
Estimation with Information Loss:
Asymptotic Analysis and Error Bounds

Ling Shi, Michael Epstein, Abhishek Tiwari and Richard M. Murray

Abstract— In this paper, we consider a discrete time state
estimation problem over a packet-based network. In each
discrete time step, the measurement is sent to a Kalman
filter with some probability that it is received or dropped.
Previous pioneering work on Kalman filtering with intermittent
observation losses shows that there exists a certain threshold of
the packet dropping rate below which the estimator is stable
in the expected sense. That work assumes that packets are
dropped independently between all time steps. However we give
a completely different point of view. On the one hand, it is not
required that the packets are dropped independently but just
that the information gain πg , defined to be the limit of the ratio
of the number of received packets n during N time steps as
N goes to infinity, exists. On the other hand, we show that for
any given πg , as long as πg > 0, the estimator is stable almost
surely, i.e. for any given ε > 0, the error covariance matrix Pk

is bounded by a finite matrix M , with probability 1−ε. We also
give explicit formula for the relationship between M and ε. We
consider the case where the observation matrix is invertible.

I. INTRODUCTION

Since the landmark paper by Kalman [1], the Kalman filter

has been the subject of extensive research and applications

[2], [3], [4], [5]. For example, the Kalman filter has been

widely used in autonomous and assisted navigation. In his

paper, Kalman showed a recursive solution to the discrete

time state estimation problem. State estimation is key to the

control community. If the estimate of the state is stable, the

corresponding state feedback controller can be independently

designed and the overall system can be made stable provided

the original system is stabilizable. This separation principle

of designing the state estimator and state feedback controller

independently is one of the central theorems in modern

control [6].

Traditionally the areas of control and communication net-

works are decoupled from each other as they have almost dis-

tinctly different underlying assumptions. For example, con-

trol engineers generally assume perfect information within

the closed loop control and data processing is done with zero

time delay. On the other hand, in communication networks,

data packets that carry the information can be dropped, de-

layed or even reordered due to the network traffic conditions.

These different assumptions have for a long time blocked

researchers from the two fields from communicating with

each other. However, as new applications keep emerging, the

two fields are coming closer together. For instance, advances
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in large scale integration and microelectromechanical system

technology have made sensor networks a hot area of research.

In sensor networks, the measurement data from different

sensors is sent to the controller through a data network where

data packets might be dropped if the network has severe

traffic.

In recent years, networked control problems have gained

much interest. In particular, the state estimation problem over

a network has been widely studied. The problem of state

estimation and stabilization of a linear time invariant(LTI)

system over a digital communication channel which has

a finite bandwidth capacity was introduced by Wong and

Brockett [7], [8] and further pursued by [9], [10], [11],

[12]. In [13], Sinopoli et al. discussed how packet loss can

affect stable state estimation. They showed there exists a

certain threshold of the packet loss rate above which the state

estimation diverges in the expected sense, i.e. the expected

value of the error covariance matrix becomes unbounded as

time goes to infinity. They also provided lower and upper

bounds of the threshold value. Following the spirit of [13], in

[14], Liu and Goldsmith extended their idea to the case where

there were multiple sensors and the packets arriving from

different sensors were dropped independently. They provided

similar bounds on the packet loss rate for a stable estimation,

again in the expected sense.

In spite of the great progress that those previous re-

searchers have made, the problems they have studied have

certain limitations. For example, in both [13] and [14], they

assumed that packets are dropped independently, which is

certainly not true in the case where burst packets are dropped

or in queuing networks where adjacent packets are not

dropped independently. They also use the expected value of

the error covariance matrix as the measure of performance.

In our opinion this can conceal the fact that events with

arbitrarily low probability can make the expected value

diverge, and we should ignore such events with extremely

low probability. For example, consider the simple unstable

scalar system with a = 2 in [13]. Let the arrival rate

λ = 0.74 < 1 − 1/a2. According to [13], E[Pk] is

unbounded. This is easily verifiable by considering the event

S where no packets are received in k time steps. Then

E[Pk] ≥ Pr[S]E[Pk|S] ≥ (0.26k)4kP0 = 1.04kP0. By

letting k go to infinity, we see that this event with almost

zero probability makes the expected error diverge. We shall

study this example in detail later on.

Inspired by the approach in [15], where Abate and et

al. gave a stability criterion of a class of stochastic hybrid
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systems, we first define the information gain πg as

πg = lim
N→∞

n

N
, (1)

where n is the number of packets received in N time steps.

