
.

 Abstract—Overwhelming computational requirements of
classical dynamic programming algorithms render them
inapplicable to most practical stochastic problems. To overcome
this problem a neural network based Dynamic Programming
(DP) approach is described in this study. The cost function
which is critical in a dynamic programming formulation is
approximated by a neural network according to some designed
weight-update rule based on Temporal Difference (TD) learning.
A Lyapunov based theory is developed to guarantee an upper
error bound between the output of the cost neural network and
the true cost. We illustrate this approach through a retailer
inventory problem.

I. INTRODUCTION

any important natural and man-made systems are
stochastic processes. Take the retailer inventory

problem for example. The customers’ demand is stochastic in
nature and unknown in advance which makes the whole
process stochastic. In optimal stochastic process control [1],
[2], the objective is to minimize some defined cost function.
To be more specific, it is to make a sequence of decisions that
make the system perform optimally with respect to some
predetermined performance criterion (cost function).
Markov Decision Process (MDP) [3], [4] is a basic modeling
framework for stochastic process control. An important
property to be used in this paper is that an aperiodic Markov
chain can reach to a stationary status at the rate of geometric
progression and each state has a steady possibility of
occurrence.
Although the concept of Dynamic programming [5], [6] is
good for optimization of an MDP, the resulting
computational load is sometimes overwhelming. A sensible
way of dealing with this difficulty is to generate a compact
parametric representation that can approximate the cost
function. Bellman and Dregfus [7] used polynomials as
compact representations for solving dynamic programming
based problems. Similar ideas with using neural networks can
be found in Werbos [8] and Barto [9].

Central to the DP algorithms is the idea of how to
approximate the cost function. Temporal Difference (TD)

Zhongwu, Huang, did his PhD from the department of mechanical and
aerospace engineering, University of Missouri Rolla, Rolla, Mo, 65401,
USA (email: huang@umr.edu)

XiaoHua Wang, is a PhD student with department of mechanical and
aerospace engineering, University of Missouri Rolla, Rolla, Mo, 65401,
USA (email: wxw98@umr.edu)

S.N. Balakrishnan, Professor, is with department of mechanical and
aerospace engineering, University of Missouri Rolla, Mo, 65401, USA
(email, bala@umr.edu, Tel: 573-341-4675)

learning, originally proposed by Sutton [10], is a method for
approximating long-term future cost as a function of current
states. Whereas conventional prediction-based learning
methods are driven by the error between predicted and actual
outcomes, TD methods are driven by the error or difference
between temporally successive predictions; with these
techniques, learning occurs whenever there is a change in
prediction over time. Rigorous analysis of TD methods is
however very difficult. Prior work [11], [12] has established
convergence of TD learning with a probability of 1 when the
cost function is represented as a table where each state has its
own entry. Dayn [13] has done some preliminary studies on
convergence using linear function approximation. Gordon
[14] has proved that TD learning converges for
representations called “averagers” on which the TD method is
a max-norm contraction mapping. Bertsekas and Tsitsiklis
[15], [16] have provided a comprehensive discussion about
applying neural networks in dynamic programming based
problems with temporal difference learning. They call it
Neuro-Dynamic Programming (NDP). Combined with the
properties of the Markov chain, they have derived error
bounds for the results. Van Roy has continued further with
studies on the application of NDP [17], [18]. However their
work has been based on a single-layer linear neural network.
Carefully chosen basis functions are critical for single-layer
neural networks in approximating complicated nonlinear
functions. In this paper, we use multilayer neural networks
and our approach to stochastic problems originates from our
experience with a successful extra control design for robust
control in deterministic problems [19]. Inventory and
transportation policy determination are common problems in
businesses. Some studies have been done in the past [20-22].
We use a retailer inventory problem to illustrate our ideas.

