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         Abstract—Overwhelming computational requirements of 
classical dynamic programming algorithms render them 
inapplicable to most practical stochastic problems. To overcome 
this problem a neural network based Dynamic Programming 
(DP) approach is described in this study. The cost function 
which is critical in a dynamic programming formulation is 
approximated by a neural network according to some designed 
weight-update rule based on Temporal Difference (TD) learning. 
A Lyapunov based theory is developed to guarantee an upper 
error bound between the output of the cost neural network and 
the true cost. We illustrate this approach through a retailer 
inventory problem. 

I. INTRODUCTION

any important natural and man-made systems are 
stochastic processes. Take the retailer inventory 

problem for example. The customers’ demand is stochastic in 
nature and unknown in advance which makes the whole 
process stochastic. In optimal stochastic process control [1], 
[2], the objective is to minimize some defined cost function. 
To be more specific, it is to make a sequence of decisions that 
make the system perform optimally with respect to some 
predetermined performance criterion (cost function). 
Markov Decision Process (MDP) [3], [4] is a basic modeling 
framework for stochastic process control. An important 
property to be used in this paper is that an aperiodic Markov 
chain can reach to a stationary status at the rate of geometric 
progression and each state has a steady possibility of 
occurrence.
Although the concept of Dynamic programming [5], [6] is 
good for optimization of an MDP, the resulting 
computational load is sometimes overwhelming. A sensible 
way of dealing with this difficulty is to generate a compact 
parametric representation that can approximate the cost 
function. Bellman and Dregfus [7] used polynomials as 
compact representations for solving dynamic programming 
based problems. Similar ideas with using neural networks can 
be found in Werbos [8] and Barto [9].  

Central to the DP algorithms is the idea of how to 
approximate the cost function. Temporal Difference (TD) 
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learning, originally proposed by Sutton [10], is a method for 
approximating long-term future cost as a function of current 
states. Whereas conventional prediction-based learning 
methods are driven by the error between predicted and actual 
outcomes, TD methods are driven by the error or difference 
between temporally successive predictions; with these 
techniques, learning occurs whenever there is a change in 
prediction over time. Rigorous analysis of TD methods is 
however very difficult. Prior work [11], [12] has established 
convergence of TD learning with a probability of 1 when the 
cost function is represented as a table where each state has its 
own entry. Dayn [13] has done some preliminary studies on 
convergence using linear function approximation. Gordon 
[14] has proved that TD learning converges for 
representations called “averagers” on which the TD method is 
a max-norm contraction mapping. Bertsekas and Tsitsiklis 
[15], [16] have provided a comprehensive discussion about 
applying neural networks in dynamic programming based 
problems with temporal difference learning. They call it 
Neuro-Dynamic Programming (NDP). Combined with the 
properties of the Markov chain, they have derived error 
bounds for the results. Van Roy has continued further with 
studies on the application of NDP [17], [18].  However their 
work has been based on a single-layer linear neural network. 
Carefully chosen basis functions are critical for single-layer 
neural networks in approximating complicated nonlinear 
functions. In this paper, we use multilayer neural networks 
and our approach to stochastic problems originates from our 
experience with a successful extra control design for robust 
control in deterministic problems [19]. Inventory and 
transportation policy determination are common problems in 
businesses. Some studies have been done in the past [20-22]. 
We use a retailer inventory problem to illustrate our ideas.  

II. NEURAL NETWORK BASED DYNAMIC PROGRAMMING

A. Optimal Control of Stochastic Processes 

Let us consider a discrete-time system that, at time it , takes on 

a state ix  and evolves according to

1 ( , , )t i i ix f x u w                                  (1) 

where iu  is a control and iw  is a disturbance. The state, 

control and disturbance spaces are denoted by X , U  andW .
For simplicity, we assume these spaces are all 
finite-dimensional. Each disturbance iw W  is 
independently sampled from some fixed distribution. In the 
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retailer inventory problem that is the focus of this paper, the 
disturbance is the customer demand. Control iu  depends on 

the state ix  and the rule by which we select the controls. This 
rule is called a policy. A stationary policy is a mapping :

UX  that generates state-contingent control. In this paper, 
a policy is stationary if not specified.   
Along the transition from ix  to jx , there is an associated cost 

noted as ( , , )g x u xi i j  or ( , ( ), )g x x xi i j  with some 

probability ( ),p ux x ii j .