Intuitively, this means that when N is sufficiently large,

the total number of packets received in N time steps is

πgN with arbitrarily high probability. This certainly includes

the case where packet drops occur independently by weak

law of large numbers [16]. In that case, πg simply equals

to the packet arrival rate. This also includes other network

structures, for example the packets being received or dropped

are described by a markov chain [16], which is frequently

seen in a queuing network. In this latter case, the steady state

probability of receiving the packets coincides with the one

we defined above. We then argue that with this new notion

of information gain πg , as long as πg exists and πg > 0, the

error covariance matrix Pk is bounded almost surely, i.e. for

any given ε > 0 the error covariance matrix Pk is bounded

by a finite matrix M with probability 1 − ε.

The paper is organized as follows. In Section I, we briefly

review relevant past work. In Section II, the mathematical

model of our problem is given. In Section III, we give the

main results in terms of a series of theorems and lemmas

that prove the error covariance is bounded almost surely for

any nonzero information gain. In Section IV, we give an

explicit relationship between the bound and probability of the

error covariance staying below the bound. In Section V we

compare our metric with that of [13] for a specific example.

The paper concludes with a summary of our results and a

discussion of the work that lies ahead.

II. PROBLEM SET UP

Let ρ(A) = max |λi(A)| be the spectral radius of a matrix

A ∈ Mn, where Mn consists of all n by n matrices. Consider

the following discrete-time LTI system

xk+1 = Axk + wk

yk = Cxk + vk. (2)

We assume A is unstable, i.e. ρ(A) > 1, and C is invert-

ible. We will discuss the general case for C not invertible in

the future work. As a result, the pair (C,A) is observable.

As usual, xk ∈ Rn is the state vector, yk ∈ Rm is the

observation vector, wk ∈ Rn and vk ∈ Rm are Gaussian

random vectors with zero mean and covariance matrices

Q ≥ 0 and R > 0, respectively. Assume ws is independent

from wk and vs is independent from vk for s �= k, and ws

is also independent from vk for all s and k.

The problem of interest to us is to get a stable estimate

for the state vector xk at time k given all past measurement

y0, . . . , yk sent through a packet based network, where yi, i ∈
{0, . . . , k} can be dropped randomly. We make use of a

Kalman filter to do the state estimation.

Let γk be the random variable indicating whether a packet

is dropped at time k or not, i.e. γk = 0 if a packet is dropped

and γk = 1 otherwise. Let us also define the following

quantities:

x̂k|k = E[xk|yk, γk]
Pk|k = E[(xk − x̂k)(xk − x̂k)′|yk, γk]

x̂k+1|k = E[xk+1|yk, γk]
Pk+1|k = E[(xk+1 − x̂k+1)(xk+1 − x̂k+1)′|yk, γk]
ŷk+1|k = E[yk+1|yk, γk],

where yk = [y0, y1, · · · , yk]′ and γk = [γ0, γ1, · · · , γk]′.
Similar to Sinopoli et al. in [13], the Kalman filter update

equations are given as:

x̂k+1|k = Ax̂k|k
Pk+1|k = APk|kA′ + Q

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)
Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k,

where Kk+1 = Pk+1|kC ′(CPk+1|kC ′+R)−1 is the Kalman

gain matrix. As we are only interested in the error prop-

agations, i.e. how the error covariance matrix evolves, we

concentrate on its update equation, which turns out to be the

following

Pk+1 = APkA′+Q−γkAPkC ′[CPkC ′+R]−1CPkA′ (3)

where we simply write Pk = Pk|k−1. Intuitively this means

that when there no packet arrives, the Kalman filter just

performs the time update, and otherwise it performs both

the time and measurement updates.

III. ASYMPTOTIC PROPERTIES OF ERROR COVARIANCE

MATRIX

As the simple example in the introduction shows, some

events with almost zero probability can make the expected

value of the error covariance diverge. In practice, those rare

events are unlikely to happen and hence should be ignored.

Therefore the expected value of the error covariance matrix

may not be the best metric to evaluate the Kalman filter

performance. By ignoring these low probability events,

we hope that the error covariance matrix is stable with

arbitrarily high probability. This is precisely captured in the

following theorem.

