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using sum-of-squares decomposition
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Abstract— We provide a system-theoretic analysis of the
mathematical model of lactose induction in E.coli which predicts
the level of lactose induction into the cell for specified values of
external lactose. Depending on the levels of external lactose
and other parameters, the Lac operon is known to have a
low steady state in which it is said to be turned off and high
steady state where it is said to be turned on. Furthermore,
the model has been shown experimentally to exhibit a bi-stable
behavior. Using ideas from Lyapunov stability theory and sum-
of-squares decomposition, we characterize the reachable state
space for different sets of initial conditions, calculating estimates
of the regions of attraction of the biologically relevant equilibria
of this system. The changes in the basins of attraction with
changes in model parameters can be used to provide biological
insight. Specifically, we explain the crucial role played by a
small basal transcription rate in the Lac operon. We show that
if the basal rate is below a threshold, the region of attraction of
the low steady state grows significantly, indicating that system
is trapped in the (off) mode, showing the importance of the
basal rate of transcription.

I. INTRODUCTION

In recent years there has been an explosion of quantitative
knowledge on cell-level biochemical processes. Networks of
hundreds of reactions have now been mapped. In principle,
this allows the construction of mathematical models of regu-
latory systems determining expressions of genes, and cellular
behaviors such as differentiation, responses to environmental
signals, and cell-to-cell communication. There are two issues
that need to be addressed in order to achieve these goals. One
difficulty lies in that while the reactions themselves have
been identified, reliable kinetic information is still lacking.
Second, if this information eventually becomes available,
the complexity represented by the number of reactions and
species poses a significant challenge in the construction of
traditional models and in the analysis and prediction of the
functionality of these networks.

The traditional approach to modelling of genetic net-
works leads to highly nonlinear systems of differential equa-
tions. Simulation-based techniques only provide snapshots
of system behavior for specific values of parameters and
initial conditions. Thus, such techniques scale poorly as the
numbers of species and reactions are increased. With the
increasing complexity of the systems under study in systems
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biology, there is a need for automated software tools to help
organize and refine the existing knowledge by creating and
analyzing kinetic models of networks of molecules and cells.

In this paper we present an analysis paradigm based
on sum of squares (SOS) decomposition that allows the
prediction of certain properties of system trajectories with-
out exhaustive simulation. We adopt a kinetic model given
by polynomial differential equations. This can be justified
because most biological phenomena modelled by reaction
rate equations lead to polynomial systems[3]. Our SOS
based approach provides a global description of a biological
system, helping us gain more insight than by exhaustive
simulation or by analysis derived from linearization around
equilibria.

We apply the modelling paradigm and the analysis tech-
nique to a well-studied example in cellular biology. Our
main goal is to develop computational tools that can provide
insight into the behavior of such systems without manual
calculations. We base our case study on Yildirim and Mackey
[9]. They derive a detailed kinetic model of the lac operon
and its induction by lactose and show that the system exhibits
bistable behavior under certain conditions, but has a single
stable steady state otherwise. While simulation results are
shown in [9], our focus in this paper is on symbolic analysis.
It is typically difficult to obtain the steady states analyti-
cally. In order to simplify the model and allow for three
dimensional visualization, we develop a three dimensional
version of the Lac model studied in [9], by neglecting the
"faster dynamics” of two of the states. We then use the SOS
technique to characterize the region of attraction of the model
equilibria.

Depending on the level of external lactose (the source)
and model parameters, the system exhibits three fixed-points,
two of which are asymptotically stable (sinks), and one is a
saddle. Using SOS, we construct a Lyapunov function for
each stable equilibrium and find the largest estimate of the
basin of attraction. We then investigate the role of a critical
transcription rate and show that if it is below a threshold,
the mechanism fails, providing a reasonable explanation of
why this rate exists in the first place.