So the corresponding Bellman’s optimality equation will be:  
* *( ) min ( )[ ( , , ) ( )],

1

N
J x p u g x u x J xi i j i i i j j

u ji
           (2)

where ]1,0[  is a discount factor; )(, tjt up , an easier 

notation for )(, txx up
jt

,  is the transition probability from tx

to jx  under control tu  . It could be zero for some jx s;

Nxx ,...,1  belong to the set X .
From Bellman’s optimality equation, we can get the 
following two equations on the minimizing path: 

( ) 0J xi
u

                                                 (3) 

( ) ( )[ ( , , ) ( )],
1

N
J x p u g x u x J xi i j i i i j j

j
             (4)

In this study, two neural networks will be used to 
iteratively approximate these two conditions and get the 
optimal policy and optimal cost function. One neural network 
is called the cost neural network with the system states as 
inputs and cost J  as the output. The other is the control 
neural network with states as inputs with control u being the 
network outputs. When the outputs of these two neural 
networks are mutually consistent in their convergence, the 
optimality condition is satisfied and outputs of these two 
neural networks are optimal. This is what we call neural 
network based approximate dynamic programming method. 
Here we use a policy iteration process as the approximation 
technique.  

B. Policy Iteration with Neural Networks 

Policy iteration algorithm starts with a proper policy 0 .
Then we perform a policy evaluation step, computing )(0

ixJ

as the solution to the equations  

( ) ( ( ))[ ( , ( ), ) ( )], 1, 0 01

N
J x p x g x x x J x i Ni j ii i i j jj

        (5) 

This step is to generate the cost function from the policy 0 .
Then we perform a policy improvement step and compute an 
improved policy 1  based on the cost function just obtained 
as

0( ) a rg m in ( )[ ( , , ) ( )]1 ,
1

N
x p u g x u x J xi i j i j j

u j
     (6)

This process is repeated until )()(1
ii xJxJ kk  for all i. 

What we did here is to use the control and the cost neural 
network outputs to provide the policy and cost function J

in the above process.  

C. Cost Function Approximation 
Normally the state space of a large dynamic system is very 
large and to implement (5) in the above policy iteration will 
be very difficult. We need another way to synthesize the cost 
neural network. To help achieve this, we generate some 
simulations of the underlying stochastic process and use that 
information to tune the weights of cost neural network 
directly such that the output of cost neural network is close to 
the true cost. The idea here is similar to our earlier work in the 
extra control design for the deterministic problems with 
uncertainties [19]. In other words, the weight-update rule of 
cost neural network is designed directly. The weight-update 
rule for a two layer cost neural network is chosen as  

( 1) ( ) ( )[ ( ) ( ) ]1 1 1 1 1 11
T TW t W t x W t x B dt t t

( 1) ( ) ( ( ) ( ))2 2 2 2 1 1
TW t W t W t x dt t                                     (7) 

where B1 is a coefficient matrix, 1  and 2  are the learning 
rates, and dt  is called the temporal difference and 

( , ) ( ) ( )1 1d g x x J x J xt t t t t t t . When the Bellman equation is 

satisfied, [ ] 0E dt . 1W  and 2W are neural network weight 
matrices for the first layer and second layer respectively. 
And 1 , 2  are respectively neural network activation 
function for first layer and second layer. 
When the iteration is executed in a simulation, normally the 
crux of the problem is that the cost NN can’t be well 
represented over a large state space. As a result, there can be 
big errors for some states when we use the cost NN to 
calculate the improved controls later. However, if the policy 
is proper, the state of systems will fall into a small set of 
frequently visited states in a few steps although with a small 
probability it may go outside again; a properly designed 
policy will bring it back quickly. The size of this set is usually 
manageably small and the objective should be to make the 
cost NN more accurate in that region. Also, those states are 
the ones will appear most time in the simulation or in a real 
life application. Hence, the costs and controls with respect to 
those states are important and should be carefully treated. 
From this point of view, we need to use an on-line sampling 
scheme to acquire these frequently visited states.         
Next, we will show that with the weight-update rule in (7), the 
difference between the output of cost neural network and the 
true cost is bounded. In this case, it will be more reasonable if 
the expectation of weight-update rule is considered since the 
underlying process is stochastic. As mentioned in the 
introduction, an aperiodic Markov chain can reach a 
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stationary status very fast. Expectation of the weight-update 
rule is presented in Eq (8) with respect to the steady-state 
distribution . The detailed derivation is omitted for brevity.    