Theorem 1: Let the information gain πg be defined as

in Eqn. (1) and assume it exists. If πg > 0, then the error

covariance matrix Pk is bounded above almost surely, i.e.
for any given ε ∈ (0, 1), Pk is bounded by M(ε) < ∞
with probability 1− ε. Furthermore, inf(M) depends on the

choice of ε and the smaller the ε, the bigger the inf(M).

Before we prove the theorem, we briefly compare this with

Sinopoli et al. [13]:

1) We do not assume that the packet drops occur inde-

pendently. This allows more network structures to be

considered, for example, a queuing network where the

packet drops are described by a Markov chain.
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2) Our result shows that such upper bound M always ex-

ists, provided πg > 0, and only depends on πg, A, C, R
and ε. In their paper, the M depends on the existence

of the solution of another set of iterative equations.

To prove this theorem, some other propositions and lem-

mas are needed. For the remainder of the paper, let

f(X) = AXA′ − AXC ′[CXC ′ + R]−1CXA′

g(X) = f(X) + Q

h(X) = AXA′ + Q

where X = X ′ ≥ 0, and A,C, Q and R are defined in

Section II. Then according to Eqn. 3 the error covariance

propagates with g if a packet is received and h if not, i.e.

Pk+1 =
{

h(Pk) if γk = 0
g(Pk) if γk = 1 (4)

Proposition 1: Let λh(X) = Tr(h(X))
Tr(X) , then

λh(X) ≤ 1 + λn(A′A)

for all X > 0 such that Tr(X) ≥ Tr(Q), where λn(A′A)
denotes the largest eigenvalue of A′A.

Proof :

λh(X) =
Tr(AXA′)

Tr(X)
+

Tr(Q)
Tr(X)

≤ 1 +
Tr(AXA′)

Tr(X)

= 1 +
Tr(A′AX)

Tr(X)

= 1 +
Tr(P ′A′APP ′XP )

Tr(P ′XP )

= 1 +
Tr(SY )
Tr(Y )

,

where S = P ′A′AP is diagonal and Y = P ′XP > 0 and

has the same eigenvalues as X . Such P exists and P ′ = P−1,

as A′A is real symmetric. Hence,

λh(X) ≤ 1 +
Tr(SY )
Tr(Y )

= 1 +
∑n

i=1 λi(A′A)Yii∑n
i=1 Yii

≤ 1 +
λn(A′A)

∑n
i=1 Yii∑n

i=1 Yii

= 1 + λn(A′A).

Notice that we implicitly used the fact that Yii > 0 for all i,
this follows as

Yii = e
′
iY ei > 0.

�

Lemma 1: If X ≥ Y , then f(X) ≥ f(Y ) and

h(X) ≥ h(Y ).
Proof : See [13] appendix A. �

Lemma 2: (Weyl’s Theorem) Let A and B be Hermitian,

and let the eigenvalues λi(A), λi(B), and λi(A + B) be

arranged in increasing order. For each k = 1, 2, ..., n we

have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B) .
Proof : See [17], page 181. �

Lemma 3: If A > 0 and B ≥ 0, then there exists a scalar

t ≥ 0 such that tA ≥ B.

Proof : Let t ≥ 0. By Lemma 2,

λ1(tA − B) ≥ λ1(tA) + λ1(−B)
= tλ1(A) − λn(B) .

So any t ≥ λn(B)
λ1(A) proves the lemma. �

Lemma 4: For any scalar t ≥ 0,

f(tC−1RC ′−1) ≤ AC−1RC ′−1A′ .
Proof :

f(tC−1RC ′−1) =
t

t + 1
AC−1RC ′−1A′

≤ AC−1RC ′−1A′.

�

Lemma 5: For all X ≥ 0,

0 ≤ f(X) ≤ AC−1RC ′−1A′ .
Proof : Clearly f(X) ≥ f(0) = 0. For any X ≥ 0,

as C−1RC ′−1 > 0, by Lemma 3, there exists t ≥ 0
such that tC−1RC ′−1 ≥ X , and hence by Lemma 1

f(tC−1RC ′−1) ≥ f(X). Therefore by Lemma 4

f(X) ≤ f(tC−1RC ′−1) ≤ AC−1RC ′−1A′ .

�

Proposition 2: Let λg(X) = Tr(g(X))
Tr(X) , then

lim
Tr(X)→∞

λg(X) = 0 .

