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Abstract— Power-conserving and Dirac structures are known
as an approach to mathematical modeling of physical engineer-
ing systems. In this paper connections between Dirac structures
and well known tools from standard functional analysis are
presented. The analysis can be seen as a possible starting
framework towards the study of compositional properties of
Dirac structures.

I. INTRODUCTION

Prevailing trend in the modeling of physical systems for

simulation is port-based modeling. The system is split into

sub-systems that are interacting with each other via ports

of variables called flow and effort. This way of modeling

has several advantages. It represents a unified way to model

physical systems from different physical domains such as

mechanical, electrical, hydraulic, thermal, and so on. The

knowledge about models of sub-systems (sub-models) can be

stored in libraries and it is reusable for later occasions. The

modeling process can be performed in an iterative manner,

gradually refining model by adding the other sub-models.

An interconnection structure is a linear power-conserving

part of a port based model. By analyzing an interconnection

structure we can get information about the correctness of the

considered model or about its dynamical behavior [5]. Also

an appropriate representation of interconnection structure

leads to an efficient code for numerical simulation (see for

example [5]).

An interconnection structure can be considered from a

geometric point of view. Namely, a subspace of admissible

flows and efforts imposed by an interconnection structure

represents a Dirac structure. Therefore, the properties of
an interconnection structure can be looked through the
properties of the corresponding Dirac structures. This ap-

proach has been initiated for electrical circuit in [13] and

for rigid mechanisms in [14]. Dirac structures have been

originally introduced by Courant [1] and Dorfman [2]. In [1],

a generalization of Poisson and (pre)-symplectic structures

has been considered. Dorfman [2] developed an algebraic

theory of Dirac structures in the context of the study of

completely integrable systems of partial differential equa-

tions. Dirac structures have been mainly investigated on finite

dimensional vector spaces [13], [15] with few exceptions. For

example in [16] the authors considered Dirac structures on
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vector spaces of differentiable forms and in [8], [7] Dirac

structures on Hilbert spaces have been analyzed.

The aim of this paper is to introduce and analyze Dirac

structures on reflexive Banach spaces. Some basic properties

are obtained and the connection between standard tools from

functional analysis and Dirac structures is emphasized. Based

on well-known mathematical tools, we provide the kernel and

image representation of Dirac structures. Moreover, neces-

sary and sufficient conditions for a subspace of a reflexive

Banach space to be a Dirac structure are provided. Under

some hypothesis a Dirac structure can be decomposed in

the orthogonal sum of three fundamental Dirac structures:

completely multivalued, completely kernel and completely

skew-adjoint. The results presented in this paper can be

viewed as a generalization of the results presented, for

finite-dimensional spaces, in [13], [15], [17] and, for Hilbert

spaces, in [6], [7].

The theory developed in this paper shows the very strong

relation between the power-conserving and Dirac structures

and standard tools from functional analysis. A simple aca-

demic example of ideal transmission line illustrates the

analysis.

II. DIRAC STRUCTURES ON REAL VECTOR SPACES

Let F and E be real vector spaces whose elements are

labeled as f and e, respectively. We call F the space of flows
and E the space of efforts. The space B = F × E is called

the bond space and an element of the space B is denoted by

b = (f, e). The spaces F and E are power conjugate. This

means that there exists a map

〈· | ·〉 : E × F → R

called the power product which is linear in each coordinate

and it is not degenerate.

Using the power product, we define a symmetric bilinear
form

� ·, · �: B × B → R

by

� (f1, e1), (f2, e2) �= 〈e1 | f2〉 + 〈e2 | f1〉,
for all (f1, e1), (f2, e2) ∈ B. We have the following imme-

diate relation between the power product and and the bilinear

form

〈e | f〉 =
1
2
� b, b �,

for all b = (f, e) ∈ B.

We recall the notion of a Tellegen structure (known also as

power-conserving structure).
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Definition 2.1 (Tellegen structure): Let Z be a subspace

of the vector space B. We say that Z is a Tellegen structure
on B if

〈e | f〉 = 0, for all (f, e) ∈ Z.
We denote by Z⊥ the orthogonal complement of Z with

respect to the bilinear form � ·, · �, namely

Z⊥ := {b ∈ B |� b, b̃ �= 0, for all b̃ ∈ Z}.
Remark 2.1: Let Z be a subspace of the vector space B.

Then Z is a Tellegan structure on B if and only if Z ⊆ Z⊥.
We focus on a special class of Tellegan structures namely

Dirac structures.

