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Abstract—1In this paper, the stabilization of one class of
remote control systems with unknown time varying delays is
analyzed and discussed using LMI techniques. A discrete time
state space model under a static control law for remote control
systems is first introduced based on some assumptions on the
uncertain term. The time delay is unknown, time varying, and
can be decomposed into two parts: one fixed part which is
unknown and is an integer multiple of the sampling time;
the other part which is randomly varying but bounded by
one sampling time. Static controller designs based on delay
dependent stability conditions are presented. This system is then
extended to a more general case when the randomly varying
part of the time delay is not limited to one sampling time. The
derivative of the time delay is not limited to be bounded. Hence,
the contributions are as follows: i) for a given controller, we
can use these stability criteria to test stability of the resulted
system; ii) we can design a remote controller to stabilize an
unstable system. Finally, a simulation example is presented
to demonstrate the remote stabilization of open loop unstable
systems.

I. INTRODUCTION

Over the past few years, increasing attention has been
drawn to the control of time delay systems Stability problem
is one of the most important issues in time delay systems
since delays caused by transmission may result in instability,
especially when there are uncertainties [1]-[3].

Many delay independent and delay dependent stability
criteria, which are mainly concerning continuous systems,
have been presented [4]. However, most practical applica-
tions of remote controllers through network transmission are
implemented digitally. Up until now, little attention has been
paid to discrete time systems with delays and controlled in a
remote way. One possible reason is that, for a known delay,
the delay difference equation can be rewritten to be a high
order system without delay by augmentation [5]. However,
in case with large known delay, this augmentation approach
can lead to high dimensional systems; and moreover, it is
not applicable for systems with unknown delays.

In several references [6]-[7], no input delay was consid-
ered in the problem formulation. This simplifies the design
of complex controllers for robust stabilization. In [8], two
delay dependent conditions were developed for discrete time
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systems, but no uncertainties were considered in the system
parameters. Based on the above analysis, in this paper, we
further look into the stability problem of remote control
systems with unknown time varying delay in the control
input in the discrete time domain. In this case, the existing
theory using augmentation cannot be applied because of the
unknown time varying delay. One approach is to decompose
the time delay into two parts: one fixed part which is
unknown and is an integer multiple of the sampling time; the
other part which is randomly varying but bounded by one
sampling time. Then the stability condition of the discrete
time state space model under a static control law for the
remote control system is first introduced based on a certain
assumption on the uncertain term.

This system is then extended to a more general case
when the randomly varying part of the time delay has
a bound which is more than one sampling time. Delay
dependent stability conditions are presented for the static
controller design by using LMI techniques. Delay dependent
conditions based on linear matrix inequalities (LMIs) are
derived by introducing some slack matrix variables which
are less conservative than the conventional approaches [9].
A similar approach for continuous time systems is presented
in [10]. Accordingly, we can design a static remote controller
to stabilize a given open loop unstable system if there exists
solutions from the derived LMIs. There is no assumption on
the variation rate of the time delay, i.e., the derivative of the
time delay is not necessary to be bounded. Another advantage
is that for a given controller, we can use these stability
criteria to test stability of the resulted closed loop systems.
In this paper, the analysis on the discrete time system and
the static controller design when the delay variation part
is less than one sampling time is presented. In Section
1V, the system description of the general case and the
controller design are analyzed when the delay variation part
is longer than one sampling time. Notations: 'R denotes an
n-dimensional real vector space; || - || is the Euclidean norm
or induced matrix norm.

II. PROBLEM FORMULATION

The following system with uncertain delay is considered
x(t) = Apx(t) + Byu(t — 72(t)), (D)

where x € R" is the measurable state vector, u € R™
denotes the remote control signal, 4, € R™*" and B, €
R™ ™ are known constant matrices. The system in (1) can
be illustrated as in Fig.1, where 71(¢) is the time delay from
the system sensor to the remote controller and u. € R™ is
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Fig. 1. Block diagram of the remote control systems

the control input to the physical system. In this paper, the
sensor is assumed to be time driven. The controller and the
actuator are assumed to be event driven. The assumption on
the time delays is as follows.