Proof :

lim
Tr(X)→∞

λg(X) = lim
Tr(X)→∞

{
Tr(f(X))

Tr(X)
+

Tr(Q)
Tr(X)

}

= lim
Tr(X)→∞

Tr(f(X))
Tr(X)

≤ lim
Tr(X)→∞

Tr(AC−1RC
′−1A′)

Tr(X)
= 0.

�

Now we are ready to prove Theorem 1.

Proof of Theorem 1:

Recall that the error covariance matrix update equation is

Pk+1 = h(Pk),
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when the packet at time k is dropped, and

Pk+1 = g(Pk),

when the packet at time k is received. The functions h(X)
and g(X) are defined above. Let λh = 1+λn(A′A), i.e. λh

is the upper bound of the ratio between the trace of h(X) and

X obtained in Proposition 1. Let πg > 0 be the information

gain. Let πh = 1−πg denote the information loss coefficient.

Solve the following equation

λπg
g λπh

h = K < 1 (5)

involving variable λg for some K ∈ (0, 1). Let the solution

to this to be δ, i.e.

δ = exp
(

lnK − πh lnλh

πg

)
.

From Proposition 2, as the limit of λg(X) is zero when

Tr(X) tends to infinity, then there exist M1 < ∞ such that

Tr(X) > M1 implies λg(X) < δ . In fact M1 can be simply

chosen as

M1 =
1
δ
Tr(AC−1RC

′−1A′).

Let N > 0 be such that the number of packets received

during the N time steps equals to πgN almost surely, i.e.
for any given ε > 0, that is true with probability 1− ε. As a

result, the number of packets dropped equals to πhN almost

surely. Let M = λN
h M1 = M(ε). We argue that Tr(Pk)

will be bounded by M for k > k0 almost surely. Clearly by

choosing a smaller ε, we need to pick up a larger N , hence

M is also increased.

Without loss of generality, let us suppose that at time k0,

Tr(Pk0) > M1. Notice that during the time steps from k =
k0 to kN , there exist at least a kn where 0 ≤ n ≤ N such

that Tr(Pkn) ≤ M1. Otherwise, if Tr(Pkn) > M1 for all

0 ≤ n ≤ N , then λg(Pkn) ≤ δ for all 0 ≤ k ≤ N , and

hence the following inequalities are obtained

Tr(PkN
) ≤ δπgNλπhN

h Tr(Pk0)
= [δπgλπh

h ]NTr(Pk0)
≤ KNTr(Pk0),

which tends to zero and hence produces a contradiction. Now

let k0 = inf{k : k > kn, Tr(Pk) > M1} and repeat the same

argument again. Notice that during the N time steps, Tr(X)
shall be at most λN

h M1 which corresponds to the event that

no packets are received during the N time steps which occurs

with almost zero probability.

Lastly, notice that for X > 0, if Tr(X) ≤ α, then

X ≤ αI where I is the identity matrix. This is because

λi(αI − X) = α − λi(X), which is positive. In other

words, if the trace of a positive definite matrix is bounded,

the matrix itself is also bounded. This completes the proof. �

Remark 1: The upper bound M in the theorem is obvi-

ously a conservative bound as we see in the proof that we

have considered an event with almost zero probability. As

we show in Section IV, M is usually a much smaller value

than presented in the theorem. The key point, however, is

that by choosing M to be sufficiently large yet finite, we

are almost sure that the error covariance matrix is bounded

above by M .

IV. DETERMINING THE M -ε RELATIONSHIP

We wish to derive the relationship between the M and

ε given in Theorem 1. That is we seek to determine the

probability, 1− ε, that the error covariance Pk will be below

the bound M at any time. More formally Pr[Pk ≤ M ] =
1 − ε. We present such a relationship below. We consider

unstable A and invertible C.

Denote the solution to the algebraic Riccati equation as P̄
and the upper bound on g(X) as M̄ , namely

g(P̄ ) = P̄ (6)

g(X) ≤ M̄, ∀X ≥ 0 (7)

where from Lemma 5 we know M̄ = AC−1RC ′−1A′ + Q
and P̄ ≤ M̄ . Then εki(k) is defined to be the probability

that at least the previous ki consecutive packets are dropped

at time k, i.e.
εki

(k) = Pr[Nk ≥ ki] , (8)

with Nk the number of consecutive packets dropped at

time k. Clearly εki
≥ εkj

for ki ≤ kj . Next define the

following quantities

k1 � min {k ∈ Z+ : hk(M̄) � M} (9)

k2 � min {k ∈ Z+ : hk(P̄ ) ≥ M} , (10)

where hk(X) means the operator h is applied k times to X .

