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Motions

I. 1. Hussein

Abstract—1In this paper we study optimality conditions for
the finite time horizon, constrained optimal trajectory tracking
problem on the group of rigid body motions SE(3). We treat
SE(3) as a differentiable manifold and use a geometric approach
to derive the necessary optimality conditions. To do so, we
begin by studying simple optimal control problems on SE(3),
including deriving the equations of motion of a rigid body (i.e.,
Euler’s equations) by formulating the dynamics as a constrained
variational optimal control problem. The main contribution
of the paper is the derivation of the necessary optimality
conditions for constrained optimal trajectory tracking on SE(3)
and SO(3). A simple example on SO(2) is given.

I. INTRODUCTION

Motivated by classical linear feedback control theory,
in this paper we use Lagrange’s method for constrained
problems in the calculus of variations to study a general
optimal trajectory tracking problem on the group of rigid
body motions SE(3). Applications for the present work
include, in particular, spacecraft trajectory (position and ve-
locity) tracking. We approach the problem from a geometric
mechanical viewpoint and rely on methods in differential
and Riemannian geometry since SE(3), as a group, is itself
a Riemannian manifold.

Optimal control problems for systems evolving on Rie-
mannian manifolds have been addressed in the past. In
[1], the authors study a second order calculus of variations
problem on Riemannian manifolds with a specialized re-
sult for compact semi-simple Lie groups. P. Crouch and
collaborators have considered extensions of this problem to
second order systems evolving on Riemannian manifolds,
in particular semi-simple Lie groups, including interpolation
constraints and the sub-Riemannian problem [2], [3]. While
all these results rely on variational (Lagrangian) approaches,
of relevance is the maximum principle approach adopted in
(4], [5].

In this paper we pursue a Lagrange method variational
approach (see, for example, [6]) to studying a finite time
horizon optimal trajectory tracking problem on the group of
rigid body motions SE(3). The cost functional considered
aims at minimizing the deviation of the configuration and
velocity trajectories from a desired value, as well as mini-
mizing the applied control effort. The constraints are simply
the dynamics satisfied by the rigid body, expressed over a Lie
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group and its algebra, as well as any holonomic constraints
and initial and terminal boundary conditions. To deal with
the non-compact nature of SE(3) we introduce the useful
notation of the double bracket [[-, -]]. Moreover, we compute
the curvature tensor, which naturally appears in the necessary
conditions for second order problems, for SE(3). In this paper
we restrict our attention to normal extremals.

In the next section, we state some basic mathematical facts
for systems evolving on SE(3) and its subgroups and later
use these results to study optimal control problems on SE(3)
and its subgroups.

II. MATHEMATICAL BACKGROUND

A. Basic Definitions and Facts

The material discussed in this section can be found, for
example, in Section 2 of [7] as well as [8]. In this section
we state some properties of dynamical systems evolving on
proper subgroups, denoted by G with Lie algebra denoted
by g, of SE(3). We often specialize the result to SE(3). The
equations of motion for a dynamical system with configura-
tion g € G are given by:

g=gV, @1
where V € g is the velocity in the body frame. The system
g = gV is said to be left-invariant since it is invariant under
left multiplication by constant matrices.

For all g € G and all X,Y € g the adjoint map Ad, and
the matrix commutator adx are given by Ad,Y = gYg~!
and adxY = [X, Y] = XY — YX, where [, ] is the matrix
Lie bracket.

On SE(3), a group element g is represented as a pair g =
(R,p) € SO(3) x R3 and velocity by the pair V = (@, V) €
50(3) x R? using homogeneous coordinates. (SO(3) is the
special orthogonal group of rotations and so(3) is its Lie

algebra.) In matrix form, these are given by
R p w Vv

9=19 1 V = 0 0]. 2.2)

The operator * : R® — s0(3) is such that @y = w X y, X
being the vector cross product.

