, d2, . . . be an infinite sequence of zeros and ones.
Then the joint spectral radius along the sequence (x) is

ρ̂x(A0, A1) = lim sup
m→∞

‖Ad1 · · ·Adm
‖1/m

We call a number x ∈ [0, 1], normal if for any ε > 0 one
can find a number n(ε) such that for every m ≥ n(ε) the
binary expansion of x = 0.d1d2 . . . contains two different
digits dk 	= dl with m ≤ k < l ≤ m(1 + ε). In short, the
normal numbers can not be approximated too good by dyadic
rationals. Almost all (in Lebesgue measure) points of the
segment [0, 1] are normal. All rational numbers are normal
except for dyadic ones. The proof of the next theorem is
similar to that of Theorems 1 and 2, and we omit it.

Theorem 3: For any point x = 0.d1d2 . . . one has

αv(x) ≤ − log2 ρ̂x.

If, moreover, x is normal, then

αv(x) = − log2 ρ̂x.

This theorem allows us to make comprehensive conclu-
sions on the distribution of points with a given exponents
of local regularity. First of all, if the operators A0, A1 are
both nondegenerate, then the value ρ̂x does not depend on
any finite number of digits in the binary expansion of x.
So, the local regularity at normal points depends entirely on
the “tail” of the sequence x = 0.d1d2 . . .. Therefore, by the
so-called “low of zero and one” (see, for instance, [6]) for
almost all points x the exponents αv(x) are the same. This
average local regularity (we denote it by αav) is expressed
by the formula

αav = − log2 ρ̄ ,

where

ρ̄(A0, A1) = lim
m→∞

( ∏
d1,...,dm

‖Πm‖
)1/m2m

(the geometric mean of the norms of all possible 2m operator
products of length m consisting of A0 and A1) is called
the Lyapunov exponent of these operators. The proof of this
result can be found in [7]. The average regularity has a
close relation with the multyfractal dimension and applied
in ergodic theory and dynamical systems [8].
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Another conclusion of Theorem 3 is that for every
point x we have

− log2 ρ̂ ≤ αv(x) ≤ − log2 ρ̌,

therefore the JSR and LSR provide us with the bounds of
local regularity. A nontrivial result is that for any fractal
curve both these bounds are sharp and achieved at some
points x. Moreover, if A0, A1 are both nondegenerate, then
the values of local regularity cover the whole segment
between − log2 ρ̂ and − log2 ρ̌. For any point α from
this segment the set of points x, for which αv(x) = α is
dense everywhere on [0, 1] and has zero measure, whenever
α 	= αav [7].

III. SCALING FUNCTIONS AND WAVELETS

Wavelets are orthonormal systems of functions that can be
obtained from one function by scaling and integer translates.
They have a lot of applications in functional analysis, signal
processing, approximation theory etc. Compactly supported
wavelets play a special role due to their convenience in
the implementations. The system of compactly supported
wavelets on the real line is a complete orthonormal system
in L2(R) that has the form

ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ Z ,

where ψ00 = ψ is a compactly supported function in L2(R).
The construction of this system is always reduced to solving
the refinement equation

ϕ(x) =
N∑

k=0

ckϕ(2x − k), (10)

where ck are complex coefficients and
∑

k ck = 2. This
is well known that this equation always has a unique, up to
normalization, compactly supported solution in distributions,
which, moreover, has its support on the segment [0, N ].
This solution is called scaling function or refinable function.
Having this solution ϕ one obtains the function ψ by a
simple formula [4]. The question, whether the solution ϕ
will be continuous and what is its smoothness can be solved
explicitly in terms of JSR of special linear operators. To do
this one has to consider the operators acting in R

N and given
by their matrices T0, T1 as follows:

(Ti)jk = c2j−k+i−1, 1 ≤ j, k ≤ N, i = 0, 1, (11)

where cr is the corresponding coefficient of the equa-
tion (10), whenever 1 ≤ r ≤ N and cr = 0 otherwise.
It is easily can be checked that the refinement equation is
equivalent to equation (1) for the operators Ãi = Ti and for
the function

v(x) =
(
ϕ(x), . . . , ϕ(x + N − 1)

)T
. (12)

The operators Ti are restricted to the smallest (by inclusion)
common invariant affine subspace Ṽ of T0, T1 containing
the vector v(0). Thus, function (12) is a fractal curve as

well. Therefore the analysis of its global and local regularity
can be realized using Theorems 1 - 3. In particular, the
function ϕ is continuous iff ρ̂(A0, A1) < 1 and, moreover,
αϕ = − log2 ρ̂. (we have denoted Ai = Ti|V , where V is the
linear part of the space Ṽ , i.e., the smallest common invariant
linear subspace of these operators containing the vector
v(1) − v(0)). Thus, the problem of regularity of wavelets
is reduced to the computing of the corresponding JSR. The
question is complicated by the fact that the space V may
be different for various equations, and the structure of the
operators Ti on this space is not a priory clear. This problem
was solved in [9], where the space V and the structure of
operators A0, A1 were found explicitly. Moreover, it was
shown that both operators are nondegenerate, which makes
it possible to apply Theorem 3 for the analysis of the local
regularity of wavelets and for computing their moduli of
continuity.