Assumption 1: The time delays in the two channels can
be represented as 7;(t) = h;Ts + €;(t), i = 1,2, where Ty
is the sampling time and ¢;(¢) is unknown but is bounded
as 0 < ¢g;(t) < L;T with L; < h;, where L; is a known
integer. h; is an unknown integer constant and is assumed to
be: h; € [0, h;], where h; is known.

Remark 1: Note that the controller and the actuator are

event driven; thus there is no holding-up on the controller
(pure gain) and actuator side. The total delay from the sensor
to the actuator can be represented as 7(t) = 72(t) + 71 (¢ —
79(t)). According to Assumption 1, similarly 7(¢) can be
rewritten as 7(t) = hT, +¢(t), with h € [hy +ha, hy +ho +
1] being an unknown integer and (¢) being unknown but
bounded with 0 < &(t) < LTs and L < h < h, where L
and h are known integers.
Here we first consider the case when L = 1 which means
that the randomly varying part of the time delay is bounded
by one sampling time. The case when h > L > 1 is extended
in Section IV.
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Fig. 2. Timing flow of the control system

The timing flow of the control system is shown in Fig.2.
Suppose the measured state x;_j, is sent at time (k — k)T
from the sensor, it arrives at the controller in the sampling

interval [(k — h2)Ts, (k — ha + 1)Ty) according to the delay
structure in Assumption 1. At the controller side, the control
signal is then denoted as uy_p, = Kxj_j if a static gain
is designed and the sampled state arrives at the controller at
time ¢ € [(k — ha)Ts, (k — ha + 1)Ts). This control signal
arrives at the actuator at time t = kT + £(¢).

Integrating the open loop system in the interval [kT%, (k+
1)Ty], and using Fig.2, we have

Xpr1 = Axp+ (B+ ABo)up_p, + (B + AB)ug_p,—1
)

where A = T, B = fTS e»*dsB,, ABy =

—f:;’b eAPSdsBp, AB; = —fos kg eAdeSBp and ABy +

L= —

Because there are uncertainties in the time delay, we
cannot use the prediction method to stabilize the system
which requires accurate information of the delay in order to
predict the future states. Hence a static controller is designed
as u(t) = Kx(t — 7 (t)) where 7(¢) is the delay from
the sensor to the controller in the continuous time domain.
The main task here is how to design a proper K such that
the closed loop control system is stable. Furthermore, as
previously discussed in Fig.2, in discrete time domain we
have uy_p, = Kxj_p. Then (2) becomes

AXk + (B + ABo)KXk,h
+(B+ AB1) KX p1, 3

Xk+1 =

where A and B can be derived directly from A, and B,
in (1). Based on the above analysis, though AB;, i = 0,1,
are uncertain, embedding them into standard uncertain terms
would allow us to treat the problem as a robust stabilization
problem. Hence in this paper, we assume that AB; satisfies
the following assumption, which is a commonly used condi-
tion for most of the existing approaches for uncertain time
delay systems [1] [9].

Assumption 2: AB; can be expressed as AB; =

ET;(k)F;,i= 0,1, where E, F; are known with appropriate
dimensions and T';(k)TT;(k) < I.
Note that in Assumption 2, there always exist £ and F;
such that I';(k)TT;(k) < I for AB,, i = 0, 1. However, for
a specific system pair (A4,, Bp) and sampling time T, we
can use numerical methods to get the matrices £ and F;
which are required to be known for the controller design.

Lemma 1: [9] Let ¥ and Y5 be real constant matrices of
compatible dimensions, and H(t) be a real matrix function
satisfying H(t)T H(t) < I. Then the inequality holds

STHH)S, + 2THHTS, <exty) + 7180y, @)
where ¢ is a positive constant.

III. CONTROLLER DESIGN

Rewrite the system in (3) as
X1 = Axg + AoaXp—n + A1aXp—n—1, %)

where Aop 2 BK+AByK = Ag+ A with Ay = BK and
Ao = AByK, and Ajp 2 BK + AB K = A, + A with
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Ay

= BK and A; = AB; K. For any matrices N;, S; and

M; (i =1,2,3,4) of appropriate dimensions, the following
equations hold:

vy

Wy

U3

2 x5 N1+ X4, No + X5, 1 N3 + X4 Nu

k
Xk — Xk—h — Z (Xj - Xj—1) =0, (6)
i j=k—ht1 |
2 x4 S1 + Xj_pS2 + Xj_p,_ 153 + X1 54]
_ . .
Xp—Xpn1— Y, (5 —x1)| =0, (7)
| j=k—h

2 [Xng + X{_hMQ —+ X{—h—1M3 —+ X£+1M4]
— Axy, — AoaXk—pn — A1aXg—n—1] = 0.