With the kinematics given by equation (2.1), the dynamic
equation of motion is given by

V =1(g9,V)+U. (2.3)

The vector field f(g, V) € se(3) represents the system’s

internal drift and U € se(3) is the control input. The drift

term has the general form:
fT(g?V) ft(gav)

f(g7v) = O O Y

and

(2.4)
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where f, € s0(3) corresponds to rotational drift and f, € R3
corresponds to translational drift. Likewise, we have
U_| T u
0 0|’
for the control input, where ¥ € s0(3) is the input torque
acting on the body and u € R? is the input force assumed
acting at the body’s center of mass. The vector fields f}, f;,
7 and u take up the following forms:

(2.5)

R 0 _fr3 fr2 ftl

fr = er 0 _f'r‘l ) ft = ft2 ;
| —fre  fm 0 ft3
[ 0 —173 T2 Ul

T = T3 0 -7 |, u=| u (2.6)
L —T2 T1 0 us

B. Metric on se(3)

On SE(3), an inner product on the Lie algebra se(3) can
be extended to a Riemannian metric over the manifold using
left (or right) translations as follows. Let G, be a positive-
definite matrix and V1, V3 € se(3). Let the inner product
at the identity e be given by:

<V1, V2>e = V,{GGVQ,

where V,; = v; with v; € R® being the matrix representation
of V;, i =1,2. If V; and V, are arbitrary vector fields at
an arbitrary group element g € SE(3), then the inner product
Vv
a left-invaﬁant metric given by:

<V1,V2> = <g_1V1,g_1V2> =(V1,Va),.
A right—invaria%t metric is defined analogously.

For SE(3), however, there does not exist a bilinear form
on se(3) that is both positive definite and Ad-invariant [9].
In general, one may consider a class of left invariant metrics
which may be specialized to the Killing form, the Klein form,
a linear combination of the Klein and the Killing forms or
the decoupled Park [9] form. For more on this general class
of metrics on SE(3), see [10]. Since positive definiteness
is crucial in an optimal control context (we must have a
positive definite cost function), we elect to work with the
standard inner product on RS, where we discard the Lie
algebra structure of se(3) and set

<V17V2>RG = <w17w2>]R3 + <V17V2>R3
= (Q1,Q2) + (V1,Va)gs ,
where (-, -) without a subscript denotes the Killing form on
50(3)1 <Ql, QQ> = (wl,w1>R3 with © = w.

on the tangent space T;SE(3) can be defined by

III. OPTIMAL CONTROL OF A RIGID BODY ON SE(3)

A. Free Rigid Body Equations of Motion as a Constrained
Variational Problem

Before giving the main result of this paper, we study two
simpler problems to illustrate the approach. In this section
we start by deriving the rigid body equations of motion in the
body-fixed frame using Lagrange’s method for constrained
problems in the calculus of variations. We begin with the
kinematic equations of motion:

§ =gV € T,SE(3). 3.1)

Equation (3.1) can be re-written as an expression over se(3)

as: g~'g — V = 0. The inverse g~ ! is given by:
1 RT —RTp
9 =1 . } € SE(3). (3.2)
Hence, we have: o .
g = ROR Rop € 5e(3), (3.3)
such that the following kinematic equations hold:
R=RQ, p=Rv. (3.4)

Finally, for a perturbed element g (¢, €) = (Rc(t,€),pc(t,€))
that satisfies ¢.(¢,0) = g(t), we have an analogous expres-
sion to (3.1) as follows (see [11], page 41):

%9c|  _ yw = [ EWy Rw, } € T,SE(3) (3.5
Oe |, 0 0
where -
w=| ) VBQ € 5e(3) (3.6)
and W € s0(3) and w; € R3 such that
IR, Ipe
= RW;, — = Rwo. 3.7

Oe | _ Oe

e=0 e=0
Here W = (W1, ws) € se(3) is the variation vector field
expressed in the body fixed frame.

Lemma IIL1. Let g. € SE(3) and W € s¢(3) be defined
as above, then we have
dg."

Oe

For SE(3), it is important to note that, unlike SO(3),
([A,B],C) # (A,[B,C]), A,B,C € s¢(3). Instead we
have the following lemma.