Definition 2.2 (Dirac structure): Let D be a subset of B.

We say that D is a Dirac structure on B if

D = D⊥.
For finite-dimensional spaces a Dirac structure is a Tel-

legan structure of maximal dimension. In [6], [7], Dirac

structures on Hilbert spaces have been defined. For infinite-

dimensional Hilbert spaces one can also approach the analy-

sis of Dirac structures using Krein spaces which are not

Pontryagin spaces. In this paper we are especially interested

in the case when B is a reflexive Banach space.

III. DIRAC STRUCTURES ON REFLEXIVE BANACH SPACES

An important tool for the analysis of Dirac structures and

their properties on Hilbert spaces is the existence of the inner

product. Some of the results obtained for Hilbert spaces can

be carried on in the context of Banach spaces using the

natural definition of the duality product.

A. Definition of Dirac structures on reflexive Banach spaces

Let F be a (real) Banach space and E = F∗, where F∗

is the adjoint space of F (the set of all bounded semi-linear

forms on F). Then E is a Banach space with the norm ‖e‖
defined by

‖e‖ = sup
0 �=f∈F

|e(f)|
‖f‖ .

The adjoint space F∗∗ is again a Banach space. Each f ∈ F
may be regarded as an element of F∗∗. However, this does

not imply that F∗∗ can be identified with F as in the case of

Hilbert spaces. The Banach space F is said to be reflexive

if F can be identified with F∗∗.

Assumption 3.1: The Banach space F is reflexive.

We introduce the scalar product 〈· | ·〉 : E ×F → R defined

by 〈e | f〉 := e(f) for all e ∈ E and f ∈ F . Each f ∈ F
may be regarded as an element of F∗∗. Consider also the

scalar product 〈· | ·〉 : F × E → R which satisfies

〈f | e〉F×E = 〈e | f〉E×F .

for all e ∈ E and f ∈ F .

Remark 3.1: The scalar product on E × F is a power

product. Indeed, since we work with real Banach spaces,

the scalar product is linear in both components. From the

definition of the norm on E , we see that if 〈e | f〉 = 0 for

all f ∈ F then ‖e‖ = 0 so e = 0. The following equality

holds in Banach spaces (see Kato [10], page 135)

‖f‖ = sup
0 �=e∈E

〈e | f〉
‖e‖ .

From this relation, if 〈e | f〉 = 0 for all e ∈ E we have that

‖f‖ = 0 so f = 0. We have proved that the scalar product

is non-degenerate.

Furthermore, the bond space B = F × E is also a Banach

space with the linear structure defined componentwise and

the norm defined by

‖(f, e)‖ = (‖f‖2 + ‖e‖2)
1
2 .

Other choices of the norm are also possible. We use this

norm mainly because it ensures that (see Kato [10], page

164)

(F × E)∗ = F∗ × E∗ = E × F .

The bond space B is reflexive. Indeed,

B∗∗ = (F × E)∗∗ = (E × F)∗ = E∗ ×F∗ = B.

In the sequel we shall show that there is a very tight

connection between the standard tools from the functional

analysis and the above defined Tellegan and Dirac structures.

Proposition 3.1: Let Z be a Tellegan structure on B. Then

cl(Z) (the closure of Z) is also a Tellegan structure on B.

Proof: Take a sequence (bn)n∈N = (fn, en)n∈N of

elements in Z that converges to b = (f, e). Using the

inequality

|〈e | f〉| ≤ ‖e‖‖f‖,
we have that

|en(fn) − e(f)| ≤ |en(fn − f)| + |(en − e)f |
≤ ‖en‖‖fn − f‖ + ‖en − e‖‖f‖.

Since bn converges to b we have that ‖fn −f‖ and ‖en −e‖
converge to zero and ‖en‖ is bounded. The fact that bn ∈ Z
gives that en(fn) = 0, and taking the limit in the above

inequality we obtain that e(f) = 0, which means that

b = (f, e) ∈ Z . Therefore we conclude that cl(Z) is also a

Tellegan structure on the bond space B.

We consider the scalar product 〈·, ·〉B∗×B : B∗ × B → R

defined by

〈b, b̃〉B∗×B := 〈e | f̃〉 + 〈ẽ | f〉
where b = (e, f) ∈ B∗ = E × F and b̃ = (f̃ , ẽ) ∈ B =
F × E . This is the scalar product which corresponds to the

norm defined on B∗ (see again Kato [10], page 164). For any

subset Z of B we denote Zc the orthogonal complement with

respect to the scalar product 〈·, ·〉B∗×B, i.e.