The outline of this paper is as follows. In the next section,
we describe the mathematical model for the Lac system
taken from [9], and our three dimensional approximation. We
illustrate the differences and show how important properties
of the original system are preserved with the hybrid systems
model. Section IV is devoted to a brief review of the SOS
technique and how it can be used for study of basin of
attractions. Finally, we provide estimates of the basins of
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attraction of equilibria and pinpoint the role of a critical basal
transcription rate.

II. MODELLING

The state of the biochemical system is represented by a
state vector x = [z1, X2, .. ., xn}T which is an n-dimensional
vector of concentrations of all species that are significant
descriptors of the behavior of the system. The state equations
can be written in the form:

&= f(z) (D

where f(x) is a vector-valued, nonlinear function of the state
describing the rate of change of the variables in the system.
These rate equations are derived from mass action kinetics,
enzymatic reactions and activation functions. Most of these
laws are polynomial. Even switches are modelled by smooth
functions that are generally ratios of polynomials, such as

Lactose Lactose
Fig. 1. A model of the Lactose system showing all species, with the
arrows denoting processes, with dotted arrows indicating the action
of a catalyst. The repressor acts to inhibit the transcription process

leading to mRN A, while the allolactose inhibits the repressor’s
action.

Our model of the Lac system is adapted from Yildirim
and Mackey [9]. Central to this system is the lac operon
which consists of three genes, lacZ, lacY, and lacA [8].
The enzyme [3-galactosidase, the product of the lacZ gene,
cleaves lactose, a necessary first step to metabolize lactose.
The lacY gene encodes the permease that brings lactose into
the cell. In the absence of lactose, Lac repressor binds the
lac operator turning down the transcription of its component
genes to a low basal level. However, in the presence of
lactose, the decomposition of lactose results in the formation
of allolactose, which binds to Lac repressor, greatly reducing
its binding to DNA. This activates the transcription of the
genes to a level that may be as much as 40-fold higher' the
lac than the basal rate. (cf. Figure 1).

We denote the concentrations of the different species in
the equations of state (2) as follows. M is the concentration
of the mRNA transcribed from both genes, while B and
P denote the (-galactosidase and permease. The external
lactose is L., while the intra-cellular lactose is denoted by
L. Finally, the concentration of allolactose is denoted by A.
The state of the system is given by:

z=[M,B,AL,P",

U1t turns out that the presence of glucose decreases the synthesis of cyclic
AMP which in turn affects the ability of catabolite activator protein (CAP)
to bind DNA and recruit RNA polymerase to the promoter. Thus, in the
presence of glucose, this increase is significant, but much less than 40-fold.
We do not consider this feedback loop in our system.

while L. is viewed as an input to the system that is controlled
outside the cell. The differential equations describing the
evolution of the system are:
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where f1(A) is a function that captures the effector-repressor
dynamics of the transcription enhanced by allolactose,

B 1+ K; A?
Y=gk

and f5, g1, go and h are rates of irreversible Michaelis-
Menten reactions:
f(A) =725 o) =75t
3)

h(Le) = L

_ L e
92(L) = w57 KioiL.

As in [9], a and 3 denote rate constants for the different
processes, the 7 are coefficients for terms representing decay
of species, and 7 denotes delays associated with the finite
time required to complete transcription (7,7) and translation
(tp and 7p). For example, if 7, is the finite time required
for the transcription process, A,,, denotes the concentration
of A 7 prior to the current time. 'y is a fixed basal
rate of mRNA transcription. For more details including the
significance of these terms, the reader is asked to refer to
[91, [11, [2].

So far, our model is identical to the one in [9]. We will now
introduce two approximations that will reduce this model
to a simpler, system, thus allowing us to study regions of
attractions of equilibria.

Our first simplification is to ignore the time delays. The
length of the delays associated with transcription and trans-
lation is between 0.1 and 2 minutes. Direct simulations of
the model [9], [1] suggest a relaxation time of the order of
50 minutes, so that the time delays can be neglected for
most dynamical simulations. In the present paper we are
primarily interested in the steady state behavior, which is
expected to be impacted even less by such small time delays.
In particular, the steady states themselves are insensitive to
the time delays since the time delayed and prompt variables
are equal in this case.