1 1 1 1 1 1 1 1 1

1 1 2 2 1

( 1) ( ) ( )

               ( ) (0) ( )

T T T

T T

W t W t D W t DgB

D P I W t B

2 2 2 2

2 2 2 2

( 1) W ( ) (0)

                (0) ( ) (0) ( ) 

T

T

W t t Dg

D P I W t

                       (8) 
where

( (1), (2),..., ( ))D diag N ,

2 2 2(0) (1) ( ) T
N  with 

2 2 1 1( ) ( ( ) ( ))T
ii W t x

1 1

1

1

( )

( )

T

T
N

x

x

1
1

1

 g(1,j)
g(1)

g=
g(N)

 g(N,j)

N

j
j

N

Nj
j

P

P

      The proof is Lyapunov function based. Let the ideal 

weights for the true cost J  corresponding to the policy 

be *
1W  and *

2W , that is 

)())(()( 1
*

12
*

2 ii
TT

i xxWWxJ               (9) 

where )( ix  is the neural network functional approximation 
error. By choosing proper number of neurons for each layer, 
this approximation error can be very small and bounded. Here 
we assume 1/ 2

ND .

A Lyapunov function candidate is chosen as the following  

1 1 2 2
1 2

1 1( ( ) ( )) ( ( ) ( ))T T
iL tr W i W i tr W i W i                (10) 

where * *
1 1 1 2 2 2( ) ( ), ( ) ( )W i W W i W i W W i  and 1 2,  are 

constants. We can show that  
1

2 2 2 2 1 1 1 1
2 1

1 1[ ( ( 1) ( 1) ( ( ) ( ))] [ ( ( 1) ( 1) ( ( ) ( ))]

i i

T T T T

L L

tr W i W i tr W i W i tr W i W i tr W i W i

(11)
1

2 221/ 2 2 1/ 2 1/ 2
2 2 2 1 1

1/ 2 1/ 2 * 2
2 2 2 2

1/ 2 1/ 2 1/ 2 1/ 2 * 2
2 2 2 2 2 2 2

1/ 2 1/ 2 1
1 1 1 1

(0) ( ) ) (0) ( )

1(1 )[ (0) ( ) ( ( ) (0) ) ]
1

[(1 ) (0) (0) ( ) (0) ( ( ) (0) ) ]

[ ( )

i i

F

F

L L

D W t D D W t

D W t D g P I W

D D W t D D g P I W

D D W t D / 2 1/ 2 * 2
1 1 1 1

21/ 2 1/ 2 1/ 2 * 2
1 1 1 2 2 1 1

21/ 2 1/ 2 1/ 2 * 2
1 1 1 2 2 2 2 1

]

(1 2 )[(1 ) (0) ( ) ]

(1 2 )[(1 ) (0) ( ) ( ( ) (0) ) ]

T

F

F

D W dB

D B D W t D W

D B D W t D g P I W B

(12)
where:

2 2 22 1/ 2 1/ 2 2
2 2 1 1 11 2 (1 ) (0) 3(1 2 )(1 )D D B

21/ 2
1 11 2 D

2 2 221/ 2 1/ 2 1/ 2 *
2 2 1 1 1 2 2

1[ 2 (0) 2(1 2 ) ] ( ( ) (0) )
1

D D B D g P I W

21/ 2 1/ 2 * 1/ 2 *
1 1 1 1 1 2 2

2 21/ 2 1/ 2 *
1 1 1 1

    2[1 2 ] ( ( ) (0) )

     2[1 2 ]

F

F

D B D W D g P I W

D D W

 (13) 

If 0 , 0 , then 1t tL L , when 1/ 2
2 2(0) ( )D W t

or 1/ 2
1 1 ( )

F
D W t .

Whereas 1/ 2 1/ 2 1/ 2 *
2 2 1 1 20 ( )i NF

D J J D W i D W t W ,

So 1/ 2
1 1 ( )

F
D W t  and 1/ 2

2 2(0) ( )D W t  are both bounded. And 

we know that if 1/2
iD J J   is bounded, the state distribution 

weighted difference between the output of the cost neural 
network and the true cost is therefore bounded.  
After we obtain the cost neural network, the improved control 
will be calculated as 

0
1( ) arg min [ ( , , ) ( ( , , ))]i i iu w

x E g x u w J f x u w        (14)

and used to train the control neural network.  

III. RETAILER INVENTORY APPLICATIONS

A. Retailer Inventory System Model 
We use the retailer inventory system form Nahmias and 

Smith [20]. This problem deals with ordering and positioning 
retailer inventories in warehouses and stores in order to meet 
customer demands while minimizing a specified cost. 