Zc := {b ∈ B∗ | 〈b, b̃〉B∗×B = 0, ∀b̃ ∈ Z}.
Remark 3.2: By definition we have that Zc is a subset of

B∗ = E × F and Z⊥ (the orthogonal of Z with respect to

the bilinear form on B as defined in the previous section)

Z⊥ := {b ∈ B |� b, b̃ �= 0, ∀b̃ ∈ Z}
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is a subset of B.

We consider R the natural embedding of B∗ into B. Then

R is an isometric isomorphism between B∗ and B. More

precisely R is defined by

R =
[

0 rF∗∗F
idE 0

]

where idE is the identity on E and rF∗∗F is the inverse of

rFF∗∗ , the natural isometric isomorphism between F and

F∗∗ (see for example Dunford and Schwartz [3], vol I, page

66). The inverse of R is the isometric isomorphism S : B →
B∗ defined by

S =
[

0 idE
rFF∗∗ 0

]
.

Remark 3.3: The bilinear form � ·, · � on B is related

to the scalar product 〈·, ·〉B∗×B by

� b1, b2 �= 〈Sb1, b2〉B∗×B.

for all b1 = (f1, e1) and b2 = (f2, e2) in B. Indeed, we have

(by the definition of the bilinear form) that

� b1, b2 �= 〈e1 | f2〉 + 〈e2 | f1〉,
and

〈Sb1, b2〉B∗×B = 〈(e1, rFF∗∗f1), (f2, e2)〉B∗×B
= 〈e1 | f2〉 + 〈e2 | rFF∗∗f1〉
= 〈e1 | f2〉 + 〈e2 | f1〉.

Remark 3.4: The bilinear form � ·, · � on B is related

to the scalar product 〈·, ·〉B∗×B by

� Rb1, b2 �= 〈b1, b2〉B∗×B.

for all b1 = (e1, f1) in B∗ and b2 = (f2, e2) in B.

Using the above remarks a relation between the two or-

thogonal complements defined before can be very easily

established.

Proposition 3.2: Let Z be a subspace of the bond space

B. Then the following equalities hold:

Z⊥ = RZc, SZ⊥ = Zc.
Proof: This is a direct consequence of the relation

between the bilinear form on B and the scalar product

〈·, ·〉B∗×B. Let b, b̃ be elements of Z⊥, Z , respectively. We

have that

� b, b̃ �= 0 ⇒ 〈Sb, b̃〉B∗×B ⇒ SZ⊥ ⊆ Zc ⇒ Z⊥ ⊆ RZc,

and, for b in Zc, we obtain that

〈b, b̃〉B∗×B = 0 ⇒� Rb, b̃ �= 0 ⇒ RZc ⊆ Z⊥.

Since SR = I we have also that SZ⊥ = Zc.

Remark 3.5: Let Z be a subspace of B. The definition of

R and the fact that Zc is a closed linear subspace of B∗ imply

that Z⊥ is also a closed linear subspace of B. Therefore, a

Dirac structure will also be a closed linear subspace.

Summarizing the connections with standard functional analy-

sis, we may state the following proposition.

Proposition 3.3: Let D be a vectorial subspace of B. The

following statements are equivalent:

1) D is a Dirac structure on B.

2) D = RDc.

3) Dc = SD.

Example 3.1: Let A be a skew-adjoint (unbounded in

general) operator from domA ⊆ F to E , that is

〈Ax | y〉 + 〈x | Ay〉 = 0,

for all x, y ∈ domA = domA∗. Then the graph of A,

G(A) = {(x,Ax) : x ∈ domA}
is a Dirac structure. Indeed, the definition of a skew-adjoint

operator leads to

(G(A))⊥ = G(−A)∗ = G(A),

so that the conclusion follows.

Remark 3.6: Similarly as for B one may define a bilinear

form on B∗, and the orthogonal complement of a set with

respect to this bilinear form. Further, Tellegan structure and

Dirac structure on B∗ may be defined. One can prove that

(a closed set) D is a Dirac structure on B if and only if Dc

is a Dirac structure on B∗.

Before we give necessary and sufficient conditions for a

Tellegan structure to be a Dirac structure, we need a technical

result.

Proposition 3.4: Let Z be a subset of B. The following

equality holds:

(RZc)c = SZcc. (1)

Proof: First we prove that SZcc ⊆ (RZc)c. Since B
is a reflexive Banach space, we may identify Zcc with a

subset of B which will be denoted in the same way. Let us

consider b = (f, e) ∈ Zcc. Then Sb = (e, rFF∗∗) ∈ SZcc.