II. NEURAL NETWORK BASED DYNAMIC PROGRAMMING

A. Optimal Control of Stochastic Processes

Let us consider a discrete-time system that, at time it , takes on

a state ix and evolves according to

1 (, ,)t i i ix f x u w (1)

where iu is a control and iw is a disturbance. The state,

control and disturbance spaces are denoted by X , U andW .
For simplicity, we assume these spaces are all
finite-dimensional. Each disturbance iw W is
independently sampled from some fixed distribution. In the

Zhongwu Huang, Xiaohua Wang and S. N. Balakrishnan

Stochastic Optimal Control with Neural Networks and Application
to a Retailer Inventory Problem

M

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA11.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 4518

retailer inventory problem that is the focus of this paper, the
disturbance is the customer demand. Control iu depends on

the state ix and the rule by which we select the controls. This
rule is called a policy. A stationary policy is a mapping :

UX that generates state-contingent control. In this paper,
a policy is stationary if not specified.
Along the transition from ix to jx , there is an associated cost

noted as (, ,)g x u xi i j or (, (),)g x x xi i j with some

probability (),p ux x ii j .

So the corresponding Bellman’s optimality equation will be:
* *() min ()[(, ,) ()],

1

N
J x p u g x u x J xi i j i i i j j

u ji
 (2)

where]1,0[is a discount factor;)(, tjt up , an easier

notation for)(, txx up
jt

, is the transition probability from tx

to jx under control tu . It could be zero for some jx s;

Nxx ,...,1 belong to the set X .
From Bellman’s optimality equation, we can get the
following two equations on the minimizing path:

() 0J xi
u

 (3)

() ()[(, ,) ()],
1

N
J x p u g x u x J xi i j i i i j j

j
 (4)

In this study, two neural networks will be used to
iteratively approximate these two conditions and get the
optimal policy and optimal cost function. One neural network
is called the cost neural network with the system states as
inputs and cost J as the output. The other is the control
neural network with states as inputs with control u being the
network outputs. When the outputs of these two neural
networks are mutually consistent in their convergence, the
optimality condition is satisfied and outputs of these two
neural networks are optimal. This is what we call neural
network based approximate dynamic programming method.
Here we use a policy iteration process as the approximation
technique.

B. Policy Iteration with Neural Networks

Policy iteration algorithm starts with a proper policy 0 .
Then we perform a policy evaluation step, computing)(0

ixJ

as the solution to the equations

() (())[(, (),) ()], 1, 0 01

N
J x p x g x x x J x i Ni j ii i i j jj

 (5)

This step is to generate the cost function from the policy 0 .
Then we perform a policy improvement step and compute an
improved policy 1 based on the cost function just obtained
as

0() a rg m in ()[(, ,) ()]1 ,
1

N
x p u g x u x J xi i j i j j

u j
 (6)

This process is repeated until)()(1
ii xJxJ kk for all i.

What we did here is to use the control and the cost neural
network outputs to provide the policy and cost function J

in the above process.

C. Cost Function Approximation
Normally the state space of a large dynamic system is very
large and to implement (5) in the above policy iteration will
be very difficult. We need another way to synthesize the cost
neural network. To help achieve this, we generate some
simulations of the underlying stochastic process and use that
information to tune the weights of cost neural network
directly such that the output of cost neural network is close to
the true cost. The idea here is similar to our earlier work in the
extra control design for the deterministic problems with
uncertainties [19]. In other words, the weight-update rule of
cost neural network is designed directly. The weight-update
rule for a two layer cost neural network is chosen as

(1) () ()[() ()]1 1 1 1 1 11
T TW t W t x W t x B dt t t

(1) () (() ())2 2 2 2 1 1
TW t W t W t x dt t (7)

where B1 is a coefficient matrix, 1 and 2 are the learning
rates, and dt is called the temporal difference and

(,) () ()1 1d g x x J x J xt t t t t t t . When the Bellman equation is

satisfied, [] 0E dt . 1W and 2W are neural network weight
matrices for the first layer and second layer respectively.
And 1 , 2 are respectively neural network activation
function for first layer and second layer.
When the iteration is executed in a simulation, normally the
crux of the problem is that the cost NN can’t be well
represented over a large state space. As a result, there can be
big errors for some states when we use the cost NN to
calculate the improved controls later. However, if the policy
is proper, the state of systems will fall into a small set of
frequently visited states in a few steps although with a small
probability it may go outside again; a properly designed
policy will bring it back quickly. The size of this set is usually
manageably small and the objective should be to make the
cost NN more accurate in that region. Also, those states are
the ones will appear most time in the simulation or in a real
life application. Hence, the costs and controls with respect to
those states are important and should be carefully treated.
From this point of view, we need to use an on-line sampling
scheme to acquire these frequently visited states.
Next, we will show that with the weight-update rule in (7), the
difference between the output of cost neural network and the
true cost is bounded. In this case, it will be more reasonable if
the expectation of weight-update rule is considered since the
underlying process is stochastic. As mentioned in the
introduction, an aperiodic Markov chain can reach a

4519

stationary status very fast. Expectation of the weight-update
rule is presented in Eq (8) with respect to the steady-state
distribution . The detailed derivation is omitted for brevity.

