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Abstract— Max-plus methods have been explored for solu-
tion of first-order, nonlinear Hamilton-Jacobi-Bellman partial
differential equations (HJB PDEs) and corresponding nonlinear
control problems. These methods exploit the max-plus linearity
of the associated semigroups. Although these methods provide
advantages, they still suffer from the curse-of-dimensionality.
Here we consider HJB PDEs where the Hamiltonian takes the
form of a (pointwise) maximum of quadratic forms. We obtain
a numerical method not subject to the curse-of-dimensionality.
The method is based on construction of the dual-space semi-
group corresponding to the HJB PDE. This dual-space semi-
group is constructed from the dual-space semigroups corre-
sponding to the constituent quadratic Hamiltonians. The actual
computations in the algorithm involve repeatedly computing
coefficients of quadratics which are obtained as the maxima of
two other quadratics.

I. INTRODUCTION

One approach to nonlinear control is through Dynamic
Programming (DP). With DP, solution of the control problem
“reduces” to solution of the corresponding partial differential
equation (PDE). In the case of Deterministic Optimal Control
or Deterministic Games (such as H∞ control) where one
player’s feedback is prespecified, the PDE is a Hamilton-
Jacobi-Bellman (HJB) PDE. The difficulty is that one must
solve the HJB PDE.

Various approaches have been taken to solution of the HJB
PDE. The most common methods by far all fall into the
class of grid-based methods. (cf. [3], [4], [8] among many
others). These require that one generate a grid over some
bounded region of the state-space. Suppose the region over
which one constructs the grid is rectangular. Suppose one
uses 100 grid points per dimension. If the state dimension
is n, then one has 100n grid points. Thus the computations
grow exponentially in state-space dimension n.

In recent years, an entirely new class of numerical methods
for HJB PDEs has emerged (c.f. [7], [14], [13], [1]). These
methods exploit the max-plus linearity of the associated
semigroup. They employ a max-plus basis function expan-
sion of the solution, and the numerical methods obtain the
coefficients in the basis expansion. Much of the work has
concentrated on the (harder) steady-state HJB PDE class.
With the max-plus methods, the number of basis functions
required still typically grows exponentially with space di-
mension. For instance, one might use 25 basis functions
per space dimension to cover a rectangular region well.
Consequently, one still has the curse-of-dimensionality. Even
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with that max-plus approach, one cannot expect to solve
problems of more than dimension 4 or 5 on current machines.

This paper discusses an approach to certain nonlinear HJB
PDEs which is not subject to the curse-of-dimensionality. In
fact, the computational growth in state-space dimension is
on the order of n3. However, there is exponential compu-
tational growth in a certain measure of complexity of the
Hamiltonian. Under this measure, the minimal complexity
Hamiltonian is the quadratic Hamiltonian – corresponding to
solution by a Riccati equation. If the Hamiltonian is given as
a point-wise maximum of M quadratic Hamiltonians, then
one could say the complexity of the Hamiltonian is M . It
should be remarked here that any semiconvex Hamiltonian
can be represented as a supremum of quadratics, and there-
fore approximated arbitrarily well by a maximum of a finite
number of quadratics.

The approach has been applied on some simple non-
linear problems. A few simple examples comprised of 3
linear/quadratic components were solved in 10-20 seconds
over R3 and 10-45 seconds over R4. For these particular
problems, the solution was obtained over the entire space
with the resulting errors in the gradients growing linearly
in |x|. (See Section VI for specific examples.) These speeds
are of course unprecedented. This code was not optimized.
Further, the computational growth in going from n = 4 up
to say n = 6 would be on the order of 63/43 � 4 as opposed
to say more than 104 for a finite element method.

We will consider HJB PDEs given as

H̃(x,∇V ) = max
m∈{1,2,...,M}

{Hm(x,∇V )} (1)

with boundary data V (0) = 0 (V being zero at the origin).
In order to make the problem tractable, we will concentrate
on a single class of HJB PDEs of form (1). However, the
theory can obviously be expanded to a much larger class.