(®)

[Xk+1

Based on the Lyapunov functional analysis while combin-
ing the equations (6)-(8) in the derivation, first we have the
following proposition.

Proposition 1: For a given control gain K and a given
upperbound A of h, the system in (3) is asymptotically
stable if there exist symmetric positive definite matrices

P7Q1aQ2aZ1;Z2

€ R™ "™, and matrices N;,S;, M;, i =

1,2, 3, 4 with appropriate dimensions such that the following
inequality holds,

D1y
D2y
D3y
Dy
rNT
st

where

Dy

Doy
D31
D3z
Daa
D33
Dy
Dy
Dys
Dy

* * * * *
Doo * * * *
D30 D33 * * *
D4z Dsz Dua * * <0, 9
RN hN] AN —hZ; *

ST st sy 0 —(h+1)""2

~P+hZi+ Q1+ (h+1)Zy + Qs + Ny
+NT 48, + 8T —pmA— ATMT,
Ny — N{' + Sy — My A — AT\ MY,
N3 — ST + 85 — MzA — AT M,

—N;3 — S3T MsAgn — AT MT,

—Q1 — Ny — NJ — MyAga — AL M,

—Q2 — 53 — S5 — M3 A — ATAM],

~hZy — (h+1)Zy + Ny + Sy — MyA + M{,

—Ny — MyAga + M,
Sy — MyAia + My,
P+hZy+ (h+1)Zy + My + M{ .

Proof: Consider the following Lyapunov function for the
discrete system in (3),

Vi

1>

V11c+V2k+V3k+V4k+V5k

kaxk—l— Z Z

Zl(X

=X 1)
i=—h j=k+i+1

k-1 k-1
DA+ Y O

j=k—h j=k—h—1

j = %Xj-1)

k

+ Z Yo x=xm) Za(xy = x5-1)
i=—h—1j=k+i+1
Then we have
Avl,k = X{+1pxk+1 —XkPXk,
AVor < h(xprr —x0)T Z1(Xpt1 — Xx)
k
- Y (i —x) 2% —x;9),
j=k—h+1
AV = XpQi1Xp — Xp_pQ1Xp—h,
AV Xp QaXp, — Xp_p,_1Q2Xp—p—1,
AVsry < (h + D) (xp1 — xk) " Zo (X1 — Xx)
— Z — X 1 ZQ(Xj — Xj,l).

j=k—h

Defining the following new variables

V4

S

e 1>

T
[Xks Xk—hy Xig—h—1,Xp41] N

[Sla 527 S3a S4]T ) M

A
= [Ny, No, N3, Na]"
A T
- [M17M27M3aM4] )

and combining (6)-(8), we have that AV}, becomes

AV, = AVip+AVor+ AV +AVyy
+AVs o+ W1 + Ua + U3
< xzﬂkaH — x Px;, + x;‘:lek
+X1 QaXpy — Xj_p_1Q2Xp—n—1 — Xp_ Q1 Xk
+h(xpt1 — )" Z1 (Xp1 — X
k
- Y (i —x)"Zi(x = x50)
j=k—h+1
H(h+ 1) (k1 = xi) T Zo(Xpep1 — X1)
k
- (xj = x-1)" Za(x; —%x;-1)
j=k—h
k
+22TN | % — Xp_p — Z (x5 —xj-1)
j=k—h+1
k
+2z7'8 X — Xk—h—1 — Z (Xj — Xjfl)
j=k—h
+2ZTM [Xk—i-l — Axy, — AoaXk—n
—A1AXp—p—1] . (10)
Moreover,
227N Z —xj_ 1)< he" NZ'NTg
j=k—h+1
k
+ Z (x5 — xj-1)" Z1(x; — x;-1), (11)
j=k—h+1
k —
—2z7'8 Z (x; —xj-1) < (h+1)z2"8Z; 'Sz
j=k—h
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k
+ > (x5 —x-1)" Za(x; — x51).
=k—h