1 1 1 1 1 1 1 1 1

1 1 2 2 1

(1) () ()

 () (0) ()

T T T

T T

W t W t D W t DgB

D P I W t B

2 2 2 2

2 2 2 2

(1) W () (0)

 (0) () (0) ()

T

T

W t t Dg

D P I W t

 (8)
where

((1), (2),..., ())D diag N ,

2 2 2(0) (1) () T
N with

2 2 1 1() (() ())T
ii W t x

1 1

1

1

()

()

T

T
N

x

x

1
1

1

 g(1,j)
g(1)

g=
g(N)

 g(N,j)

N

j
j

N

Nj
j

P

P

 The proof is Lyapunov function based. Let the ideal

weights for the true cost J corresponding to the policy

be *
1W and *

2W , that is

)())(()(1
*

12
*

2 ii
TT

i xxWWxJ (9)

where)(ix is the neural network functional approximation
error. By choosing proper number of neurons for each layer,
this approximation error can be very small and bounded. Here
we assume 1/ 2

ND .

A Lyapunov function candidate is chosen as the following

1 1 2 2
1 2

1 1(() ()) (() ())T T
iL tr W i W i tr W i W i (10)

where * *
1 1 1 2 2 2() (), () ()W i W W i W i W W i and 1 2, are

constants. We can show that
1

2 2 2 2 1 1 1 1
2 1

1 1[((1) (1) (() ())] [((1) (1) (() ())]

i i

T T T T

L L

tr W i W i tr W i W i tr W i W i tr W i W i

(11)
1

2 221/ 2 2 1/ 2 1/ 2
2 2 2 1 1

1/ 2 1/ 2 * 2
2 2 2 2

1/ 2 1/ 2 1/ 2 1/ 2 * 2
2 2 2 2 2 2 2

1/ 2 1/ 2 1
1 1 1 1

(0) ()) (0) ()

1(1)[(0) () (() (0))]
1

[(1) (0) (0) () (0) (() (0))]

[()

i i

F

F

L L

D W t D D W t

D W t D g P I W

D D W t D D g P I W

D D W t D / 2 1/ 2 * 2
1 1 1 1

21/ 2 1/ 2 1/ 2 * 2
1 1 1 2 2 1 1

21/ 2 1/ 2 1/ 2 * 2
1 1 1 2 2 2 2 1

]

(1 2)[(1) (0) ()]

(1 2)[(1) (0) () (() (0))]

T

F

F

D W dB

D B D W t D W

D B D W t D g P I W B

(12)
where:

2 2 22 1/ 2 1/ 2 2
2 2 1 1 11 2 (1) (0) 3(1 2)(1)D D B

21/ 2
1 11 2 D

2 2 221/ 2 1/ 2 1/ 2 *
2 2 1 1 1 2 2

1[2 (0) 2(1 2)] (() (0))
1

D D B D g P I W

21/ 2 1/ 2 * 1/ 2 *
1 1 1 1 1 2 2

2 21/ 2 1/ 2 *
1 1 1 1

 2[1 2] (() (0))

 2[1 2]

F

F

D B D W D g P I W

D D W

 (13)

If 0 , 0 , then 1t tL L , when 1/ 2
2 2(0) ()D W t

or 1/ 2
1 1 ()

F
D W t .

Whereas 1/ 2 1/ 2 1/ 2 *
2 2 1 1 20 ()i NF

D J J D W i D W t W ,

So 1/ 2
1 1 ()

F
D W t and 1/ 2

2 2(0) ()D W t are both bounded. And

we know that if 1/2
iD J J is bounded, the state distribution

weighted difference between the output of the cost neural
network and the true cost is therefore bounded.
After we obtain the cost neural network, the improved control
will be calculated as

0
1() arg min [(, ,) ((, ,))]i i iu w

x E g x u w J f x u w (14)

and used to train the control neural network.