=-Wg L
e=0

Lemma IIL2. Let A = (Q,,v,),B = (2,v;),C =
(%, ve) € 5¢(3). Then we have

<[A7 B]a C]>]R6 = <Aa [Bﬂ C] + HBv CH>R6 )
where [[B, C]] is given by

HB7CH _ |: Vi X V¢ chb

0 0 ] € se(3).

Proof
<[A’ B]7 CD]RG = <[ﬂa7 Qb]7 Qc> + <Qavb - vaaa VC>R3
- <ﬂaa [va Qc]> + <Qaavmc> + <Va> ﬂbvc>RS
= (A, [B,C] +[[B, Cl])gs ,

where we have used the facts that: (Q, vy, Ve)ps = Ve (wg X
V) = W - (Vi X Vo) = (Wa, Vb X Ve)ps = Qa,vb/>—<\vc>
and — (v, Ve)ps = — Ve (Wy X Vy) = —Vo- (Ve Xwp) =
Vo - (Wp X Ve) = (Va, QpVe)ps. [ ]

For SO(3), Lemma (II.2) reduces to the standard:
<[Aa B]v C> = <A7 [B’ C]>

To derive a rigid body’s equations of motion, we minimize
the kinetic energy:

T4 _
J :/0 5 <V,J(V)>R6 at (3.8)
subject to the constraint given by equation (3.1) and the
boundary conditions:
9(0) = go = (Ro,po), V(0) = Vo = (wo, Vo),
9(T) = gr = (Rr,pr), V(T) = Vr = (wr,vr), (3.9)
where J : s¢(3) — se(3) is the symmetric, positive definite,
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and, hence, invertible operator defined by:

Jov) = { J(gz) ”BV LYV = (w,v) €5¢(3)  (3.10)
where m is the mass of the body and J : s0(3) — s0(3)

is the symmetricl, positive definite, and, hence, invertible
inertia operator (see [12], page 349.) By our definition of
inner product on R® in Section (II-B), the integrand in the
cost functional (3.8) corresponds to the total kinetic energy:
% <97J(Q)> + % <V’mV>R3'

First, we form the modified cost functional:

T
1/ = L
7= /0 5 <V,J(V)>R6 + (A g7 — V), dt
where A = (Ay, A2) € se(3) is the Lagrange multiplier with
A1 = A1 €50(3) and Ay, Ay € R3. Then we have:

0T ~ ["/DV.| -
A IR

Oe

e=0
DW

Integrating (A, [V, W] + Dd—‘iv> by parts and using Lemma

(II1.2), we find that

0T B /T < DV.
Oe |._o 0 Oe |._
- <w, IV, A] + [V, A]] + ]?11: > dt.
Hence, the necessary optimality conditions are given by
= [A,V]—[[V,A]], where A =J (V).
Expan((jilng this expression, we get:
= [M,Q], M=A; =J(Q)

,j(V)—A>

dt

Dl
— = lIxw, l=Xa=mv

(3.11)
which are thedequations of motion for a rigid body in a body
fixed frame, where 1 is the linear momentum and M is the
angular momentum, both expressed in a body fixed frame.
Recall the relation between the time derivative of an
arbitrary variable s(t) in a body fixed frame, <2, with the

t 9
space fixed frame time derivative 45: 48 — % + w X s.

Equation (3.11) then implies that tﬁié ra%é of change of the
linear momentum in the space fixed frame is zero: % =
%‘—i—wxl:lxw—i—w x 1 = 0 as one expects since no
external forces are applied at the center of mass of the rigid
body. Similarly, no external torques are applied on the body
and, hence, we have 42" — d/—’f‘ +w X m = 0, where again

Tat
M =m.
B. Second Order Optimal Control Problem on SE(3)

We now study the minimum control problem in body-fixed
variables again using Lagrange’s method for constrained
problems in the calculus of variations. We wish to minimize

T
J */ L = (U, U)ge dt (3.12)
subject to the second or(?er dynamics:
g = gV (3.13)
IV) _ 3 3
= = [V V] [v.iwv)|+u

1J is symmetric with respect to the inner product (-
Killing form.