II. REVIEW OF THEORY

We first outline the theory underlying the algorithm. As
indicated above, we suppose the individual Hm are quadratic
Hamiltonians. Consequently, consider a finite set of linear
systems

ξ̇m = Amξm + σmw, ξm
0 = x ∈ IRn. (2)

Let w ∈ W .= Lloc
2 ([0,∞); IRm). Let the cost functionals

and value functions be

Jm(x, T ;w) .=
∫ T

0

1
2ξm

t Dmξm
t − γ2

2
|wt|2 dt, (3)

V m(x) = lim
T→∞

sup
w∈W

Jm(x, T ;w). (4)
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Obviously Jm and V m require some assumptions in order
to guarantee their existence.

Assume that there exists cA ∈ (0,∞) such that
xT Amx ≤ −cA|x|2 for all x ∈ IRn and m ∈
M. Assume that there exists cσ < ∞ such that
|σm| ≤ cσ ∀m ∈ M. Assume that all Dm are
positive definite, symmetric, and let cD be such
that xT Dmx ≤ cD|x|2 for all x ∈ IRn and m ∈
M. Lastly, assume that γ2/c2

σ > cD/c2
A.

(A1)

These assumptions guarantee the existence of the V m as
locally bounded functions which are zero at the origin (cf.
[16]).

The corresponding HJB PDEs are

0 = Hm(x,∇V )
= 1

2xT Dmx + (Amx)T∇V + 1
2∇V T Σm∇V

V (0) = 0
(5)

where Σm .= 1
γ2 σm(σm)T . Let Gδ be the subset of C(IRn)

such that 0 ≤ V (x) ≤ cA(γ−δ)2

c2
σ

|x|2. For m ∈ M, let Pm

satisfy the algebraic Riccati equations

0 = (Am)T Pm + PmAm + Dm + PmΣmPm. (6)

Standard results imply that each value function (4) is
the unique classical solution of its corresponding HJB PDE
(5) in the class Gδ for sufficiently small δ > 0. Further,
V m(x) = 1

2xT Pmx where Pm is the smallest symmetric,
positive definite solution of (6). In particular, there exists
symmetric, positive definite C such that V m(x) − 1

2xT Cx
is convex for all m ∈ M.

The method we will use to obtain these value func-
tions/HJB PDE solutions will be through the associated
semigroups. For each m define the semigroup

Sm
T [φ] .=sup

w∈W

∫ T

0

1
2 (ξm

t )T Dmξm
t − γ2

2
|wt|2 dt + φ(ξm

T )

where ξm satisfies (2). By [16], the domain of Sm
T includes

Gδ for all δ > 0.
Theorem 2.1: Fix any T > 0. Each value function, V m,

is the unique smooth solution of V = Sm
T [V ] in the class

Gδ for sufficiently small δ > 0. Further, given any V ∈ Gδ ,
limT→∞ Sm

T [V ](x) = V m(x) (uniformly on compact sets).
Recall that the HJB PDE of interest is (1) with Hm given

by (5). The corresponding value function is

Ṽ (x) = sup
w∈W

sup
µ∈D∞

sup
T<∞

∫ T

0

lµt(ξt) − γ2

2
|wt|2 dt (7)

where
lµt(x) = 1

2xT Dµtx,

D∞ = {µ : [0,∞) → M : measurable },
and ξ satisfies

ξ̇ = Aµtξ + σµtwt, ξ0 = x. (8)

Define the semigroup

S̃T [φ] = sup
w∈W

sup
µ∈DT

∫ T

0

lµt(ξt) − γ2

2
|wt|2 dt + φ(ξT )

where DT = {µ : [0, T ) → M : measurable }.
Theorem 2.2: Fix any T > 0. Value function Ṽ is the

unique continuous solution of V = S̃T [V ] in the class Gδ

for sufficiently small δ > 0. Further, given any V ∈ Gδ ,
limT→∞ S̃T [V ](x) = Ṽ (x) (uniformly on compact sets).
Lastly, there exists cV > 0 such that Ṽ (x) − 1

2cV |x|2 is
convex.