Warehouse

Store Customer

Manufacturer

Transportation

Demand

Store Customer

Demand

Store Customer
Demand

...........

Fig. 1.  Model of the retailer inventory system 
   The working process can be described as follows: First, 

demands occur at each store from customer requests. If there 
is enough goods available at that store, these demands can be 
satisfied. In case of shortages, if the customers are willing to 
wait, special deliveries are sent directly from a warehouse. If 
the inventory at the warehouse is still not enough, a shortage 
cost arises. At the end of the day, stores will place orders to 
the warehouse when low on inventory. Since transportation is 
involved, there is usually a delivery delay from the warehouse 
to the stores. Coupled with the uncertainty of future demands, 
it creates a need for inventory at the store level. When the 
warehouse receives orders from the stores, it will fulfill them 
as much as possible given the current levels of inventory. At 
the same time, a warehouses needs to place orders to the 
manufacturers if its own inventory is low. Due to reasons 
similar to those for stores, this shows the need for an 
inventory of goods at the warehouse. This retailer inventory 
management is a stochastic process due to varying customer 
demands and uncertainty of future demands.   
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Associated with this model, there are three costs: storage 
costs at stores and the warehouse, transportation cost, and 
shortage cost. Cost function is the sum of these costs. 
Objective of the problem is to minimize the total cost by 
finding the optimal orders for stores and warehouse. For 
simplicity, transportation cost won’t be considered here.  

The parameters of the model are list in Table 1. 
Table I

Parameters of Retailer Inventory Model 
Number of warehouse  1 
Number of store  10 
Delay to stores and warehouse 2 
Production capacity 100 
Warehouse capacity 1000 
Store capacity 100 
Warehouse and store storage cost  3 
Shortage cost 60 
Probability of customer waiting  0.8 
Cost of special delivery 0 
Mean demand 5 
Demand STDEV 14 

B. System Model 
In this study, control (order) will come in first followed 

by the customers’ demands. Hence, we need to define two 
sets of states. First is the pre-order state denoted by x . The 
second is the post-order state denoted by y . Each post-order 
state is given by ( , )2y f x ut t t  for some function 2f . Each 
pre-order state is given by ( , )1 1x f y wt t t  for some 
function 1f .
The elements of state space x  are defined as follows:   

,0 ,1 ,2 ,1,0 ,1,1 ,1,2 ,10,2 33 1[ , , , , , ,..., ]w w w s s s sx x x x x x x x   (15)

where :

,0wx : current inventory at the warehouse       

,1wx : goods  currently being transported that will arrive at the 

warehouse in 1 day.  

,2wx : goods  currently being transported that will arrive at the 

warehouse in 2 days.  

, ,0s ix : current inventory at the ith store.      

, ,1s ix : goods  currently being transported that will arrive at 

the ith store in 1 day.  

, ,2s ix : goods  currently being transported that will arrive at 

the ith store in 2 days.  
Components of y  are defined similarly except the values are 
those after orders are placed.
Control u  is defined as  

0 1 10 11 1[ , ,..., ]u u u u                                    (16)

where 0u  denotes the order from warehouse and , 1  10u i toi

denotes the order from ith store.

Given the current pre-order state as defined in (15), the 
control u  must obey the following constraints:  
1. Each element of the control should be non-negative. 

0, 0,1, ,10u ii                                        (17) 
2. The order from warehouse should be less the manufacturer 
production capacity. 

0u Cp                                                   (18) 

3. The total orders from stores should be less than the current 
inventory at the warehouse. 

10
,0

1
x uw i

i
                                            (19) 

4. The total quantity of goods at and on-route to any particular 
store should be less than the store capacity. 

   
2

         1, 2, 10, ,
0

u C x is i ki s k
            (20)                      

5.The total quantity of goods at and on-route to the warehouse 
minus the orders from the stores should be larger than the 
warehouse capacity. 

10 2
0 ,

1 0
u C u xw l w k

l k
                                   (21)                      

where 100Cp  is the manufacturer production capacity, 

100Cs  is the store capacity, and 1000Cw  is the warehouse 
capacity.       
The demand w  is a 10 1 vector defined as  

1 2 10 10 1[ , ,..., ]w w w w                               (22) 
where each element is independently sampled from a normal 
distribution ( , )N  with 5  and 14 . Of course, it will 
be rounded and set to the nearest non-negative integer. Also 
we assume possibility of the willingness of customers to wait 
for special delivery is 0.8.
Now let us begin with a pre-order 
state [ , , , , , ,..., ],0 ,1 ,2 ,1,0 ,1,1 ,1,2 ,10,2x x x x x x x xt w w w s s s s . We 
choose a designed control [ , ,..., ]0 1 10u u u ut . The elements of 

post-order ty  is calculated as 
10

,0 ,0
1

y x uw w i
l

; ,2 ,2 0y x uw w

,1 ,1y xw w  ; , ,2 , ,2y x us i s i i                                            (23)                      