,-) defined by the

and the boundary conditions:

9(0) = 9o, V(O) = VO» g(T) =d4r, V(T) = VT7 (314)
where U = (7, u) € se(3) is the control vector field in body
fixed coordinates.

We ﬁrst form the modified cost functional:

J = / (U, U + (Ay,g7"g — V>+<A2’DJ(V)

Cdt
- [j (V) ,V} + [[V,J (V)]] - U>dt,

where Ay = (All,Alg) and Ay = (Agl,Agg), with
A11,A2; € 50(3) and Aj2, Ao2 € R3, are Lagrange mul-
tipliers. After a ler;gthy computation, we find that

oJ
<86 . U—A2>

+ <W,R (T (A2). V) V = [V, ] - [V A]

Oe
DAY (DY |
- [ine T ovl] - 22 - A e

where R is the curvature tensor associated with SE(3). The
curvature tensor R arises due to the identity (see [13], page
52):

T (42 V) - (42,3 (V)]

00y, 00

3tY — aa—Y R(W,Y)V,
where W is the Variation vector field associated with a curve
c(t) on a manifold M, with V = dc(t)/dt being the velocity
vector field and Y € T¢;) M being any vector field along
the curve c(t) € M. Setting 8j/86|6:0 = 0, we obtain the
following theorem.

Theorem III.1. The necessary optimality conditions for the
problem of minimizing (3.12) subject to the dynamics (3.13)
and the boundary conditions (3.14) are given by

Ay =U
~ D£1 R <J (As), V) V — [V, A = [[V,A4]]
DJétAg) 3 (A2 V) - [A2 T (V)] - [A2 3 (V)]
— A,

In obtaining the above result we used the fact that the
vector fields V and W are left-invariant vector fields. The

curvature tensor is evaluated at a point g.(t) # Id, that
99e 0g.
Oe 7 Ot

get: Rg (gW,gV) V. Since gW and gV are left-invariant
vector fields at the group element g(t), by the identification
T,SE(3)~ se(3), we have Ry, (gW,gV)V =R (W,V)V,
which is the curvature tensor evaluated at the identity ele-
ment. The result directly follows using the properties of the
curvature tensor and Lemma (II1.2).

is we get Rg‘ ( )V. Evaluating this at € = 0 we

Although the curvature tensor R for a compact semi-
simple Lie group is well known [13], the curvature tensor
R for SE(3) is not. For a compact semi-simple Lie group
G with Lie algebra g, the curvature tensor, with respect to a
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bi-invariant metric, ils given by:
R(X,Y)Z:Z[[X,Y],Z], VX, Y,Zcg (3.15)
We now compute the curvature tensor on SE(3) with respect

to the metric (-,-)ps. We first state the following theorem,
whose proof can be found in [14], pages 273-4.

Theorem IIL2. For a Lie group G with Lie algebra g
and an inner product I on g whose associated left-invariant
Riemannian metric is Gy on T,G, the Levi-Civita connec-
tion induced by Gy is left-invariant and the corresponding
bilinear mcip, denoted by V : g X g — g, is given by

VXY = [X, Y] - %Hﬁ (ad;(ﬂb (Y) + ad;ﬂb(X)) .(3.16)

Theorem (IIL.2) is stated in terms of notation used by the
authors in [14]. The inner product I corresponds to (-,-),
and the metric Gy corresponds to (-, -) ;» both defined earlier
in Section (II-B). The map adk : g* — g* is the dual to
the adjoint map adx : g — g (see [12], page 133, and
[14], pages 264-5.) If we let X = (%X,,%X,) € s¢(3) and
Y = (Ju,¥Yv) € 5¢(3), then we have

)A(w 03><3 0]
)A(u )A(w 03><3 _)A(o.) :| (317)
Note that in this matrix form, these two operators act on
elements of se(3) which are viewed as elements of RS in the
form (x,,x,) € R® as opposed to (X,,%,) € s¢(3). Also
note that the matrix representation of ady is the transpose
of that of adx. Finally, in the theorem, b and £ denote the
flat and sharp operators, respectively (see [12], [14].) In this
paper, we use the standard inner product on R® and, hance,
P(X) =T¢X) = X. A s}mple computation gives:
— | 2 [iwayw} XwYu
VxY =] 2 0 0