III. MAX-PLUS DUAL OPERATORS

We use ⊕,⊗ to indicate max-plus addition and multipli-
cation; max-plus integration (supremization) is indicated by
an ⊕ superscript on the integral sign. Let IR− = IR∪{−∞}.
Recall that a function, φ : IRn → IR− is semiconvex if given
any R ∈ (0,∞) there exists βR ∈ IR such that φ(x)+ βR

2 |x|2
is convex over BR(0) = {x ∈ IRn : |x| ≤ R}. We say φ
is uniformly semiconvex with constant β if φ(x) + β

2 |x|2 is
convex over IRn. Let Sβ = Sβ(IRn) be the set of functions
mapping IRn into IR− which are uniformly semiconvex with
constant β. Note that Sβ is a max-plus vector space (also
known as a moduloid) [2], [7], [9], [14]. Combining this
notation with the above results, we see that we have

Theorem 3.1: There exists β ∈ IR such that given any
β > β, Ṽ ∈ Sβ and V m ∈ Sβ for all m ∈ M. Further, one
may take β < 0 (i.e. Ṽ , V m convex).

The following semiconvex duality result [7], [14] requires
only a small modification of convex duality and Legen-
dre/Fenchel transform results (c.f. [17]).

Theorem 3.2: Let φ ∈ Sβ . Let C be a symmetric matrix
such that C + βI > 0 (i.e. C + βI positive definite) with
either C > 0 or C < 0. Define ψ : IRn × IRn → IR by
ψ(x, z) = − 1

2 (x − z)T C(x − z). Then, for all x ∈ IRn,

φ(x) = max
z∈IRn

[ψ(x, z) + a(z)] (9)

.=
∫ ⊕

IRn

ψ(x, z) ⊗ a(z) dz
.= ψ(x, ·) � a(·)

where for all z ∈ IRn

a(z) = −
∫ ⊕

IRn

ψ(x, z) ⊗ [−φ(x)] dx (10)

= −{ψ(·, z) � [−φ(·)]} .=
{
ψ(·, z) � [φ−(·)]}−

.
We will refer to a as the semiconvex dual of φ.
Semiconcavity is the obvious analogue of semiconvexity.

Let S−
β be the set of functions mapping IRn into IR∪{+∞}

which are uniformly semiconcave with constant β (φ(x) −
(β/2)|x|2 concave over all of IRn).

Lemma 3.3: Let φ ∈ Sβ , and let a be the semiconvex dual
of φ. Then a ∈ S−

β . Further, suppose b ∈ S−
β is such that

φ = ψ(x, ·) � b(·). Then b = a.
For simplicity, we will henceforth specialize to the case

where ψ(x, z) .= (c/2)|x − z|2. It will be critical to the
method that S̃τ [ψ(·, z)] ∈ S−(c+ε) for some ε > 0. This is
the subject of the next theorem.

Theorem 3.4: We may choose c > 0 such that Ṽ , V m ∈
S−c, and such that there exists τ > 0 and η > 0 such that ,

S̃τ [ψ(·, z)], Sm
τ [ψ(·, z)] ∈ S−(c+ητ) ∀ τ ∈ [0, τ ].
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Henceforth, we suppose c, τ, η chosen so that the results
of Theorem 3.4 hold. Now for each z ∈ IRn, S̃τ [ψ(·, z)] ∈
S−(c+ητ). Therefore, by Theorem 3.2

S̃τ [ψ(·, z)](x) = ψ(x, ·) � B̃τ (·, z) (11)

where for all y ∈ IRn

B̃τ (y, z) =
{
ψ(·, y) � [S̃τ [ψ(·, z)](·)]−}−

(12)

It is handy to define the max-plus linear operator with

“kernel” B̃τ as ̂̃Bτ [a](z) .= B̃τ (z, ·) � a(·) for all a ∈ S−c.
Note that (11), (12) introduce the dual-space operator kernel
B̃τ which propagates the dual equivalently to propagation in
the original space by S̃τ .

Proposition 3.5: Let φ ∈ S−c with semiconvex dual
denoted by a. Define φ1 = S̃τ [φ]. Then φ1 ∈ S−(c+ητ),
and φ1(x) = ψ(x, ·) � a1(·) where a1(x) = B̃τ (x, ·) � a(·).

Theorem 3.6: Let V ∈ S−c, and let a be its semiconvex
dual (with respect to ψ). Then V = S̃τ [V ] if and only if

a(z) =
∫ ⊕

IRn

B̃τ (z, y) ⊗ a(y) dy

= B̃τ (z, ·) � a(·) = ̂̃Bτ [a](z) ∀ z ∈ IRn.
Corollary 3.7: The value function Ṽ is given by Ṽ (x) =

ψ(x, ·) � ã(·) where ã is the unique solution of ã(y) =
B̃τ (y, ·) � ã(·) ∀y ∈ IRn or equivalently, ã = ̂̃Bτ [ã].