To simplify the model even further and allow for three
dimensional visualization, we ignore two of the dynamical
equations which are not detrimental to the qualitative behav-
ior of the model. We assume that B and P instantaneously
reach their steady state values. This approximation can be in-
terpreted as projecting the problem on the three-dimensional
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Fig. 2. Steady state values for different external lactos
centrations, for the original value of the basal transcription rate.
The dotted lines illustrate the approximate trajectory of the system
during a change in steady state from A to C when driven from a
low external lactose concentration to a high concentration, and then
back to the same low concentration.

hyperplane defined by

—HTB
B = %° M — kpM
B
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The respective time constant for B is not negligible (leading
to a relaxation half-life of about 800 min, but only 30 min
if the growth rate is included as indicated in the Appendix).
However, in most situations that would occur in nature the
B and P concentrations are close to their quasi-steady state
equilibrium values given below. Our extensive simulations
indicate that this approximation does not change the qual-
itative and quantitative behavior of the model, especially
from the stand point of steady state analysis and calculating
reachable sets. The simplified model can be written as
follows:

dM
7 ap fi(A)+To —yuM )
dA
o = kM (aagi(L) — Bafa(A)) —F4A  (6)
L
o= kM (agh(Le)  Brax(L)
—aakpMgi (L) — 1L (7

III. ANALYSIS OF THE MODEL

An important result of Yildirim and Mackey [9] was that
the system defined by Equations 2 is bi-stable for certain
external Lactose concentration values. More recently, this
multi-stable characteristic of the Lactose induction mecha-
nism was experimentally verified and quantitatively charac-
terized [4]. This is illustrated by the S-shaped curve in Figure
2 which shows the steady-state values of allolactose for given
external Lactose concentrations. We choose A as a measure
of the lactose processing activity. Given a putative steady-
state value of A, the steady-state equations corresponding
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Fig. 3. Steady state values for different external lactose concentra-
tions and basal transcription rates (obtained by changing the factor

b.

to Equations (2) uniquely determine all four other variables
M, B, L, P, as well as the corresponding level of external
lactose. Similarly, in our reduced model, the equilibrium
points of Equations (5-7) allow the steady state values of
M, L to be inferred from A, which then allow B and P to
be determined.

(From Figure 2 it is easy to see that for a given fixed
external lactose concentration we can have either one or three
steady states. The negatively-sloped portion of the S-shaped
curve in the figure contains unstable states. Thus, in practice,
there are at most two steady states for a fixed external lactose
concentration, one corresponding to a high metabolic activity
level (high A) and the other a low-activity level (low A).
For very low or very high levels of external Lactose, there
is only one steady state for A, which is stable. These facts
were clearly established in [9]. They were also verified using
reachability computations [2].

Suppose the cell is initially in an environment character-
ized by L. = 0.04 mM, hence in the steady state denoted
by point A. An increase from to L. = 0.04 to 0.07 mM
will move the system past the “knee” of the curve to the
right, after which the steady state will move to the upper
branch toward the steady state B. Decreasing L. back to
L. = 0.04 mM will move the system to the steady state C.

A natural question to ask is how sensitive this property
is to parameter fluctuations. It turns out that variations up
to 20% produce results that preserve the overall shape of
the curve and the bi-stability property. While this result by
no means constitutes a mathematical proof, it does provide
evidence that this switching property is robust to changes in
parameters.

However, there is one parameter that is critical to the bi-
stability property. Small changes in the basal mRN A tran-
scription rate I'g lead to significant changes in the position
of the knee of the curve as seen in Figure 3.

We consider different values of the basal transcription rate
obtained by scaling the basal transcription rate T'y, = bl.
Scaling down this factor b from 1.0 to 0.2 results in the
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knee shifting to the right. Similarly changing b from 1.0
to 5.0 moves the knee to the left. In fact, if the basal rate
were further reduced, the level of external Lactose required
to effect the jump to the upper branch would increase
dramatically and below b = 0.1 (not shown in the figure)
the knee effectively moves to to a value of Lactose that is
not realistic. In other words, it is impossible to effect a switch
from a low steady state to the high steady state for low values
of b (cf. Figure 3). The basal rate of transcription plays the
role of a "pilot light’, keeping a minimal amount of permease
and [-galactosidase available even in the total absence of
external lactose.