Using the identity (see [14], page 132)

R(X,Y)Z=-VxVyZ+VyVxZ+VixvZ, (3.18)
and after a straightforwar(% computation, we find that:

R(X,Y)Z=|1 [[Xon] 2] 8 (3.19)

This result is not surprising in light of the fact that SE(3)
is homeomorphic to the product space SO(3)xRR3, with the
curvature of R? being identically zero.

—X, —X

adx = , ady =

IV. TRAJECTORY TRACKING ON SE(3)

In this section we again use Lagrange’s method for con-
strained problems in the calculus of variations to study a
generic constrained optimal trajectory tracking problem on
SE(3). Moreover, we will use (-, -) in this section to denote
(-, -)gs» our choice of inner product on SE(3). We first make
a few definitions.

Let g(t) = (R(t),p(t)) € SE(3) denote the trajectory and
ga(t) = (Ra(t), pa(t)) € SE(3) be the desired configuration
to be tracked on SE(3).TDeﬁne jghe natural error [7] as

e=9,'9= [ Fafe Ralp =pa) | ¢ gp()
Then the error e = Id whenever g(t) = gq(t), where Id is
the identity element on SE(3).

While g = gV defines a left invariant control system, we
will let the desired trajectory satisfy a right control system
differential equation: g5 = \_/'dgd. The reason we do this is

that the inverse of g4 appears in our definition for the error
function. To make the error differential equation satisfy a
left control system, it is then essential, as will become more
obvious below, to have g'gl be a left invariant vector field.
This is done by having g, satisfy a right control system
equation. Note that if g4 = Vdgd and since gdgd_1 = Id, then
g'(ig(;1 + gdggl = 0 implies that g;l = —g;lvd. Hence,
g';l is a left-invariant vector field. A simple calculation gives

¢ =e(V —Ad,-1Vy). Note that

Oee 0 _ _
9| _ = el "9 i LgW = eW.
We will use weighting matrices to penalize deviations of
both position and velocity from some desired values. This
allows us to penalize certain components of position and
velocity errors. We do this as follows. As in linear feedback
control, we set up our optimal control cost functional to
minimize the deviation of the actual velocity from a nom-
inal desired value. Let V¢ = V; — V € se(3) be the
velocity error. Let the measure of velocity error be given by
<V6, I~(V(V6)>, where K, : s¢(3) — se(3) be a symmetric,
positive semi-definite operator defined E)y
T

Kv (V) = Kv(gn) KVO(V)
for an arbitrary V. = (2,v) € se(3), where K, (Q2) =
K{Q + QK is the rotational gain operator for the error in
angular velocity, K, is a diagonal 3 X 3 positive semi-definite
matrix, K¢ (v) = K!v is the translational gain operator
for the error in translational velocity, and K¢ is a diagonal
3 x 3 positive definite matrix. Similar definitions apply to the
control cost: <U,KU(U)>, where Ky : se(3) — se(3) is a
symmetric, positive definite operator (positive definiteness is

required for the control weighting operator.)

4.1

For position error we use a more general definition of
the logarithmic map than that used in [7] to define the

configuration error metric by <log (e), K, (log (e))> where,
for an arbitrary g € SE(3), X = log(g) € g is the exponential
coordinates of the group element g in an open neighborhood
of the origin of SE(3). The logarithmic map is regarded
as a local chart of the manifold G. See [7] and [8] for
analytic expressions for the logarithmic map log. In the above
expression, K, : s¢(3) — se(3) is a symmetric, positive
semi-definite operator defined by .
e A

for an arbitrary x = (9,§) € se(3), where K (¢) =
K¢ + ¢ K is the rotational gain operator for the error in
attitude, K is a diagonal 3 x 3 positive semi-definite matrix,
K/ (&) = K& is the translational gain operator for the error
in translational position, and K; is a diagonal 3 x 3 positive
semi-definite matrix. In this case, x = log (g;'g) € s¢(3)
is viewed as the exponential coordinates of the error e.