Example 1: [The third wavelet of Daubechies ψ3]. This
function is supported on the segment [0, 5] and obtained from
a refinement equation with six coefficients. In this case we
have L = 3 and

m(z) =
1
2

(
(0.398538)z2 − (2.162272)z + (3.763736)

)
.

It is easy to check that the 2 × 2-matrices A0, A1 can be
simultaneously symmetrized, therefore

ρ̂ = max{ρ(A0), ρ(A1)} =

max{0.398538, 2.162272, 3.763736} = 3.763736

Therefore l = 1 (i.e., ψ ∈ C(R)) and

αψ = L− 1− log2 ρ̂ = 3− log2(3.763736) = 0.087833 . . . .

Thus,
ω(ψ′, t) � t0.087833.

On the other hand, ρ̌ = ρ(A1) = 2.162272 . . . . To prove this
we use Proposition 2. As the set Q we take the union of the
two angles: the first one has its vertex at the point (1, 0)T

and has its sides with the directions of the vectors (5, 1)T

and (5,−1)T ; the second one is obtained from the first one
by the reflection w.r.t the origin.

IV. THE DISTRIBUTION OF A RANDOM SERIES

We consider a random series

η =
∞∑

l=0

ηktk, (13)

where t ∈ (0, 1), and the random variables ηk, k = 0, 1, · · ·
are mutually independent and equally distributed with distri-
bution function Fη0 (for a given random variable ν we denote
by Fν and fν the distribution function and the density func-
tion respectively). Under very general assumptions on the
distribution of η0 the series (13) converges with probability 1
for every t ∈ (0, 1). Moreover, the distribution function of
this series is continuous and it is of pure type, i.e., is either

3028



absolutely continuous or purely singular (its derivative is zero
almost everywhere) [10]. The main problem is to separate the
cases of absolutely continuity and singularity of Fη0 .

This problem for various distributions t and η0 have been
studied in many works. The papers [11] and [12] analyzed a
special case of discrete distribution of η0. Namely, t = 1/n,
where n ≥ 2 is an integer, and η0 is an arbitrary integer-
valued random variable with finite expectation of modulo.
So we consider the series

η =
N∑

k=0

ηk

nk
, (14)

where η0 takes integer values k with probabilities pk and∑
pk = 1. The sharp criterion of absolutely continuity of

Fη was obtained in [12]. That criterion was formulated in
terms of zeros of the characteristic function

m(z) =
∑

k

pkzk.

Moreover, it was shown that the density function satisfies∑
k∈Z

fη(x − kn) = 1 almost everywhere. (15)

Let us now show how to use the notion of JSR for more
detailed analysis of the density function fη. We restrict
ourselves to the case, when only finitely many coefficients pk

are nonzero. So, pk = 0, whenever k < 0 or k > N . For the
sake of simplicity we consider the case n = 2, although the
case of general n is considered in the same way (as it was
done in [12]).

Theorem 4: Suppose N ≥ 2 and all the probabilities
p0, . . . , pN are positive; then if the random value η has
a summable density fη ∈ L1(R), then this density is
continuous on R.

Before giving a proof let us make some observations. The
key one is that the density fη is expressed by the solution of
the refinement equation (10) with ck = 2pk. Therefore we
can consider the vector-function v(x) by formula (12) and
apply Theorem 1 for v(x) and for the operators (11) with
ck = 2pk. To establish the continuity of v(x) it suffices to
show that there is an affine plane Ṽ ⊂ R

N not containing
the origin such that

1) TiṼ ⊂ Ṽ , i = 0, 1;
2) ρ̂

(
T0|V , T1|V

)
< 1,

where V is the linear part of Ṽ . Theorem 1 then guarantees
that v(x) is continuous and its image is contained on Ṽ . We
denote by R

N
+ the positive octant in R

N (the set of points
with nonnegative coordinates) and establish the following
auxiliary result.

Proposition 4: Let T0, T1 be arbitrary N × N -matrices
with nonnegative entries. Suppose Ṽ ⊂ R

N is an affine plane
not containing zero and such that

Ṽ ∩ R
N
+ 	= ∅, TiṼ ⊂ Ṽ , i = 0, 1.

Let Ai = Ti|V . If there exists an l ≥ 1 such that the matrix
product Ad1 · · ·Adl

has at least N −1 positive rows for any
sequence d1, · · · , dl, then ρ̂(A0, A1) < 1.

In the proof of Proposition 4 we use the following simple
lemma (the reader will easily establish it).

Lemma 1: Let Ṽ ⊂ R
N be an affine plane. Suppose a

point x ∈ Ṽ has nonnegative coordinates and at least N −1
of them are positive; then dim (Ṽ ∩ R

N

+) = dim Ṽ.