III. RETAILER INVENTORY APPLICATIONS

A. Retailer Inventory System Model
We use the retailer inventory system form Nahmias and

Smith [20]. This problem deals with ordering and positioning
retailer inventories in warehouses and stores in order to meet
customer demands while minimizing a specified cost.

Warehouse

Store Customer

Manufacturer

Transportation

Demand

Store Customer

Demand

Store Customer
Demand

...........

Fig. 1. Model of the retailer inventory system
 The working process can be described as follows: First,

demands occur at each store from customer requests. If there
is enough goods available at that store, these demands can be
satisfied. In case of shortages, if the customers are willing to
wait, special deliveries are sent directly from a warehouse. If
the inventory at the warehouse is still not enough, a shortage
cost arises. At the end of the day, stores will place orders to
the warehouse when low on inventory. Since transportation is
involved, there is usually a delivery delay from the warehouse
to the stores. Coupled with the uncertainty of future demands,
it creates a need for inventory at the store level. When the
warehouse receives orders from the stores, it will fulfill them
as much as possible given the current levels of inventory. At
the same time, a warehouses needs to place orders to the
manufacturers if its own inventory is low. Due to reasons
similar to those for stores, this shows the need for an
inventory of goods at the warehouse. This retailer inventory
management is a stochastic process due to varying customer
demands and uncertainty of future demands.

4520

Associated with this model, there are three costs: storage
costs at stores and the warehouse, transportation cost, and
shortage cost. Cost function is the sum of these costs.
Objective of the problem is to minimize the total cost by
finding the optimal orders for stores and warehouse. For
simplicity, transportation cost won’t be considered here.

The parameters of the model are list in Table 1.
Table I

Parameters of Retailer Inventory Model
Number of warehouse 1
Number of store 10
Delay to stores and warehouse 2
Production capacity 100
Warehouse capacity 1000
Store capacity 100
Warehouse and store storage cost 3
Shortage cost 60
Probability of customer waiting 0.8
Cost of special delivery 0
Mean demand 5
Demand STDEV 14

B. System Model
In this study, control (order) will come in first followed

by the customers’ demands. Hence, we need to define two
sets of states. First is the pre-order state denoted by x . The
second is the post-order state denoted by y . Each post-order
state is given by (,)2y f x ut t t for some function 2f . Each
pre-order state is given by (,)1 1x f y wt t t for some
function 1f .
The elements of state space x are defined as follows:

,0 ,1 ,2 ,1,0 ,1,1 ,1,2 ,10,2 33 1[, , , , , ,...,]w w w s s s sx x x x x x x x (15)

where :

,0wx : current inventory at the warehouse

,1wx : goods currently being transported that will arrive at the

warehouse in 1 day.

,2wx : goods currently being transported that will arrive at the

warehouse in 2 days.

, ,0s ix : current inventory at the ith store.

, ,1s ix : goods currently being transported that will arrive at

the ith store in 1 day.

, ,2s ix : goods currently being transported that will arrive at

the ith store in 2 days.
Components of y are defined similarly except the values are
those after orders are placed.
Control u is defined as

0 1 10 11 1[, ,...,]u u u u (16)

where 0u denotes the order from warehouse and , 1 10u i toi

denotes the order from ith store.

Given the current pre-order state as defined in (15), the
control u must obey the following constraints:
1. Each element of the control should be non-negative.

0, 0,1, ,10u ii (17)
2. The order from warehouse should be less the manufacturer
production capacity.

0u Cp (18)

3. The total orders from stores should be less than the current
inventory at the warehouse.

10
,0

1
x uw i

i
 (19)

4. The total quantity of goods at and on-route to any particular
store should be less than the store capacity.

2

 1, 2, 10, ,
0

u C x is i ki s k
 (20)

5.The total quantity of goods at and on-route to the warehouse
minus the orders from the stores should be larger than the
warehouse capacity.