The above definitions allow us to penalize components
of translational position, attitude, translational velocity and
angular velocity errors independently. For example, in dual
spacecraft interferometric imaging, we may wish to minimize
the magnitude of the relative velocity in the observation z-
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y plane without minimizing the out-of-plane z component
[15]. In this case, K! = diag(a, b, 0) for some a,b > 0.

Problem IV.1. Minimize

1 % e T e
7 = 3 (URa)+ (ViR (v)
+(log (¢) K, (log (¢)) ) dt 4.2)
subject to

Dynamics

9 = gV (4.3)
DIV) _ [Fov).v]-[v.iwv|+u
Holonomic %onstraints

(V,X;)=0,i=1,...,n, n <6,
Boundary Conditions
9(0) = go, V(0) = Vo, g(T) =gr, V(T)=Vr, 45)
where X; € se(3), i = 1,...,n, are independent vector
fields associated with the imposed constraints.

4.4

Note that the constraints (4.4) can only be as many as
five. Since SE(3) is a six dimensional manifold, having 6
constraints (n = 6) completely specifies the motion. In the
supplement [16], we show how the constraint vector fields X;
are derived from holonomic constraints. By the independence
of X, we can combine the n constraints by introducing the
lagrange multipliers ; and the vector field (expressed as an
element in the Lie algebra, as opposed to elements in its
dual space se*(3)) Z = Y.~ (;X;. Hence, the set of n
conditions (4.4) can alternatively be expressed as

(V,Z)=0. (4.6)

In the supplement [16], we use Lagrange’s method for con-
strained variational optimal control to obtain the following
theorem.

Theorem IV.1 (Necessary Conditions for Constrained Opti-
mal Trajectory Tracking on SE(3)). The necessary conditions
satisfied by an optimal trajectory (g(t), V(t),U(t)) of the
Problem (1V.1) are given by

= gV
DJd(tV) _ ,{V,j(v)}f{[v,j(v)]}Jrf{;l(Az)
DdAtl = R(T(A2),V) V= [V, A - [V, A
) V2V~ [2.V] - [2.V]+ B(e)
W = 3 (A2, V) = [A2, T (V)] - [[A2,3 (V)]
A +Z-K, (V)
(V.Z) = 0, U=K;' (Ay).

Note that Ku must be positive deﬁpite. Moreover, if we
set K, to be the identity operator, set K,, and K to be zero
and Z = 0 (no constraints) we get back Theorem (III.1).

V. TRAJECTORY TRACKING ON SO(3)

Now consider the problem (IV.l1) for the SO(3) case.
In this section (-,-) denotes the Killing form on SO(3) as
discussed in Section (II-B). The problem is the same as

that defined in Problem IV.1 except that now we drop all
translational components of the configuration, velocity and
applied forces in R3.

On SOQ3), R® = RdTR is the attitude error and Q¢ =
Q4 — Q is the velocity error. For SO(3), we simply project
the necessary conditions for SE(3) onto its SO(3) subgroup.

Theorem V.1 (Necessary Conditions for Constrained Opti-
mal Trajectory Tracking on SE(3)). The necessary conditions
satisfied by an optimal trajectory (R(t),Q(t), T(t)) of the
Problem (IV.1) restricted to SO(3) are given by

R = RQ
DI (2) [3(92). 9]+ (KD) ™ (An)
dt
% = R(J(As),Q)Q - [, Ay]
~VzQ - [Z,9] + K, (1ogso<3> (Re))
% = J([A21,9)) — [As1,T ()]
—A +Z - K (Q°)
(Q.2) = 0, 7=(Ky) " (An).

The variables A11, Ag; € s0(3) are defined at the end
of Section (III-B). Also, recall that the curvature on SO(3)
is given by R(X,Y)Z = 1[[X,Y],Z] for all X,Y,Z €
50(3).