J

(12)
Using (11) and (12), (10) can be written as
AV < x{ 1 Pxpp1 — xp Py — X} QoXp—p_1
+x7 Qaxy, + Xt Q1Xp, — Xp_ Q1 Xk,
+2zTN(xk —Xp_p) + 227 S (X} — Xp_p_1)
+h(Xp1 — xXk) " Z1 (Xpe1 — X))
H(h+ 1) (X1 — xi) " Za(Xp 1 — x1)
+227 M [ 41 — Axp — AgaXp_n

— A1 AXp—p—1]
+hz" NZ7'NTz + (h+ 1)z 52,157z
Dy * * *
I Doy Do * *
D31 D3z D33 %
Dy Dys Dys Dy

+hNZ{'NT + (h+1)S2; ST} =,

where h is the upper bound of h. By using the Schur
complement, then AV, < 0 holds if the following condition
is satisfied

D1y * * *
D21 D22 * *
D31 D3y D3z
Dy Diz Dsz Dy

+hNZ*NT + (h+1)SZ; ST <0,

As a result, (13) means that (9) holds. Furthermore by using
the Lyapunov-Krasovskii stability theorem [11], AV, < 0
means that the system in (3) is asymptotically stable. |
Equation (9) contains the uncertainties Ay and A;. Thus
we cannot use it directly to check the system stability. The
following proposition is given as a sufficient condition for
the feasibility of (9) by dealing with the uncertainties in the
inequality. First we can represent the uncertainties as

K0 A
[Ag Ay J=E[Ty rl][ 0 FlK]:EFG(B)
with ' = [Io Ty ] and T’T < I, and G =
_[RK 0
[ Go Gl]{ 0 R”K |

Proposition 2: For a given control gain K and a given
upperbound h of h, the system (3) is asymptotically
stable if there exist symmetric positive definite matrices
P,Ql,QQ, Z1,4y € R ™ matrices N;, S;, M;, i =
1,2,3,4 with appropriate dimensions and constant p > 0
such that the following inequality holds,

D/11 * * * * * * * *
D;l D;2 * * * * * * *
D;l Déz Dég * * * * * *
D,, Dy, Dy, D, * * X *
NN, Ng N[ s * * *
s sf s st 0 2 s * *
HY  HY H  HY 0 0 —pl  x *
0 pFo K 0 0 0 0 0 —pl *
L O 0 pF1 K 0 0 0 0 0 —pI |

<0, (14)
where
Dy = ~P+hZi+Qi+(h+1)Z+Qa+ Ny
+NI +8, 48T — MyA— ATMT,
Dy, = No—NT +Sy— MyA—K'BTM],
Dy, = Ny—ST+585— MyA— KT"B" M,
Dy, = —Ns—SY—M;BK — KT"BT MY,
Dy, = —Qi—No—NJ -~ M,BK — K"B" MY,
Diys = —Qy—S3—ST—M;BK — KTBT MY,
Dy = —hZi—(h+1)Zy+Ns+ Ss— MyA+ M,
Dy = —Ni+MI - MBK,
Dy —S4+ M — MyBK,
Dy, = Dy=P+hZ+(h+1)Zy+ M+ M],
H, = ME, Hy=ME, Hy = M3E, Hy = M,E.

Proof: The uncertainty part in (9) can be dealt with by using
the property in Lemma 1. The left side of the inequality in
(9) can be further represented as

’

D11 * * * * *
7 ’
D?1 D?2 >l; * * *
D. D. D.,.
g Ty Mee ¥ * * + Uy,
Dy, Dyy  Dyy 44 ¥ *
N; N,; N%f N%f —h 1tz o
st s §T gl —(h+1)"12,
where
0
v — _ A(?A MT MT mMT mT
4 = AT [ 1 2 3 4 ]
1A
0
M,
M
— Mg [0 Aoa  Aia 0]
My
0
-1 T G¥
< p  MEME) +p| 24 | [0 G G o]
1
0
(15)