Similarly, for each m ∈ M and z ∈ IRn, Sm
τ [ψ(·, z)] ∈

S−(c+ητ) and

Sm
τ [ψ(·, z)](x) = ψ(x, ·) � Bm

τ (·, z) ∀x ∈ IRn

where
Bm

τ (y, z) =
{

ψ(·, y) � [
Sm

τ [ψ(·, z)]
]−(·)

}−
.

As before, it will be handy to define the max-plus linear
operator with “kernel” Bm

τ as B̂m
τ [a](z) .= Bm

τ (z, ·) � a(·)
for all a ∈ S−c. Further, one also obtains analogous results
(by similar proofs). In particular, one has the following

Theorem 3.8: Let V ∈ S−c, and let a be its semiconvex
dual (with respect to ψ). Then V = Sm

τ [V ] if and only if
a(z) = Bm

τ (z, ·) � a(·) ∀z ∈ IRn.
Corollary 3.9: Each value function V m is given by

V m(x) = ψ(x, ·) � am(·) where each am is the unique
solution of am(y) = Bm

τ (y, ·) � am(·) ∀y ∈ IRn.

IV. DISCRETE TIME APPROXIMATION

The method developed here will not involve any discretiza-
tion over space nor any spatially distributed basis functions.
Of course this is obvious since otherwise one could not avoid
the curse-of-dimensionality. The discretization will be over
time, where approximate µ processes will be constant over
the length of each time-step. We define the operator S̄τ on
Gδ by

S̄τ [φ](x) = sup
w∈W

max
m∈M

[∫ τ

0

lm(ξm
t ) − γ2

2
|wt|2 dt

+φ(ξm
τ )

]
(x)

= max
m∈M

Sm
τ [φ](x)

where ξm satisfies (2). Let

Bτ (y, z) .= max
m∈M

Bm
τ (y, z) =

⊕
m∈M

Bm
τ (y, z).

The corresponding max-plus linear operator is

B̂τ =
⊕

m∈M
B̂m

τ .

Lemma 4.1: For all z ∈ IRn, S̄τ [ψ(·, z)] ∈ S−(c+ητ).
Further, S̄τ [ψ(·, z)](x) = ψ(x, ·) � Bτ (·, z).

One has Sm
τ ≤ S̄τ ≤ S̃τ for all m ∈ M. With τ acting

as a time-discretization step-size, let

Dτ
∞ =

{
µ : [0,∞) → M| for each n ∈ N ∪ {0},

there exists mn ∈ M such that

µ(t) = mn ∀ t ∈ [nτ, (n + 1)τ)
}

,

and for T = n̄τ with n̄ ∈ N define Dτ
T similarly but with

domain [0, T ) rather than [0,∞). Let Mn̄ denote the outer
product of M, n̄ times. Let T = n̄τ , and define

¯̄S
τ

T [φ](x) = max
{mk}n̄−1

k=0∈Mn̄

{
n̄−1∏
k=0

Smk
τ

}
[φ](x)

where the
∏

indicates operator composition.
We will be approximating Ṽ by solving V = S̄τ [V ] via its

dual problem a = B̂τ [a] for small τ . Consequently, we will
need to show that there exists a solution to V = S̄τ [V ], that
the solution is unique, and that it can be found by solving
the dual problem. We begin with existence.

Theorem 4.2: Let

V (x) .= lim
N→∞

¯̄S
τ

Nτ [0](x) (13)

for all x ∈ IRn where 0 here represents the zero-function.
Then, V satisfies

V = S̄τ [V ], V (0) = 0. (14)

Further, 0 ≤ V m ≤ V ≤ Ṽ for all m ∈ M, and
consequently, V ∈ Gδ .

Similar techniques to those used for V m and Ṽ will prove
uniqueness for (14) within Gδ .

Theorem 4.3: V is the unique solution of (14) within the
class Gδ for sufficiently small δ > 0. Further, given any V ∈
Gδ , limN→∞ ¯̄S

τ

Nτ [V ](x) = V (x) for all x ∈ IRn (uniformly
on compact sets).