Lemma 6: For unstable A, we have h(P̄ ) > P̄ and if A
is purely unstable, then h(X) ≥ X for all X ≥ 0

Proof: To prove the first statement, using Eqn. 6 we write

P̄ = g(P̄ )
= AP̄A′ + Q − AP̄C ′(CP̄C ′ + R)−1CP̄A′

< AP̄A′ + Q

= h(P̄ ) .

To prove the second statement note that since A is strictly

unstable all of the eigenvalues lie outside the unit circle,

so it has no zero eigenvalues and A−1 exists. Moreover

the eigenvalues of A−1 all lie inside the unit circle and

are nonzero. Then using the discrete Lyapunov equation

for X ≥ 0 we can write A−1XA′−1 ≤ X since A−1

is stable. Then multiply on the left by A and on the

right by A′ to get X ≤ AXA′ from which it is obvious

h(X) = AXA′ + Q ≥ X since Q ≥ 0. �

Lemma 7: For finite M , the quantity k1 will always exist

while k2 is guaranteed to exist if A is purely unstable.

Proof: To prove the existence of k1 note that Lemma 4

in [18] says that for any X > 0, lim
k→∞

Tr(hk(X)) = ∞
if A is unstable. Thus for any scalar t > 0 there exists a

k1 such that hk1(M̄) � tI and t can be chosen such that

tI ≥ M . This means λn(hk1(M̄)) > t and λn(M) < t,
where λn is the maximum eigenvalue. Then using Lemma 2
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we see λn(hk1(M̄) − M) ≥ λn(hk1(M̄)) − λn(M) > 0
which implies hk1(M̄) � M .

If A is purely unstable then lim
k→∞

λ1(hk(X)) = ∞. Thus

we can again pick any finite scalar t > 0 such that tI ≥ M
and find a k2 such that hk2(P̄ ) ≥ tI ≥ M . �

Lemma 8: With the definitions above, if they both exist

then k1 ≤ k2.

Proof: This can easily be shown by contradiction.

Assume k1 > k2. We know P̄ ≤ M̄ , and since

X ≥ Y ⇒ h(X) ≥ h(Y ) it is easy to see

hk2(P̄ ) ≤ hk2(M̄) ≤ M . From the definition of k2,

however, we see hk2(P̄ ) ≥ M which is a contradiction of

the previous inequality. Hence it must be true that k1 ≤ k2. �

Theorem 2: For unstable A and invertible C, assume the

initial error covariance matrix P0 is given by P̄ ≤ P0 ≤ M̄ .

Given a matrix bound M ≥ M̄ then ε in the expression

Pr[Pk ≤ M ] = 1 − ε is bounded by

ε ≤ εk1(k) . (11)

That is the probability only depends on the number of

consecutive packets dropped at the current time and is

independent of the packet drop/receive sequence prior to

the previous received packet.

Proof : Since P̄ ≤ P0 ≤ M̄ , then assuming the next k
packets are dropped we have Pk = hk(P0) and it is clear

from Lemma 1 that

hk(P̄ ) ≤ Pk ≤ hk(M̄) .

So the necessary condition that Pk � M is

hk(M̄) � M ,

but this will only hold for k ≥ k1. Thus for Pk � M it

is necessary to drop at least the previous k1 consecutive

packets.

Now assume a packet is not received until time m > k1,

that is γk = 0 for k = 0, · · · ,m − 1 and γm = 1, then

Pm+1 = g(Pm) ≤ M̄ from Eqn. (7). It is also true that

Pm+1 ≥ P̄ since, from the concavity of g, g(X) ≥ P̄ ∀X ≥
P̄ . Thus for a packet received at time m, we have

P̄ ≤ Pm+1 ≤ M̄ . (12)

Regardless of how large m is, i.e. how long between

packet receives, and how large the error covariance gets,

Eqn. (12) holds. Hence the analysis above can always

be repeated with Pm+1 replacing P0, and the probability

Pk � M depends only on the number of consecutive

packets dropped and is independent of what happens prior

to the last packet received. �

Corollary 1: If A is purely unstable the a lower bound on

ε is given by

εk2(k) ≤ ε . (13)

Proof: Following the proof of Theorem 2, assume the

first k packets are dropped so Pk = hk(P0). A sufficient

condition for Pk � M is then

hk(P̄ ) ≥ M ,

which will only hold for k ≥ k2. Thus dropping the previous

k2 consecutive packets guarantees Pk � M . Now assume

a packet is not received until time m > k2, then we know

Pm = hm(P0) ≥ hm(P̄ ) ≥ M and P̄ ≤ Pm+1 ≤ M̄ so

the analysis is repeated with Pm+1 replacing P0 as before. �

The following example can help visualize the concepts of

the theorem.