Let us now prove Proposition 4

Proof: Let dim Ṽ = r. First let us show that the set
G = Ṽ ∩R

N
+ is r-dimensional. Indeed, for any point y ∈ G

and for any Πl = Td1 · · ·Tdl
the vector x = Πly has at least

N − 1 positive coordinates, because Πl has at least N − 1
positive rows. Hence, by Lemma 1, we have dim G = r.
This means that G possesses a nonempty interior intG in Ṽ .
Thus, G is a convex polytope in Ṽ with nonempty interior.
It is obvious that ΠlG ⊂ G. Moreover, since Πl has N − 1
positive rows, it follows that the polytope ΠlG can intersect
only one (N−1)-dimensional face of the positive octant R

N
+ .

Consequently, ΠlG has common points with at most one
(r − 1)-dimensional face of G. Hence there is an h ∈ V
such that

(Ad1 · · ·Adl
G + h) ⊂ int G.

This yields that for some λ ∈ (0, 1) one has

Ad1 · · ·Adl
M ⊂ λM,

where M = 1
2 (G+(−G)) is a centrally symmetric polytope

in the space V . Applying Proposition 2 we conclude the
proof.

Now we are ready to prove Theorem 4.

Proof: Consider the affine span Ṽ of the set

{
2q

x+2−q∫
x

v(x)dx
∣∣∣ x = 2−ql, l = 0, · · · , 2q − 1, q ≥ 0

}
,

where v(x) is the L1-solution (of equation (1)), which exists
by the assumption. Clearly, Ṽ is invariant w.r.t. the operators
T0, T1. Furthermore, equality (15) yields that Ṽ is contained
in the affine hyperplane {y ∈ R

N ,
∑

k yk = 1}, and
therefore, does not contain the origin. Let us finally note

that the point
1∫
0

v(x) dx, which belongs to Ṽ , possesses a

positive coordinate (otherwise ϕ ≡ 0 a.e.). Thus Ṽ satisfies
the assumptions of Proposition 4. Now observe that the kth
row of the matrix Πl = Td1 · · ·Tdl

has the entries

(Πl)kj = c2l(k−1)+s−j+1, (16)

where s =
l−1∑
r=0

dr2l−r−1, and cr are the coefficients of the

polynomial

Pl(z) = m(z)m(z2) · · · m(z2l−1
).

Since all the coefficients of m(z) are positive, we see that
cr > 0 for r = 0, . . . , 2l−1N . Now this is easy to verify
that if 2l > N , then for any d1, . . . , dl either the first N − 1
rows or the last N − 1 rows of the matrix (16) are positive.

3029



V. ASYMPTOTICS OF THE PARTITION FUNCTION

For an arbitrary d ∈ N∪ {∞}, d ≥ 2 the binary partition
function b(k) = b(d, k) is defined on the set on nonnegative
integers k as the total number of different binary expansions
k =

∑∞
j=0 dj2j , where the ”digits” dj take values from the

set 0, . . . , d − 1. Leonard Euler in [1] studied the partition
function b(∞, k) in connection with some power series. The
asymptotic behavior of b(d, k) as k → ∞ was studied in
various interpretations by K.Mahler, N.G. de Bruijn, D. E.
Knuth, B.Reznick and others (see [13] for many references).
Clearly, for d = 2 we have b(k) ≡ 1. For d ≥ 3 such a
binary expansion is no more unique, and the problem arises
to characterize the asymptotic behavior of the function b(k)
as k → ∞. For even d this problem was solved by B.Reznick
in [13]. For odd values of d the asymptotic behavior of b(k)
is more complicated, it was studied in [13] and [14]. Denote

p1 = lim inf
k→∞

log b(k)/ log k; p2 = lim sup
k→∞

log b(k)/ log k.

If d is even, then we have p1 = p2, but for odd d this is
not always the case. Already for d = 3 one has p1 < p2.
In [13] these exponents were computed explicitly for d = 3,
the problem for the other odd values of d were left open.
In [14] this problem was attacked by using the JSR. The
exponents p1, p2 were found for d = 5, 7, 9, 11 and 13, for
other odd d an explicit formula for them was conjectured.

It was shown that

p1 = log2 ρ̌ , p2 = log2 ρ̂

where ρ̂ and ρ̌ are the LSR and JSR of the operators T0, T1,
whose matrices are given by formulas (11) with N = d − 1
and c0 = . . . = cd = 1.

Conjecture 1: If d is an odd integer, then

ρ̌ = min
{
ρ(T0),

√
ρ(T0T1)

}
, ρ̂ = max

{
ρ(T0),

√
ρ(T0T1)

}
.

where ρ denotes the (usual) spectral radius, i.e., the largest
modulo of the eigenvalues.

In [14] this conjecture was proved for d = 3, 5, . . . , 13
that made it possible to compute explicitly the growth
exponents p1, p2 for these values of d. To prove this we used
Proposition 2 and constructed the sets M and Q as suitable
polytopes in R

d−1. That construction is easily extended for
all dimensions d. However, we have proved the inclusions
TiM ⊂ ρ̂M and TiQ ⊂ ρ̌Q only for the dimensions d ≤ 13.
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