We compute the scalar product of Sb ∈ B∗ with Rz ∈ B,

where z = (ze, zf ) is an arbitrary element in Zc. This is

〈Sb, Rz〉B∗×B = 〈(e, rFF∗∗f), (rF∗∗Fzf , ze)〉B∗×B
= 〈e | rF∗∗Fzf 〉 + 〈ze | rFF∗∗f〉
= 〈e | zf 〉 + 〈ze | f〉
= 〈z, b〉B∗×B.

Since b ∈ Zcc, we have

〈z, b〉B∗×B = 0, ∀z ∈ Zc,

or equivalently

〈Sb,Rz〉B∗×B = 0, ∀Rz ∈ RZc,

or Sb ∈ (RZc)c. This means that the inclusion SZcc ⊆
(RZc)c holds. The other inclusion can be proved in a similar

manner.

The proof of the following proposition is straightforward,

well known in functional analysis, and gives necessary and

sufficient conditions for a Tellegan structure to be a Dirac

structure.
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Theorem 3.1: Let Z be a closed subspace of the bond

space B. Then Z is a Dirac structure on B if and only if Z
and Z⊥ are Tellegan structures on B.

Proof: Suppose that Z is a Dirac structure on B. Then

Z is a Tellegan structure. Since Z = Z⊥ it follows that Z⊥

is also a Tellegan structure.

Conversely, suppose that Z and Z⊥ are Tellegan structures.

From Proposition 2.1 we have

Z ⊆ Z⊥ ⊆ Z⊥⊥. (2)

From Proposition 3.2 we know that Z⊥ = RZc. Conse-

quently,

Z⊥⊥ = R(RZc)c. (3)

Using Proposition 3.4 the relation (RZc)c = SZcc is

obtained. The equality (3) becomes

Z⊥⊥ = RSZcc = Zcc.

Since Z is closed in B and B is a reflexive Banach space,

then Z is invariant to the operation of double dual (see Kato

[10], page 136), i.e. Zcc = Z . We conclude that Z⊥⊥ = Z .

From the sequence of inclusions (2) we finally obtain Z =
Z⊥, which means that Z is a Dirac structure on B.

B. Representations of Dirac structures

Many of the linear differential operators encountered in

applications are closed or have a closed linear extension.

Many of the important theorems which hold for continuous

linear operators on Banach spaces hold also for closed linear

operators. Let T be an operator acting between two Banach

spaces B and L. A sequence (un) ⊂ D(T ) is said to be T-
convergent to u ∈ B if both (un) and (Tun) are convergent

sequences and un → u. The operator T is said to be closed
if (un) is T -convergent to u implies that u ∈ D(T ) and

Tu = lim Tun. If T is a closed operator, the null space

ker(T ) is a closed linear subspace of B (see Kato [10], page

165).

Any densely defined closed operator T has a unique

maximal adjoint T ∗ from L∗ to B∗ (see Goldberg [4], page

50) which is also a closed linear operator (see Goldberg [4],

page 53).

In many cases we have to check if D, a subspace of

B, expressed as the null space of a densely defined closed

operator is a Dirac structure on B. The following theorem

provides necessary and sufficient conditions for D = ker(T )
to be a Dirac structure on B.

Theorem 3.2: Consider a densely defined closed operator

T : B → L, where B is the bond space. The subspace D =
ker(T ) is a Dirac structure on B if and only if ker(T ) and

Im(RT ∗) are Tellegan structures on B.

Proof: Since T is a densely defined closed operator it

follows (see Goldberg [4], Theorem IV.1.2, page 95) that

cl Im(T ∗) = (ker(T ))c. (4)

We consider the subspace D = ker(T ) of B, which is

closed (see the reference before). From the equality (4) and

Proposition 3.2 we have that

D⊥ = RDc = R(ker(T ))c = R cl Im(T ∗) = cl Im(RT ∗).

Using Proposition 3.1 and Theorem 3.1 we may conclude

the proof.

Remark 3.7: We see from the proof of the previous the-

orem that if D, the null space of the densely defined closed

operator T : B → L, is a Dirac structure on B then it has a

image representation, namely

D = cl(Im(RT ∗)).
Using Theorem 3.2, we know how to check if the null space

of a densely defined closed operator is a Dirac structure. One

may ask the following question: given D a Dirac structure

on B, there exists a densely defined closed operator T on B
such that D is the null space of T ? For Hilbert spaces the

answer turned out to be always positive (see [6]). In Banach

spaces this is not always the case, as we will see from the

following result. However, for applications, we have to verify

if the null space of some operator is a Dirac structure.