10 2
0 ,

1 0
u C u xw l w k

l k
 (21)

where 100Cp is the manufacturer production capacity,

100Cs is the store capacity, and 1000Cw is the warehouse
capacity.
The demand w is a 10 1 vector defined as

1 2 10 10 1[, ,...,]w w w w (22)
where each element is independently sampled from a normal
distribution (,)N with 5 and 14 . Of course, it will
be rounded and set to the nearest non-negative integer. Also
we assume possibility of the willingness of customers to wait
for special delivery is 0.8.
Now let us begin with a pre-order
state [, , , , , ,...,],0 ,1 ,2 ,1,0 ,1,1 ,1,2 ,10,2x x x x x x x xt w w w s s s s . We
choose a designed control [, ,...,]0 1 10u u u ut . The elements of

post-order ty is calculated as
10

,0 ,0
1

y x uw w i
l

; ,2 ,2 0y x uw w

,1 ,1y xw w ; , ,2 , ,2y x us i s i i (23)

, ,0 , ,0y xs i s i ; , ,1 , ,1y xs i s i

Now let us assume that the demand is 1 2 10[, ,...,]w w w w .
First, customer demands are fulfilled by inventories in the
stores according to

, ,0 , ,0s i s i iy y w
max(0,), i=1,2, 10, ,0 , ,0y ys i s i (24)

If some , ,0ys i s are less that zero, a special delivery (SD) will
be needed for the corresponding stores. Special deliveries are
filled by the warehouse according to

10
0.8(max(0,)), ,0

1
SD ys i

i
; max(0,),0 ,0y y SDw w (25)

4521

If 0,0y SDw , a shortage cost will incur.

Next, goods progresses to 1tx according to

,0 ,0 ,1x y yw w w ; ,1 ,2x yw w

0,2xw ;

, ,0 , ,0 , ,1x y ys i s i s i ; (26)

, ,1 , ,2x ys i s i ; 0, ,2xs i

So the cost from i to (i+1) with a demand iw is
10

(,) 3 3 60 max(0,), ,0,0 ,01
g y w y y SD ys it t w wi

 (27)

where SD is defined in (25).

C. Discussion and Approximation of Cost Function
Initially, we may not have any knowledge about the cost J.

But in most cases, we may know something about the policy
by experience or common sense, that is, what kind of control
or decision to make in some situation. So, an initial policy can
be defined through heuristics or other considerations. This
policy will be used to train the control neural network first.
Then, this trained control neural network will provide
controls for the approximation of the cost function J . We use
an s-type heuristic policy here [21], that is, at each time step
the inventory manager tries to place the order such that
current inventory and the goods expected to arrive at the
warehouse is equal to the warehouse order-up-to level.
Similarly the current inventory and the goods expected to
arrive at any store is equal to the store order-up-to level. For
this problem, the warehouse and store order-up-to levels are
330 and 23. We choose some initial states and generate the
corresponding controls using this heuristic policy. Next, we
train the control neural network with these data. The structure
of the control neural network is chosen as N22-8-8-11. Figure 2
shows the cost per-stage corresponding to this control neural
network. The average value is 1176.

Fig. 2. Cost Per-stage with average 1176

A two-layer neural network is used to approximate the cost
function for this retailer inventory problem. The structure of
the cost neural network is N22-20-1. Parameters in the weight

update rule are chosen as: 4101 , 4102 for the first
53 10 steps, 5101 , 5102 for the rest steps, 0.99

and 210 [0.05 0.1 ... 0.95 1]1 20 1B . We run a single long

simulation path of the system (55 10 steps) with some
random initial states. Fig. 3 shows the output of the cost
neural network during the learning process. Note that it
converges. This cost neural network can be used anew for the
next series of simulations. This sequence was carried out
several times to make the cost neural network learn as much
as possible.

Fig. 3. Output of Cost Neural Network during Learning Process

After the cost neural network stabilized in its outputs, the
improved control was calculated according to Eq(14). Figure
4 shows the cost per-stage with the new control neural
network. The average value is only 860 which is much lower
than 1176 with the initial control neural network as showing
in Fig. 5

Fig. 4. Cost Per-stage with average 860

 The state of the warehouse and one-delay state to the
warehouse are shown in Figure 5. Note that any warehouse
related-data can be retrieved from these data. Figure 6 shows
the states related to store 1. Controls (orders) for warehouse
and store 1 are presented in Figure 7. Note that, in addition to
obtaining an average order-up to level, these data can be used
to help with online decision too if needed.

4522

Fig. 5. Warehouse State

Fig. 6. Store 1 State

Fig.7. Control History

IV. CONCLUSIONS

A neural network based dynamic programming method
has been developed for optimal stochastic process control
problems. Simulation results from a retailer inventory
problem show the effectiveness of this approach. Error bound
on the cost accuracy has also been derived in this paper.