, ,0 , ,0y xs i s i ; , ,1 , ,1y xs i s i

Now let us assume that the demand is 1 2 10[ , ,..., ]w w w w .
First, customer demands are fulfilled by inventories in the 
stores according to 

, ,0 , ,0s i s i iy y w
max(0, ),     i=1,2, 10, ,0 , ,0y ys i s i                                 (24) 

If some , ,0ys i s are less that zero, a special delivery (SD) will 
be needed for the corresponding stores. Special deliveries are 
filled by the warehouse according to 

10
0.8(max(0, )), ,0

1
SD ys i

i
; max(0, ),0 ,0y y SDw w             (25)                     
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If 0,0y SDw , a shortage cost will incur.   

Next, goods progresses to 1tx  according to 

,0 ,0 ,1x y yw w w ; ,1 ,2x yw w

0,2xw ;

, ,0 , ,0 , ,1x y ys i s i s i ;                                                        (26)                                                                  

, ,1 , ,2x ys i s i ; 0, ,2xs i

So the cost from i to (i+1) with a demand iw  is 
10

( , ) 3 3 60 max(0, ), ,0,0 ,01
g y w y y SD ys it t w wi

     (27)     

where SD  is defined in (25).  

C. Discussion and Approximation of Cost Function 
Initially, we may not have any knowledge about the cost J. 

But in most cases, we may know something about the policy 
by experience or common sense, that is, what kind of control 
or decision to make in some situation. So, an initial policy can 
be defined through heuristics or other considerations. This 
policy will be used to train the control neural network first. 
Then, this trained control neural network will provide 
controls for the approximation of the cost function J . We use 
an s-type heuristic policy here [21], that is, at each time step 
the inventory manager tries to place the order such that 
current inventory and the goods expected to arrive at the 
warehouse is equal to the warehouse order-up-to level. 
Similarly the current inventory and the goods expected to 
arrive at any store is equal to the store order-up-to level. For 
this problem, the warehouse and store order-up-to levels are 
330 and 23. We choose some initial states and generate the 
corresponding controls using this heuristic policy. Next, we 
train the control neural network with these data. The structure 
of the control neural network is chosen as N22-8-8-11. Figure 2 
shows the cost per-stage corresponding to this control neural 
network. The average value is 1176.    

Fig. 2.  Cost Per-stage with average 1176 

A two-layer neural network is used to approximate the cost 
function for this retailer inventory problem. The structure of 
the cost neural network is N22-20-1. Parameters in the weight 

update rule are chosen as: 4101 , 4102  for the first 
53 10  steps,  5101 , 5102  for the rest steps, 0.99

and 210 [0.05 0.1 ... 0.95  1]1 20 1B . We run a single long 

simulation path of the system ( 55 10  steps) with some 
random initial states. Fig. 3 shows the output of the cost 
neural network during the learning process. Note that it 
converges. This cost neural network can be used anew for the 
next series of simulations. This sequence was carried out 
several times to make the cost neural network learn as much 
as possible.  

Fig. 3.  Output of Cost Neural Network during Learning Process 

After the cost neural network stabilized in its outputs, the 
improved control was calculated according to Eq(14). Figure 
4 shows the cost per-stage with the new control neural 
network. The average value is only 860 which is much lower 
than 1176 with the initial control neural network as showing 
in Fig. 5 

Fig. 4.  Cost Per-stage with average 860 

 The state of the warehouse and one-delay state to the 
warehouse are shown in Figure 5. Note that any warehouse 
related-data can be retrieved from these data.  Figure 6 shows 
the states related to store 1. Controls (orders) for warehouse 
and store 1 are presented in Figure 7. Note that, in addition to 
obtaining an average order-up to level, these data can be used 
to help with online decision too if needed.  

4522



Fig. 5. Warehouse State 

Fig. 6.  Store 1 State 

Fig.7. Control History 

IV. CONCLUSIONS

A neural network based dynamic programming method 
has been developed for optimal stochastic process control 
problems. Simulation results from a retailer inventory 
problem show the effectiveness of this approach. Error bound 
on the cost accuracy has also been derived in this paper.
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