We may state the following theorem, which is a direct

consequence of Theorem II.1.14, page 48, Goldberg [4].

Theorem 3.3: Let D be a Dirac structure on the bond

space B. There exists a projection P from B onto D if and

only if B = D⊕N for N some closed subspace of B. Then

D = ker(I − P ).
We make the following two remarks regarding the previous

theorem.

Remark 3.8: If any of the conditions in the above the-

orem holds then there exists a kernel representation D =
ker(I − P ) of a Dirac structure D, where P is a suitable

projection from B onto D. Clearly, for Hilbert spaces the

kernel representation always exists.

Remark 3.9: For a given closed linear manifold D in B
it is not always possible to find N a closed subspace of B
such that B = D ⊕ N (see the references in Dunford and

Schwartz [3], page 553).

Three classes of Dirac structures are introduced in the

sequel

1) Completely multivalued Dirac structures which are of

the form

Dmul = {(0, e) : e ∈ E};
2) Completely kernel Dirac structures which are of the

form

Dker = {(f, 0) : f ∈ F};
3) Completely skew-adjoint Dirac structures which are

determined by the graphs of injective skew-adjoint (not

necessarily bounded) operators from F to E .

It can be easily seen that the linear subspaces of type (1.)

and type (2.) are Dirac structures, while Example 3.1 shows

that the linear subspaces of type (3.) are Dirac structures as

well. These particular Dirac structures are called fundamental

Dirac structures. Under some conditions it can be shown that

a Dirac structure can be decomposed as an orthogonal sum

of the previous introduced fundamental Dirac structures. The
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idea of the construction of such decomposition is as follows.

Define the linear subspace Dmul = D ∩ ({0} × E) in B and

the linear subspace Emul = {e ∈ E : (0, e) ∈ D} in E .

Clearly, they are closed in B and in E , respectively. Assume

now that Emul has an orthogonal complement E1 in E , so

that E = Emul ⊕ E1. Now define in F the linear subspace

Fmul as

Fmul = {f ∈ F : 〈e | f〉 = 0, ∀ e ∈ E1},
and then it is easy to see that Fmul has an orthogonal

complement F1 in F . Therefore Dmul is a completely

multivalued Dirac structure on the bond space Bmul :=
Fmul × Emul and there exists a Dirac structure D1 on the

bond space B1 := F1 × E1 such that

D = Dmul ⊕D1.

Furthermore, the Dirac structure D1 is the graph of a skew-

adjoint (not necessarily bounded) operator from the Banach

space F1 to the Banach space E1. Define the linear subspace

Dker = D1 ∩ (F1 × {0}) in B1 and the linear subspace

Fker = {f ∈ F1 : (f, 0) ∈ D1} in F1. These subspaces

are closed in B1 and in F1, respectively, and assume that

Fker has an orthogonal complement Fskew in F1, so that

F1 = Fker ⊕ Fskew. Now define in E1 the linear subspace

Eker as

Eker = {e ∈ E1 : 〈e | f〉 = 0, ∀ f ∈ Fskew},
and then it follows that Eker has an orthogonal complement

Eskew in E1. Then Dker is a completely kernel Dirac structure

on the bond space Bker := Fker × Eker and there exists a

Dirac structure Dskew on the bond space Bskew := Fskew ×
Eskew such that

D1 = Dker ⊕Dskew.

Clearly, the Dirac structure Dskew is the graph of an closed

injective skew-adjoint (not necessarily bounded) operator

from the Banach space Fskew to the Banach space Eskew.

Conclude that under the assumptions imposed above, a Dirac

structure can be written down as an orthogonal sum of three

fundamental Dirac structures on the ”smaller” bond Banach

spaces Bmul, Bker and Bskew, respectively. Moreover, this

decomposition is given by

D = Dmul ⊕Dker ⊕Dskew,

and is comparable to the so called ”constrained input-output

representation” of a Dirac structure in finite-dimensional

spaces, see [17].

IV. EXAMPLE

The academic example presented in this section is a

straightforward adaptation, for reflexive Banach spaces, of

the example of the transmission line from [6].