Using (15) and Schur complement, it is obvious to obtain
that the following condition is a sufficient condition of (9),

— ’ -

D11 * * * * * * * *
D;1 D;z * * * * * * *
D;l D;Q D.;s * * * * * *
D:n D:;z D;s D:14 * * * * *
N;T N2T Ng NZ _51 * * * *
-z
st sy sy S8 0 2k * *
HT  HT HT  HY 0 0 —pl  x *
0 pFo K 0 0 0 0 0 —pl *
L O 0 pF1 K 0 0 0 0 0 —pl |
<0, (16)
where H1 = MlE,HQ = MQE,Hg = M3E,H4 = M4E
|

Based on the analysis in Propositions 1 and 2, we are now
able to design the gain K which can ensure the asymptotical
stability of the networked control system in (3).
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Theorem 1: For given scalars 6;,7 = 1,2, 3,4, and a given
upperbound & of h, if there exist symmetric positive definite
matrices }5, Ql, Qg, Zl, Zy € R™ ™ matrices Y, Ni, S;i=
1,2, 3,4, nonsingular matrix X with appropriate dimensions
and constant ¢ > 0 such that the following inequality holds,

r &1 * * * * * * * * 7]
P21 Doz * * * * * * %
P31 P32 P33 * * * * * %
Dyq Dyo Dys3 Dyy * * * * *
A A A T
§TST ST ST 0 22« s s
JgroJr gf Jf 0 0 —ol * *
0 FoY 0 0 0 0 0 —ol *
0 0 Y 0 0 0 0 0 —ol |
<0, (17)
where
¢ = —]5+FLZ1+Q1+(7L+1)ZAQ+Q2+N1+N;
+91 + 8T —0,AXT — 0, x A7,
By = Ny— NI +8,—0,AXT —0,YTBT,
By = N3—ST+85—-0;4XT —0,YTBT,
B3y = —Ny— ST —6;BY —0,YTBT,
By = —Qy— Ny— N —0,BY —0,YTBT,
Bg3 = —Qy— 53— ST —0;BY —60sYTBT,
®dy = —hZi—(h+1)Zy+ Ny+ NI —0,AXT + 6, X,
by = —Nyj+0,X —6,BY,
By3 = —Si+03X —0,BY,
by = P4+hZi+(h+1)2Zy+0,XT +0,X
J1 = 091E, J2 :O-HQE, J3 :0'93.E7 J4:0'6‘4E,

then with the control law

u=Kx(), K=YXxT (18)

the system in (3) is asymptotically stable for all admissible
network-induced delays.

Proof: In order to transform the nonconvex LMI in (14)
into a solvable LMI, at first we assume that we have some
relations in M;’s, i = 1,2, 3,4. One possibility is that M; =
0; My where M, is nonsingular and 6; is known and given.
Define X = Mo_l, W =diag(X, X, X, X, X, X, I,I), 0 =
p~tand Y = KX7T. Then pre-multiplying the inequality
in (14) by W and post-multiplying by W7, the inequality
in (17) can be obtained. Note that the inequality in (17) is
only a sufficient condition for the solvability of (14) based
on these derivations. |

IV. EXTENSION TO THE GENERAL CASE

The system in (3) can be extended to a more general
case based on different assumption of the network induced
delay. In the following, the system description and the
corresponding controller design are presented.

In this section, we further extend the case in Section II
to the case when h > L > 1, i.e., the varying part of the
time delay has a bound which is more than one sampling
time. When L > 1, the discretized system becomes more

complicated. It can be derived by the same procedure in
Section II and is represented as follows:

Axy + AoaXp—p + A1aXp—n—1
+- o+ ALAXk—h-1L,

Xk+1 =
(19)

where A;ia £ BK +ABK = A; + A; with A; = BK and
A, =AB;K,i=0,1,---,L. A and B are the same as in
(3). The AB; term is similar as in Assumption 2 but with
1=0,1,---, L.

The corresponding results on the control gain design can
be extended from Theorem 1. The remarks and proofs are
similar and hence they are omitted here.