In the following sections we investigate the effects of
variations in the basal transcription rate using the SOS
programming machinery.

IV. COMPUTING LYAPUNOV FUNCTIONS AND REGIONS
OF ATTRACTION

In this section, we will give a brief overview of how a
Lyapunov function which proves the stability of & = f(x)
around its equilibrium can be constructed using sum of
squares optimization. We also show how an estimate of the
region of attraction for this equilibrium can be obtained.

Without loss of generality, assume that the equilibrium
of interest is at the origin (thus f(0) = 0). (If not we
can construct the Lyapunov function such that the minimum
always happens at the equilibrium). The Lyapunov stability
theorem states that if there exists a continuously differen-
tiable function V : R™ — R such that

V(0) =0, ®)
V(z)>0 Vae D\{0}, )
—%(x)f(x) >0 VxeD, (10)

for some neighborhood D of the origin, then the (local)
stability of the origin is guaranteed.

When the vector field f(x) is polynomial and the neigh-
borhood D is chosen to be semialgebraic, e.g., of the form
D = {x : gp(z) > 0} with gp : R® — R’ being
polynomial, then a polynomial Lyapunov function V' (z) can
be computed using sum of squares (SOS) programming [7],
[6], [S]. The main idea is as follows. First we parameterize
V(x) in terms of unknown coefficients, in an affine manner:

V(z) = ch-vi(:r) (11)
i=1

where the ¢;’s are the unknown coefficients, and the v;(x)’s
are polynomial functions. For example we can choose them
to be the monomials in x with degree less than or equal
to some degree bound. Once this is done, the various
polynomial inequalities that must be satisfied by V() are
replaced with their corresponding SOS conditions, and the
values of ¢;’s that render V(x) a Lyapunov function are
computed by solving the resulting SOS program.

The SOS program which we will use to construct V' (z) is
stated in the following algorithm [7].

Algorithm 1 (Computing a Lyapunov function): Given is
a system & = f(x), where f(x) is polynomial and f(0) = 0.
Furthermore, suppose that D is of the form D = {z :
gp(z) > 0} with gp : R® — R being polynomial.

1) Fix a degree bound 2d for V(x), and parameterize
V(zx) as in (11), where the v;(z)’s are monomials of
degree less than or equal to 2d.

2) In the same manner, fix a degree bound 2e for a vector
of polynomial multipliers A(z) : R — R

3) Using SOS programming, find the coefficients of V' (x)
and A(z), as well as some coefficients €;; such that

(a) V(z) =0
n d
(b) V(z) - Zzeijxff is SOS
(€) — 9L (@) () ~ X (@)gp(a) is SOS,
(d) A\i(z) is SOS Vi=1,...,¢,
d

(€)Y €;>0 Vi=1,..n

j=1

and €ij Z 0 VZ,]
The polynomial V' (x) that we obtain will satisfy (8)-(10),
and therefore is a Lyapunov function for the system.

Once the Lyapunov function V(z) is computed, we can
use it to estimate a region of attraction of the equilibrium.
Here we compute the largest level set of V(z) that is
contained in D, over which %(x) f(x) is non-positive. For
this, we again use SOS programming, as described in the
following algorithm.

Algorithm 2 (Estimating domain of attraction):

Given are a Lyapunov function V(z) and the set
D = {x : gp(z) > 0} on which (8)-(10) hold, with
gp : R™ — Rf being polynomial.

1) Parameterize a vector of polynomial multipliers A :

R™ — Rf in terms of some unknown coefficients ¢;’s.

2) Using SOS programming, find the smallest -y such that

v = V(z) = A (x)gp(2) is SOS,
Xi(z)is SOS Vi=1,..,Z.