 V. ACKNOWLEDGEMENT

Grants from the National Science Foundation, ECS
0201076 and 0324428 in support of this study are gratefully
acknowledged.

REFERENCES

[1] A.E. Bryson and Y.Ho, Applied Optimal Control. Hemisphere
Publishing Co., 1975, pp. 128-211.

[2] Puterman, Martin L., (1994), Markov Decision Process: Discrete
Stochastic Dynamic Programming, John Wiley & Sons Inc., Canada.

[3] R.A. Howard, Dynamic Programming and Markov Process, MIT Press,
Cambridge, 1960.

[4] E.A. Feinberg and Adam Shwartz, Handbook of Markov Decision
Processes, Kluwer, 2002.

[5] R.E. Bellman, Dynamic Programming, Princeton, NJ: Princeton
University Press, 1957.

[6] D. White, Dynamic Programming, San Francisco, CA: Holden-Day,
1969.

[7] Bellman, R.E. and Dreyfus, S.E. (1959), “Function Approximation and
Dynamic Programming,” Math., Tables and Other Aids Comp., Vol. 13,
pp.247-251.

[8] Werbos, P., “Building And Understanding Adaptive Systems: A
Statistical/ Numerical Approach to Factory Automation And Brain
Research,” IEEE Transactions on Systems, Man And Cybernetics, Vol.
SMC-17, No.1, pp.7-20., 1987.

[9] Barto, A., Sutton, R., and Anderson, C., “Neuron-like Adaptive
Elements That Can Solve Difficult Learning Control Problems,” IEEE
Transactions On Systems, Man And Cybernetics, Vol. SMC-13, No. 5,
pp.834-846, 1983.

[10] R.S. Sutton, “Learning to Predict by the methods of Temporal
Difference,” Machine Learning, Vol.3, 1988, pp. 835-846.

[11] T. Jaakkola, S.P. Singh, and M.I. Jordan, “Reinforcement Learning
Algorithm for Partially Observable Markov Decision Problems,”
Advances in Neural Information Processing Systems 7, Cambridge,
Massachusetts, MIT Press, 1995, pp. 345-352..

[12] S.P. Singh & R.S. Sutton, “Reinforcement Learning with Replacing
Eligibility Traces,” Machine Learning, Vol.22, 1994.

[13] P.D. Dayan, “The Convergence of TD() for General ,” Machine
Learning, Vol. 8, 1992, pp. 341-362.

[14] G.J. Gordon, “Stable Fuction Approximation in Dynamic
Programming,” Proceedings of the Twelfth International Conference
on Machine Learning, Tahoe City, CA, July 1995.

[15] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-dynamic Programming,
Athena Scientific, Belmont, MA,1996.

[16] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I,II,
Athena Scientific, Belmont, MA,1995.

[17] D. P. de Farias and B. Van Roy, “On the Existence of Fixed Points for
Approximate Value Iteration and Temporal-Difference Learning,’
Journal of Optimization Theory and Applications, Vol. 105, No. 3, June,
2000.

[18] P. Rusmevichientong and B. Van Roy, “A Tractable POMDP for a
Class of Sequencing Problems,” Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 2001.

[19] Balakrishnan, S.N. and Huang, Zhongwu, "Robust Adaptive Critic
Based Neurocontrollers for Helicopters with Unmodeled
Uncertainties," AIAA Atmospheric Flight Mechanics Conference,
Montreal, Aug. 2001.

[20] Nahmias, S. and Smith, S.A., “Mathematical Models of Inventory
Retailer Systems: A review,” Perspectives on Operations Management,
Essays in Honor of Elwood S. Buffa, Sarin, R., editor, Kluwer
Academic Publishers, Boston, MA, pp.249-278, 1993.

[21] B. Van Roy, D.P. Bertsekas, Y. Lee, J.N. Tsitsiklis, “A Neuro-dynamic
Programming Approach To Retailer Inventory Management,”
Proceedings of the 36th IEEE Conference on Decision and Control, Vol.
4, 1997, pp.4052-4057.

[22] Shervais, Stephen, Adaptive Critic Design of Control Polices for
Multi-echelon Inventory System, Ph.D thesis, Portland State University,
2000.

4523

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