Example 1: Consider the scalar system A = 1.3, C = 1,

Q = 0.5 and R = 1. For this system we have P̄ = 1.519 and

M̄ = 2.19. Picking M = 6.25 it is easy to show k1 = 2 and

k2 = 3. Thus there exists an P̄ < X∗ ≤ M such that all for

P̄ ≤ X < X∗ it requires 3 consecutive packets to be dropped

before the error covariance is greater than M , while for the

region X∗ ≤ X ≤ M̄ it only requires 2 consecutive packets

be dropped. In fact it can be easily shown that X∗ = 1.7174.

Figure 1 shows the evolution of the error covariance for

a particular sequence of packet acceptance/rejection. The

sequence used is hhhhggghhghhhgh(P0). As can be seen,

it requires at least 2 consecutive packets be dropped for the

error covariance to rise above the bound.

Fig. 1. Error covariance (log scale) for Example 1. For this system it
will take at least 2 and no more than 3 consecutive dropped packets for
Pk � M .

Remark 2: Theorem 2 provides a different metric than

the previous study [13] for assessing the performance of

estimation across a network. Here it is the probability of

bounding the error covariance that is important rather than

the expected value of the error covariance. The method in this

paper allows systems to be estimated that according to [13]

could not be estimated. In addition, Theorem 2 is applicable

to any packet dropping network while [13] is only for i.i.d

networks.
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Remark 3: With the definition of εki
(k) as in Eqn. (8)

it is easy to see εki
(k) = 0 , ∀k < ki. Which leads to

Pr[Pk ≤ M ] = 1 , ∀k < k1. So we only consider time

greater than k1.

We seek a method for calculating εki
(k). Figure 2 shows

all possible packet sequences at time k for a packet dropping

network. From this it is clear to see that εki
(k) will be the

sum of the probabilities of each of the instances with at least

the previous ki packets dropped occurring.

Fig. 2. A binary representation of the possible packet sequences (i.e. drop/
receive) at time k. A 0 signifies a packet was dropped and h was applied
to the error covariance. A 1 signifies the packet was received and g was
applied.

Corollary 2: For k > ki any packet dropping network that

is either i.i.d or reaches a steady state (for example a Markov

network), εki
(k) = εki

.

The above corollary says the probability of dropping at

least the previous ki packets is the same for all time. To

calculate εki
we can make use of the Markov chain model

in Figure 3.

Fig. 3. Markov chain used to determine εki
. The states of the Markov

chain represent the number of consecutive packets dropped at the current
time, the final state represents ki or more consecutive packets dropped. The
transition probability from state i to state j is given by Ti,j .

The states of the Markov chain represent the number of

consecutive packets dropped at the current time, the final

state represents ki or more consecutive packets dropped. The

transition probability from state i to state j is given by Ti,j . It

is clear εki = πki , the steady state probability of the Markov

chain being in state ki. This is easily determined to be given

by

πki =
D

D + Tki,0 + Tki,0

ki−1∑
l=1

l−1∏
j=0

Tj,j+1

(14)

with

D = 1 − T0,0 −
ki−1∑
l=1

Tl,0

l−1∏
j=0

Tj,j+1 .

Note that πki
decreases as ki increases.

The Ti,j are determined based on the type of network. For

example, an i.i.d network with packet arrival rate λ and drop

rate 1 − λ has Tj,0 = λ ∀j ≥ 0, Tj,j+1 = 1 − λ ∀j ≥ 0,

and Tki,ki
= 1 − λ. This leads to πki

= (1 − λ)ki .

A first order Markov network with transition probabilities

Thh, Thg, Tgh, and Tgg leads to πki = 1−Tgg

2−Thh−Tgg
(Thh)ki−1.

The probability πki
for any arbitrary order Markov network

can be determined in this manner.

Theorem 2 and Corollary 1 provide bounds on ε for a

given M and the network properties, i.e. πk1 and πk2 . It is

also possible to determine bounds on M and πki
.