Theorem 2: For given scalars 6;,, i =1,---,L + 3, and a
given upperbound % of h, if there exist symmetric positive
definite matrices ]5762]-,2]- e R 4 = 1,---,L + 1,
matrices Y, ]\Afjﬂ-, nonsingular matrix X with appropriate
dimensions and constant ¢ > 0 such that the following
inequality holds,

ry, IZ
2L | <0, (20)
F21 F22
Dy * * * *
Do Dy 0 * * *
P31 P32 P33 * *
I'i= , , ;
Pri31 Pryse Pris3,Lr2 Prysris
Iy =
[ ANT, RN, RNT, |, )

T
th,L+3

e, s oo oo
hLNL+1,1 hLNL+1,2 hLNL+1,L+2 hLNL+1,L+3

0’91ET G'GQET e O’@L+2ET 0'9L+3ET b
0 FoY 0 0
L 0 0 FLY 0 ]
[ = dzag(—th, Tty 7hLZL+17 70—-[3 Tty 70—1)a

where h;, = h + L and

-

Oy = —P+Y (h+i)Ziy1 — 0,AXT
1=0
L+1 ) . .
—0 XAT + ) {Qi + Nijq + Niﬂ ,
=1
L+1
Oy = Z N2 — qujl —0,AXT —0,YTBT,
=1
L+1
®3; = Y Niz—Ng, —03AX7 —0,Y" BT,
=1
O35 = —Niz—Njy—03BY —.Y"B”,
Dy = —Q1—Nia— Niy—0.BY —0,Y" BT,
B33 = —Qo— Nog— NIy —0;BY — ;YT BT,
L —
Crisa = - Z(h +40)Zisr + N3 143
=0
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+Npisrys —0n43AXT +6, X,

Dri30 = —Npysris+0:X —0p,3BY,
Pri3ri2 = —Spis+0p42X —00,43BY,
L
DPriz 43 = P + Z(f_l + i)2i+1 + 9L+3XT +0r43X,
i=0

then with the control law

u=Kx(), K=YXxT, (1)

the system in (3) is asymptotically stable for all admissible
network-induced delays.

V. ILLUSTRATIVE EXAMPLES

Consider the following open loop unstable continuous
system with

[ 0.01999

A, = 3018 | g — [ —1.698 27.73 |.

0 —13.86 |77

The time delay profiles of the two channels: from sensor
to controller and from controller to actuator, are set to be
same as shown in Fig.3. Hence the time delay parameters

02 T T T T T T T

°
>
I

Time delay(sec)
° c
ol

o 5 10 15 25 30 35 40

20
Time(sec)

Fig. 3. The time delay profile applied in the simulation

are h = 6, L = 1 with the sampling time T, = 0.05 sec.
Then with the same time delay parameters and sampling time
as in Part A, the corresponding unstable discrete system is

1.001 0.11 0
A{ 0 0.5}’ BL}’
where the initial condition is x(0) = [0.5,0.5]7. Choosing
0.1 0.02
E=\| .0 o1 |adF=F= [1L,U7, ity < 1

is proved to be satisfied by calculating the terms A By and
ABj, VYe(k) € [0,Ts] in Matlab. The initial condition is
x(0) = [0.5,0.5]7. Without a proper controller, the system
will be definitely unstable.

Through solving the corresponding LMI (17) in Theorem
1 on the delay dependent analysis, and with given values
01 =0y =03 =1, 0, = 50 and h = 6, we have K =
YX~T =1[-0.0114,0.0111]7. The resulted system response
is stable as in Fig.4. Thus the unstable system is stabilized
by the remote controller designed according to Theorem 1
which is based on discrete time domain analysis.

N
0 20 40 60 80 100 120 140 160
Time(sec)

(b)
T

L ! L ! ! ! L L L
0 10 20 30 40 60 70 80 90 100

50
Time(sec)

Fig. 4. The evolution of the system states

VI. CONCLUSIONS

The controller designs based on delay dependent stability
conditions for discrete time remote control systems have
been proposed in this paper by using LMI techniques. Two
cases classified according to the knowledge of the time delay
bound have been discussed. Future work may be in the
following areas: i) on the robust stabilization of the remote
control systems with uncertain external disturbances; ii) on
the remote control problem of a class of cascade systems.
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