Henceforth, we let δ > 0 be sufficiently small such that
V m, Ṽ , V ∈ Gδ for all m ∈ M.

Theorem 4.4: Let V ∈ S−c, and let a be its semiconvex
dual. Then V = S̄τ [V ] if and only if a(y) = Bτ (y, ·)�a(�)
∀y ∈ IRn.

Corollary 4.5: Value function V given by (13) is in S−c,
and has representation V (x) = ψ(x, ·)� a(·) where a is the

unique solution of a = B̂τ [a].
The following result on propagation of the semiconvex

dual will also come in handy.
Proposition 4.6: Let φ ∈ S−c with semiconvex dual

denoted by a. Define φ1 = S̄τ [φ]. Then φ1 ∈ S−(c+ητ),
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and φ1(x) = ψ(x, ·) � a1(·) where a1(y) = Bτ (y, ·) � a(·)
∀y ∈ IRn.

The next result indicates that one may approximate Ṽ ,
the solution of V = S̃τ [V ], to as accurate a level as one
desires by solving V = S̄τ [V ] for sufficiently small τ .
Recall that if V = S̄τ [V ], then it satisfies V = ¯̄S

τ

Nτ [V ]
for all N > 0 (while Ṽ satisfies V = S̃Nτ [V ]), and so
this is essentially equivalent to introducing a discrete-time
µ ∈ Dτ

Nτ approximation to the µ process in S̃Nτ .
Theorem 4.7: Given ε > 0 and R < ∞, there exists τ > 0

such that

Ṽ (x) − ε ≤ V (x) ≤ Ṽ (x) ∀x ∈ BR(0).

V. ALGORITHM

Due to space limitations, we only outline the algorithm.
From Theorem 4.2, V = limN→∞ ¯̄S

τ

Nτ [0]. Let V
0 ≡ 0.

Then V
0 ∈ S−c of course. Given V

k
, let

V
k+1 .= S̄τ [V

k
]

so that V
k

= ¯̄S
τ

kτ [0] for all k ≥ 1.
Let ak be the semiconvex dual of V

k
for all k. Since

V
0 ≡ 0, one easily finds that a0(y) = 0 for all y ∈ IRn.

Note also that by Proposition 4.6,

ak+1 = Bτ (x, ·) � ak(·) = B̂τ [ak]

for all n ≥ 0.
Recall that

Bτ (x, ·) � ak(·) =
⊕

m∈M

[Bm
τ (x, ·) � ak(·)] . (15)

By (15),

a1(x) =
⊕

m∈M
â1

m(x)

where
â1

m(x) .= Bm
τ (x, ·) � a0(·) ∀m.

(16)

Using (15) and (16),

a2(x) =
⊕

{m1,m2}∈M2

â2
{m1,m2}(x)

where
â2
{m1,m2}(x) .= Bm2

τ (x, ·) � â1
m1

(·) ∀m1,m2

(17)

and M2 represents the outer product M×M. Proceeding
with this, one finds that in general,

ak(x) =
⊕

{mi}k
i=1∈Mk

âk
{mi}k

i=1
(x)

where
âk
{mi}k

i=1
(x) .= Bmk

τ (x, ·) � âk−1

{mi}k−1
i=1

(·)
(18)

Of course one can obtain V
n

from its dual as

V
k
(x) = max

y∈IRn
[ψ(x, y) + ak(y)]

.= max
{mi}k

i=1∈Mk
V̂ k
{mi}k

i=1
(x) (19)

where

V̂ k
{mi}k

i=1
=

∫ ⊕

IRn

ψ(x, y) ⊗ âk
{mi}k

i=1
(y) dy. (20)

The algorithm will consist of the forward propagation of the
âk
{mi}k

i=1
(according to (18)) from k = 0 to some termination

step k = N , followed by construction of the value as
V̂ k
{mi}k

i=1
(according to (20)).