The set {x € R : V(z) < ~} will be an estimate of the
domain of attraction for the equilibrium z = 0.

V. COMPUTATION OF BASINS OF ATTRACTION

The above discussed procedure runs in polynomial time
once the degree of the multiplier polynomials as well as
the Lyapunov functions are fixed. Our search using SOS
programing results in a quadratic Lyapunov functions and
sixth order sum of squares polynomials multipliers (d = 1
and e = 3 in Algorithm 1) to prove the invariance of the
largest level sets of the Lyapunov function inside the set
where the derivative is negative. Note that we can not search
over the ”size” of the region of attraction and the stability
certificate simultaneously. Instead, we have to first fix a
small region around each equilibrium, use SOS programing
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to find the V, by finding the SOS multipliers, and then
solve a separate SOS program which grows the level set
of V. Since a quadratic Lyapunov function was found, there
was no reason to look for higher order Lyapunov functions.
Of course the better the higher the order of the Lyapunov
function, the better the estimate of the region of attraction is
going to be.

We repeat this procedure both for the high steady state
and the low steady state and estimate the basins of attraction
of both the high and low steady states for different values of
To.

Figure 4 shows the largest sub-level set of the two Lya-
punov functions corresponding to the low and high steady
states, for a basal transcription rate of I'y, = 0.2 x T'g. The
unstable fixed point lies between the two sets, indicating that
we can not grow the level sets any further. We now increase
the basal transcription rate by a factor of 5 to I'y. Figure 5.

depicts the best estimate of the regions of attraction for
this scenario. The low region clearly shrinks and the high
region grows in some of the directions.

In order to understand the changes in both basins we
overlay the two plots on the same scale in Figure 6. The
small diamonds indicate the locations of respective steady
state points, as well as those of the unstable steady states
(same color code). We observe the following two points:
(i) The low steady state moves closer to the origin for the
reduced basal rate, while the unstable state migrates away
from the origin, increasing the distance between the two
points. (i) The size of the estimated region of attraction
increases for lower I'y. This provides a logical explanation
for existence of the basal rate: If its value is smaller than
Ty, the set of un-inducible states becomes larger. Of course,
the true region of attraction is a more complicated surface
than an ellipsoid, and the ellipsoid is only an estimate. As
a result, there are points in the true region of attraction
that are not inside the level set of the largest ellipsoid.
For example, in Figure 6 there is a small region included
in the blue/cyan surface corresponding to I'g which is not
contained in the region described by the red/magenta surface,
corresponding to 0.2 xT'g. This is due to the conservativeness
of the ellipsoidal approximation of the region of attraction.
However, we clearly observe the shrinkage of the “un-
inducible” states as the basal transcription rate is increased.

Finally, Figure 7 depicts the basin of attraction of the
high steady state for the same three values of the basal rate
Iy discussed above : %1"0, I’y and 5I'y. Here, the smallest
region is the one for I'g, and the largest one is for 5I.
This apparently counter-intuitive result can be understood
as follows. First, we notice that decreasing the basal rate
from Ty will result in migration of the high steady state
away from the saddle-point, leading to a higher basin of
attraction, mirroring the situation seen for the lower steady
state. Secondly, the surface indicating the calculated region
of attraction for the basal rate of 5I'y is the largest. This
is not surprising since here the high steady state is the
only (biologically meaningful) one. However, even in this
case the region of attraction is not the whole space, due to

Loa

the existence of a spurious (mathematically correct but non-
physical) steady state outside the positive octant.
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Fig. 4. Estimates for Me regions of 2@ 88{bn of both steady states
for a basal rate of 0.2xI'g. The smaller ellipsoid (magenta) is for the
lower steady state and the larger (red) is for the higher steady state.
The low stable steady state is at [M, A, L] = [.664 x 107°,.113 x
1072, .825 x 10_1], and the unstable steady state is between the
two regions at [M, A, L] = [.155 x 107%,.432 x 107, .176.
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Fig. 5. Estimates for the regions of attraction of both steady states
for a basal rate of I'g. The smaller ellipsoid (cyan) is for the lower
steady state and the larger (blue) is for the higher steady state.
The low stable steady state is at [M, A, L] = [.227 x 107°,.590 x
1072,.135], and the unstable steady state is between the two regions
at [M, A, L] = [.133 x 107%,.376 x 10™",.174].