Corollary 3: With the same assumptions as Theorem 2

and given the transition probabilities Ti,j of the Markov

model in Figure 3 and an upper bound εmax it is possible to

determine a suitable M such that Pr[Pk ≤ M ] ≥ 1 − εmax.

To do so, define

kM � min {k ∈ Z+ : πk ≤ εmax} , (15)

with πk given in Eqn. (14). Then the tightest such bound is

M = hkM (M̄) . (16)

Corollary 4: Likewise, given M and an upper bound

εmax it is possible to determine limits on the transition

probabilities Ti,j of the Markov model in Figure 3 such that

Pr[Pk ≤ M ] ≤ 1 − εmax. With k1 as defined in Eqn. (9), it

is easy to see that we require

πk1 ≤ εmax . (17)

For the i.i.d network this reduces to λ ≥ 1 − εmax

1
k1 .

Remark 4: Theorem 2 is based on the assumption that

P̄ ≤ P0 ≤ M̄ . This assumption can be relaxed by slightly

modifying the definition of ε. For arbitrary P0 the definition

of ε becomes Pr[Pk ≤ M ] = 1 − ε ∀k ≥ k∗, where k∗ is

defined to be the first time instance such that P̄ ≤ Pk∗ ≤ M̄ .

That is for arbitrary P0 we simply consider the probability

for time after the first time instance the error covariance is

between P̄ and M̄ . If P0 ≥ M̄ this will correspond to the

time instance the first packet is received. If P0 ≤ P̄ it is

not as easy to determine the time, however the upper bound

εmax is still valid for all time.
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V. EXAMPLES AND SIMULATIONS

In this section we will compare our metric to that in [13]

using a scalar example.

Example 2: Consider the scalar system given with A = 2,

C = 1, Q = 1 and R = 1 and an i.i.d. network with packet

acceptance rate λ. According to [13] the expected value of

the error covariance will diverge for any λ < 3
4 . Assume we

are given λ = 0.74, then according to the metric used in

[13] this system cannot be estimated, as the expected value

of the error goes unbounded. Using the analysis presented

in this paper, however, we can predict with what probability

the error will remain below certain bounds. Note that for this

system P̄ = 4.236 and M̄ = 5.

Figure 4 shows the M - ε relationship for this system. The

bound M was chosen to vary from M̄ to 10,000 and the

corresponding ε was determined. A total of 100 simulations

were run for each value of M , and a random initial error

covariance in the range P̄ ≤ P0 ≤ M̄ was chosen for each

simulation. The simulations were run for 10,000 time steps

and the ε calculated from the simulations corresponds to the

average over all simulations of the percent of time the error

covariance was larger than the M bound. The staircase like

plot can be explained by the fact the probability bounds for

ε are given by εk1 and εk2 which exhibit sharp jumps, i.e.
the staircase, as k1 and k2 change integer values.

10
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10
2

10
3

10
4

10
−3

10
−2

10
−1

M

ε

Predicted ε
max

Predicted ε
min

Simulation

M−ε Relationsihp 

Fig. 4. M bound vs. ε for Example 2. The solid (blue) line is the simulated
ε and the dashed (red and green) lines are the predicted εmax and εmin.

VI. CONCLUSIONS AND FUTURE WORK

The contributions of this papers can be divided into

two major parts. Firstly it gives results for the asymptotic

behavior of the error covariance in a discrete estimation

problem over a packet based network. In the asymptotic

sense an upper bound to the error covariance can always

be found as long as the information gain is not exactly

equal to zero. This analysis is independent of the probability

distribution of packet drops.

Secondly, for a given finite positive definite matrix M we

give relations for upper and lower bounds on the probability

1 − ε = Pr[Pk ≤ M ], where Pk is the error covariance at

time k. We observe that Pk � M only if a large enough

burst of packets are dropped before time k. The size of

this burst is only dependent on M and not on the particular

time instant k. This observation is not surprising as in most

network applications, bursts of packet losses are responsible

for failure.

In this paper we have assumed that the observation matrix

is invertible. This assumption provides us with an upper

matrix bound on the error covariance matrix recursion.

Future work will focus on deriving similar results for a

non-invertible observation matrix, but with an assumption

that the pair (A,C) is detectable. The asymptotic analysis

presented in this paper and the expected value based analysis

of previous work, need to be compared for closed loop

estimation and control problems. We are also looking at

distributed and cooperative control problems over packet

based networks.
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