It is important to note that the computation of each
âk
{mi}k

i=1
is analytical. We will indicate the actual analytical

computations.
By the linear/quadratic nature of the m-indexed systems,

we find that the Sm
τ [ψ(·, z)] take the form

Sm
τ [ψ(·, z)](x) = 1

2 (x − Λm
τ z)T Pm

τ (x − Λm
τ ) + 1

2zT Rm
τ z

where the time-dependent n× n matrices Pm
t , Λm

t and Rm
t

are obtained from solution of Riccati equations, and we note
that each of the Pm

τ ,Λm
τ , Rm

τ need only be computed once.
Next one computes each quadratic function Bm

τ (x, z) (one
time only) as follows. One has

Bm
τ = − max

y∈IRn
{ψ(y, x) − Sm

τ [ψ(·, z)](y)}

This takes the form

Bm
τ (x, z) = 1

2

[
xT Mm

1,1x + xT Mm
1,2z + zT (Mm

1,2)
T x

+zT Mm
2,2z

]
where each of the Mm

i,j have analytical forms (involving
matrix inverses) which, due to space limitations, we do not
include. Also note that all the matrices in the definition of
Bm

τ may be precomputed.
Now let us write the (quadratic) âk

{mi}k
i=1

in the form

âk
{mi}k

i=1
(x) = 1

2 (x − ẑk
{mi}k

i=1
)T Q̂k

{mi}k
i=1

(x − ẑk
{mi}k

i=1
)

+r̂k
{mi}k

i=1
.

Then, for each mk+1, we may obtain the coefficients from

Q̂k+1

{mi}k+1
i=1

= M
mk+1
1,1 − M

mk+1
1,2 D̂

(
M

mk+1
1,2

)T

ẑk+1

{mi}k+1
i=1

= −
(
Q̂k+1

{mi}k+1
i=1

)−1

M
mk+1
1,2 Ê

r̂k+1

{mi}k+1
i=1

= r̂k
{mi}k

i=1
+ 1

2 ÊT Mm
2,2ẑ

k
{mi}k

i=1
(21)

− 1
2

(
ẑk+1

{mi}k+1
i=1

)T

Q̂k+1

{mi}k+1
i=1

ẑk+1

{mi}k+1
i=1

D̂ =
(
M

mk+1
2,2 + Q̂k

{mi}k
i=1

)−1

Ê = D̂Q̂k
{mi}k

i=1
ẑk
{mi}k

i=1
.

Thus we have the analytical expression for the propagation
of each (quadratic) âk

{mi}k
i=1

function. Specifically, we see

that the propagation of each âk
{mi}k

i=1
amounts to a set of

matrix multiplications (and an inverse).
At each step, k, the semiconvex dual of V

k
, ak, is

represented as the finite set of functions

Âk
.=

{
âk
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
.
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where this is equivalently represented as the set of triples

Q̂k
.=

{ (
Q̂k

{mi}k
i=1

, ẑk
{mi}k

i=1
, r̂k

{mi}k
i=1

) }
.

At any desired stopping time, one can recover a represen-
tation of V

k
as

V̂k
.=

{
V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
where these V̂ k

{mi}k
i=1

are also quadratics. In fact, recall

V
k
(x) = max

{mi}k
i=1

1
2 (x − x̂k

{mi}k
i=1

)T P̂ k
{mi}k

i=1
(x − x̂k

{mi}k
i=1

)

+ρ̂k
{mi}k

i=1

.=
⊕

{mi}k
i=1

V̂ k
{mi}k

i=1
(x)

where the coefficients P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k
{mi}k

i=1
have

analytical forms which we do not include due to space
limitations. Thus, V

k
has the representation as the set of

triples

Pk
.=

{ (
P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k
{mi}k

i=1

) }
. (22)

We note that the triples which comprise Pk are analytically
obtained from the triples (Q̂k

{mi}k
i=1

, ẑk
{mi}k

i=1
, r̂k

{mi}k
i=1

)
by matrix multiplications and an inverse. The
transference from (Q̂k

{mi}k
i=1

, ẑk
{mi}k

i=1
, r̂k

{mi}k
i=1

) to

(P̂ k
{mi}k

i=1
, x̂k

{mi}k
i=1

, ρ̂k
{mi}k

i=1
) need only be done once

which is at the termination of the algorithm propagation.
We note that (22) is the representation of our approximate
solution of the original control problem/HJB PDE.