Consider a transmission line whose length is S. The

Kirchhoff’s laws describing the transmission line are given

by

eφ = −∂eq

∂z ,

fq = −∂fφ

∂z .
(5)

Here fq is the rate of charge density, eq is the voltage

distribution, fφ is the current distribution and eφ is the rate

of flux density. The boundary conditions are

fφ(0) = −fL, eq(0) = eL,
fφ(S) = fR, eq(S) = eR.

(6)

Here fL and eL are the current and voltage at the left

boundary. Similarly, fR and eR are the current and voltage

at the right boundary. Let p, q be two positive numbers

satisfying the condition 1/p + 1/q = 1 and let Lp(0, S)
and Lq(0, S) be the space of p- and q-integrable functions

on [0, S], respectively. The space of flow variables is given

by

F = Lp(0, S) × Lp(0, S) × R
2,

while the space of effort variables is given by

E = Lq(0, S) × Lq(0, S) × R
2.

An element of the space F is denoted by

f = (fq, fφ, fL, fR),

and an element of the space E is denoted by

e = (eq, eφ, eL, eR).

The power product is defined as

〈e|f〉B = 〈e, f〉F

=

S∫
0

fq(z)eq(z)dz +

S∫
0

fφ(z)eφ(z)dz

+fLeL + fReR.

The first term represents the power associated to electrical

domain, the second term is power associated to magnetic do-

main and the last two terms represents the power exchanged

through the boundary. The space of admissible flows and

efforts is given by

D = ker(T ),

where T : B → L = Lp(0, S)×Lp(0, S)×R
2 ×Lq(0, S)×

Lq(0, S) × R
2 is as follows

T =
[

M 0
0 N

]
,

with M and N given by

M =

⎡
⎣ idLp(0,S)

∂
∂z 0 0

0 ∂L,p 1 0
0 ∂R,p 0 −1

⎤
⎦ ,

N =

⎡
⎣

∂
∂z idLq(0,S) 0 0

∂L,q 0 −1 0
∂L,q 0 0 −1

⎤
⎦ .

Here, ∂L,p : Lp(0, S) → R is defined as ∂L,px = x(0)
and ∂R,p : Lp(0, S) → R is defined as ∂R,px = x(S). The

domain of the operator T is

Dom(T ) = Lp(0, S) × Domp(
∂

∂z
) × R

×R × Domq(
∂

∂z
) × Lq(0, S) × R × R,
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where

Domp(
∂

∂z
) = {x ∈ Lp(0, S) : x abs. cont.

and
∂x

∂z
∈ Lp(0, S)}.

The subspace Domp( ∂
∂z ) is dense on Lp(0, S) (see [10], pp.

145, exercise 2.7). This means that the linear transformation

T has a dense domain and thus ker(T ) is a closed subspace.

First we prove that D is a power conserving structure. Indeed,

if (f, e) ∈ D then

〈e|f〉B = −
S∫

0

∂fφ(z)
∂z

eq(z)dz −
S∫

0

∂eq(z)
∂z

fφ(z)dz

+eLfL + eRfR

= −eq(S)fφ(S) + eq(0)fφ(0) + eLfL + eRfR

= 0.

An element of the space L is denoted by

l = (lφ, lfL
, lfR

, lq, leL
, leR

).

The linear transformation RT ∗ : L → B has the following

form

RT ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂z 0 0 0 0 0

idLp(0,S) 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 ∂

∂z 0 0
0 0 0 idLq(0,S) 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the domain of RT ∗ is given by

Dom(RT ∗) = Domp(
∂

∂z
) × R

2 × Domq(
∂

∂z
) × R

2

∩{l ∈ L : lφ(0) = lfL , lφ(S)
= lfR , lq(0) = −leL , lq(S) = leR}.

Now we prove that im(RT ∗) is a power-conserving structure.

Indeed,

〈e|f〉B = −
S∫

0

∂lφ(z)
∂z

lq(z)dz −
S∫

0

∂lq(z)
∂z

lφ(z)dz

+lfL
leL

+ lfR
leR

= −lq(S)lφ(s) + lq(0)lφ(0) + lfL
leL

+ lfR
leR

= 0.

Therefore the subspace D is a Dirac structure, cf. Theorem

3.2. This also means that equations (5) with the boundary

conditions (6) represent the interconnection part of the trans-

mission line.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper connections between the power-conserving

and Dirac structures and standard tools from functional

analysis have been identified and used to derive straight-

forward properties and representations for Dirac structures.

The composition of two Dirac structures is not necessarily

a Dirac structure (see [5]). Further research will focus on

finding necessary and sufficient conditions for preserving the

Dirac structure under interconnection of systems.
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