A. Example on SO(2)

We now give a simple example on SO(2). For SO(2),
[,] = 0 and R = 0. The attitude of the planar body is
specified by a single variable 6. We do not impose constraints
on the body (doing so completely determines the motion)
and attempt to minimize the deviation of € from a given
desired value 64. In the cases of SE(3) or SO(3), we have
more degrees of freedom and may, for example, constrain
yaw and roll angles while minimizing pitch error and letting
the position of the center of mass be free in space.

If we let 6 be the orientation of the planar body, then

A 0 —6
0 =log(R) = [ 0 0
This corresponds to
A cosf) —sind
F=exp (0) | sinf cosf

A similar expression is obtained for the desired rotation
matrix R4. Note that

e  oTp_ | cos(@—6q) —sin(0—64)
R =RqR= [ sin(@ —04)  cos(f — 6y)
In the two dimensional case, we have
. 0 —I3)o1 o 0 —I3w
J(A21)_|:13/\21 0 :|7J(Q)_|:Igw 0 :|7

where Ag1 = Aoy, @ = @ and I3 is the moment of inertia
about the out-of-plane axis of the body. With the above
identifications, the necessary conditions of Theorem (V.1)
are given by

. ) 1
0 = W, W= mAQl
An = k(0 —04), A1 = T (w—wa) — TgAlla
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where k; and k] are the weighting parameters such that
K; = %’)ngg and K = %ngg. Note here that the closed-
loop system is unstable with eigenvalues given by

—k7 — \/—4I§k;k5 + (k)?

+ )
NeTHe
\/k;; -/ anhphs + (k)
+ .

\/2kI I

In this paper, the feedback control lgéws are not constrained
to be stabilizing. Hence, the closed-loop system is not
guaranteed to be stable. Since we consider finite horizon op-
timal trajectory tracking, as opposed to infinite time horizon
problems, an unstable closed-loop system is allowed because
we only consider a transfer problem in phase space. In this
work we do not consider any stability issues.

The above equations were solved while satisfying the
boundary conditions #(0) = 2 radians, w(0) = 0 radi-
ans/second. No terminal conditions are imposed on 6 and
w and, hence, we have A1 (T) = A1 (T) = 0. We set
I3 =k}, = k;, = 1. In the first simulation, we set 7' = 20
seconds. We desire to track a unit step signal for 64(¢) and
track the angular velocity wgq(t) = 0 1/s. The result is shown
in the top two plots in Figure (1). In the second simulation,
we desire to track a sinusoidal input, namely, 6,;(t) = sin 0.1¢
and set wg(t) = 0 and T' = 207 seconds. The result is shown
in the bottom two plots of Figure (1). Both simulations are
conducted for various values of k. In the figures, we observe
that as the weighting on the attitude error is increased, the
tracking error is decreased. However, as k; is decreased
the response is more sluggish while for smaller values the
response converges to the desired value faster but with more
under- and overshoot in the transients.

Atitude tracking Ertor radians

Atitude tracking Error, radians

Fig. 1. Attitude and angular velocity error with k;, = 1 (solid), k;, = 10
(dash-dotted) and kj, = 100 (dashed) with fixed k;; = 1 for unit step desired
attitude (top figures) and a sinusoidal desired attitude (bottom figures.)
Signals to be tracked are given by solid red.

VI. CONCLUSION

In this paper we used Lagrange’s method in the calculus
of variations to study the finite time horizon constrained
optimal trajectory tracking problem on the group of rigid
body motions SE(3) and its subgroup SO(3). We focused on
some of the important properties and background information
related to geometric optimal control theory and the group
of rigid body motions and its subgroups. We first study a
simple optimal control problem on SE(3) and derive Euler’s
equations by formulating it as a constrained variational
optimal control problem. This sets the stage for the main
contribution of the paper, which is the derivation of the
necessarily optimality conditions for constrained optimal
trajectory tracking on SE(3) and SO(3). We concluded the
paper with a simple example on SO(2). Future work will
study second order optimality conditions and the existence
of abnormal extremals.
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