04 053

In summary, we clearly observe that the basal transcription
rate has a significant effect on the size of the region of
attraction of both equilibria, especially that of the low steady
state which corresponds to un-inducible states.

VI. CONCLUSIONS

We analyzed the mathematical model of the Lactose
metabolism in E.coli using sum of squares programing. The
proposed scheme was based on a construction of Lyapunov
functions for the stable equilibria of a reduced order model of
the system. using sum of squares programing, we character-
ized regions of attraction estimates for the stable equilibrium
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Fig. 6. Estimates of the regions of attraction of the low steady
states for basal rates I'g and 0.2I'g. The corresponding surfaces are
colored in cyan and magenta respectively. For the basal rate of I'g,
the low steady state and the saddle are depicted as blue diamonds.
For basal rate of 0.2I'¢, the low steady state and the saddle (red
circles) migrate away from each other, leading to an overall increase
in the region of attraction.

Fig. 7. [Estimates for the regions of attraction of the high steady
states for the three basal rate values discussed. The smallest ellip-
soid corresponds to the middle value of b = 1 (blue). The middle
ellipsoid (red) corresponds to the lowest b value, 0.2. The largest
ellipsoid (yellow) corresponds to b = 5, when the high steady state
is the only meaningful one inside the physically meaningful positive
octant.

points. It was shown that the size of the region of attraction
critically depends on a basal transcription rate. Decreasing
the transcription rate below a certain threshold resulted in
significant increase of the region of attraction of the “low”
steady state of the system. The impacts of this change on
the “high” steady state was also analyzed.

The next step in this direction would be to include the time
delays in the analysis and find higher order Lyapunov func-
tions. Another natural direction is to investigate scalability
of our approach to systems with larger dimensions. We note
that the complexity of the analysis increases polynomially
with the degree of the polynomial functions used to describe
f(z). On the other hand, the alternative model in [2] allows
us to approximate the nonlinear functions using piece-wise

affine functions. This approximation requires the analysis of
a hybrid system with discrete modes. There is of course an
additional growth in the complexity of the analysis because
of the number of discrete modes that have to be considered,
but the description of the polynomial system in each discrete
mode is guaranteed to be of lower order which presumably
would simplify the analysis. This interesting trade-off is a
promising direction for future investigation.
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APPENDIX

The model parameters are the same as those used in [9]. The
effective time constants 7 are obtained by adding the growth rate
W, so that Y4 = ya + @ and so on.

M 0.411 min? VB 8.33 x 10~ % min T
va 0.52 min~* To | 7.25 x 1077 mM/min
K 7.2 x 103 an | 9.97 x 107* mM/min
B 2.0 min aa 1.76 x 10* min~*
Kr1 1.81 mM ap 1.66 x 1072 min~*
Ka 1.95 mM Ba 2.15 x 10* min~?
™ 0.1 min Kr, 0.97 mM
VL 0.0 min~* vp 0.65 min~!
arp | 288 x 10> min~! | ap 10.0 min~*
TP 0.83 min 6L 2.65 x 10® min~!
Kr. 0.26 mM K, 2.52 x 10* mM 2
U 0.0226 min~" kg 0.677

kp 13.94

The steady state values for the three basal rate factors discussed in
the text are summarized below.

State | b [M] [A] [L]
Low | 0.2 | .664-107° | .00113 | .0825
Unst | 0.2 | .154-107* | .0431 | .176
High | 0.2 | .373-107% | 235 185
Unst | 1.0 | .133-107* | .0376 | .174
High | 1.0 | .375-107% | .236 .186
High | 5.0 | .385-107% | .237 185
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