The errors are due to our approximation of Ṽ by V , and
to the approximation of V by the prelimit V

N
for stopping

time k = N . Neither of these errors are related to the space
dimension. The errors in |Ṽ − V | are dependent on the step
size τ . The errors in |V N−V | = | ¯̄Sτ

Nτ [0]−V | are due to pre-
mature termination in the limit V = limN→∞ ¯̄S

τ

Nτ [0]. The
computation of each triple (P̂ k

{mi}k
i=1

, x̂k
{mi}k

i=1
, ρ̂k

{mi}k
i=1

)
grows like the cube of the space dimension (due to the matrix
operations). Thus one avoids the curse-of-dimensionality. Of
course if one then chooses to compute V

N
(x) for all x on

some grid over say a rectangular region in IRn, then by
definition one has exponential growth in this computation
as the space dimension increases. The point is that one does
not need to compute V

N � Ṽ at each such point.
However, the curse-of-dimensionality is replaced by an-

other type of rapid computational cost growth. Here, we refer
to this as the curse-of-complexity. If #M = 1, then all the
computations of our algorithm (excepting the solution of the
Riccati equation) are unnecessary, and we informally refer
to this as complexity one. When there are M = #M such
quadratics in the Hamiltonian, H̃ , we say it has complexity
M . Note that

#
{

V̂ k
{mi}k

i=1
|mi ∈ M ∀i ∈ {1, 2, . . . , k}

}
∼ MN .

For large N , this is indeed a large number. (Pruning and
proper initialization can reduce this problem, but we do not
include these techniques.) Nevertheless, for small values of
M , we obtain a very rapid solution of such nonlinear HJB
PDEs, as will be indicated in the examples to follow. Further,
the computational cost growth in space dimension n is lim-
ited to cubic growth. We emphasize that the existence of an
algorithm avoiding the curse-of-dimensionality is significant
regardless of the practical issues.

VI. EXAMPLES

A number of examples have so far been tested. In these
tests, the computational speeds were very great. (Again,
some practical issues involving pruning and initialization
are not discussed here due to space limitations.) This is
due to the fact that M = #M was small. The algorithm
as described above was coded in MATLAB (with a very
simple pruning technique and initialization). The quoted
computational times were obtained with a standard 2001 PC.
The times correspond to the time to compute V N

.= ¯̄S
τ

Nτ [0].
The plots below require one to compute the value function
and/or gradients pointwise on planes in the state space. These
plotting computations are not included in the timing.

Consider a four-dimensional example with constituent
Hamiltonians, Hm, whose Am are

A1 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.5 0.1
0.0 −0.1 0.0 −1.5

⎤⎥⎦ ,

A2 = (A1)T ,

A3 =

⎡⎢⎣
−1.0 0.5 0.0 0.1
0.1 −1.0 0.2 0.0
0.2 0.0 −1.6 −0.1
0.0 −0.05 0.1 −1.5

⎤⎥⎦ .

The Dm and Σm were simply

D1 = D2 = D3 =

⎡⎢⎣
1.5 0.2 0.1 0.0
0.2 1.5 0.0 0.1
0.1 0.0 1.5 0.0
0.0 0.1 0.0 1.5

⎤⎥⎦ ,

and

Σ1 = Σ2 = Σ3 =

⎡⎢⎣
0.2 −0.01 0.02 0.01

−0.01 0.2 0.0 0.0
0.02 0.0 0.25 0.0
0.01 0.0 0.0 0.25

⎤⎥⎦ .

The results of this four-dimensional example appear in
Figures 1–4. In this case, the results have been plotted over
the region of the affine plane x3 = 3, x4 = −0.5 given by
x1 ∈ [−10, 10] and x2 ∈ [−10, 10]. The backsubstitution
error has been scaled by dividing by |x|2 + 10−5. The
computations required approximately 40 seconds.

In order to indicate that the form of HJB PDE solutions
obtained by this approach are not limited to the type of
shapes appearing in the previous example, we include an
additional partial derivative plot from another example, and
this is depicted in Figure 5. There is not space here to give
the full details of the example, but we note that it includes
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Fig. 1. Value function (4-D case)
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Fig. 3. Partial with respect to x4 (4-D case)

constant and linear terms in the Hm, yielding a system where
the behavior changes when the state exceeds a certain bound.
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