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Abstract— This paper considers robust stability analysis for
a matrix affected by LFT-based complex uncertainty (LFT
for linear fractional transformation). A method is proposed
to compute a bound on the amount of uncertainty ensuring
robust root-clustering in a combination (intersection and/or
union) of several possibly nonsymmetric half planes, discs, and
exteriors of discs. In some cases to be detailed, this bound is not
conservative. The conditions are expressed in terms of (linear
matrix inequalities) LMIs and derived through Lyapunov’s
second method. As a distinctive feature of the approach,
the Lyapunov matrices proving robust root-clustering (one
per subregion) are not necessarily positive definite, but have
prescribed inertias depending on the number of roots in
the corresponding subregions. As a special case, when root-
clustering in a single half plane, disc or exterior of a disc is
concerned, the whole clustering region reduces to only one
convex subregion and the corresponding unique Lyapunov
matrix has to be positive definite as usual. The extension to
polytopic LFT-based uncertainty is also addressed.

I. INTRODUCTION

Robust stability has been raising much interest in the
last three decades. Indeed, in a linear state-space context,
it matters to attest whether an uncertain state matrix has
its eigenvalues in the open left half plane (OLHP) for
continuous-time analysis or in the open unit disc (OUD) for
discrete-time analysis. More precisely, assuming nominal
stability, it can be useful to estimate the maximal size of
the uncertainty domain for which stability is preserved.

The way to estimate this size obviously depends on the
form of the uncertainty. The structured (parametric) case
should be distinguished from the unstructured (nonparamet-
ric) one as pointed out in one of the first contributions
due to Patel and Toda [24]. The present contribution is
restricted to a rather unstructured uncertainty, namely the
so-called LFT-based uncertainty (LFT for linear fractional
transformation). In this context, the maximal acceptable size
of uncertainty was clearly defined, in continuous-time, as
the complex stability radius [16]. Such a stability radius
was shown to equal the reciprocal of the H∞-norm of a
proper transfer in [20] and, thus, also appears to be the
reciprocal of the maximal structured singular value µ [11]
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along frequency. The discrete-time counterpart is described
in [23]. In these references, the computation of the stability
radius could be carried out with iterative solving of Riccati
equations [8], [9]. Another technique consists in computing
µ while sweeping frequencies. With the emergence of
convex optimization over linear matrix inequalities (LMIs),
the stability radius can be computed owing to the LMI
version of the bounded real lemma [1].

It is also important to differentiate between the complex
stability radius and the real one. The former concerns
a complex uncertainty and can be computed with LMI
software as just mentioned. The latter takes the realness
of the uncertainty into account (what is more discerning to
analyze practical plants in automatic control) and is a bit
more difficult to obtain [26], [15]. The present contribution
is restricted to the complex case.

When further performances are required, such as transient
ones, it might be shrewd to consider a more sophisticated
region for the state matrix root-clustering, different from
the OLHP or the OUD. Based on the notions of Ω-regions
and generalized Lyapunov equations (GLEs) due to Gutman
and Jury [13], Yedavalli has proposed significant robustness
bounds [34] (later improved by other authors) but the
results are still conservative. The reader is also invited
to see [32]. Moreover, the considered regions are usually
connected, which might not be suitable for plants with
separate dynamics or with specified robust damping ratios.
One of the first attempts to consider unions of regions is
provided in [2]. The concept of DU -stability (root-clustering
in a region DU whose form encompasses many unions
of possible disjoint and nonsymmetric subregions) enables
more general results [4]. However, these results remain quite
conservative.

This paper is an attempt to consider sophisticated clus-
tering regions by extending the notion of complex stability
radius to some combinations (unions and/or intersections) of
half planes, discs, and exteriors of discs. Besides, the con-
servatism of the previously proposed methods is reduced.
In some typical cases to be further detailed, the exact value
of the complex radius is reached.

This paper must be considered both as reminder and
a sequel of journal paper [3]. It is organized as follows:
section 2 states the problem, presenting the clustering
regions and extending the concept of complex D-stability
radius to the case where D is some combination of regions.
Section 3 introduces the notion of ∂D-regularity of a
nominal matrix, which is the nonmembership of the matrix
eigenvalues to a geometric curve ∂D. Such a property can
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often be checked through the derivation of a Lyapunov
matrix which is not necessarily positive definite but is
just nonsingular with constant inertia. When D-stability is
concerned, the Lyapunov matrix is required to be strictly
positive or negative definite. In section 4, the considered
matrix is affected by an LFT-based complex uncertainty.
Based upon the notion of ∂D-regularity, a method to reach
the complex D-stability radius is proposed. In some cases
to be detailed, the exact value is obtained. In section 5,
the polytopic LFT uncertainty is considered. A numerical
example is provided in section 6 before the conclusion.
Some proofs are omitted for the sake of conciseness. The
reader is invited to refer to [3] for missing technical details
and further references.

Notations

M ′ denotes the transpose conjugate of matrix M . Hence,
s′ is the conjugate of complex number s. MH is the
Hermitian matrix M+M ′. The 2-norm of M induced by the
Euclidean vector norm (maximal singular value) is denoted
by ||M ||2. II n is the identity matrix of order n and 0 is a
null matrix of appropriate dimensions. Matrix inequalities
are considered in the sense of Löwner i.e. > 0 (resp. < 0)
means positive (resp. negative) definite. Symbol i denotes
the imaginary unit and λ(A) denotes the spectrum of square
matrix A. At last, the vector In(M) = [n+ n− n0] is the
inertia of a square matrix M if n+, n−, n0 are the numbers
of eigenvalues of M with positive, negative and zero real
part, respectively.

II. PROBLEM STATEMENT

First, the form of the uncertain matrix to be analyzed is
given. Then, the clustering region is introduced. At last, the
problem to be solved is stated.

A. The uncertain matrix

The considered matrix reads:

Ac = A + B∆̄C ∈ C
n×n, with ∆̄ = ∆(I −D∆)−1.

(1)
In the above expression, uncertainty ∆ is constant, unknown
and assumed to belong to B(ρ), the ball of all matrices
∆ ∈ C

q×r satisfying ||∆||2 ≤ ρ. Matrices A ∈ C
n×n,

B ∈ C
n×q, C ∈ C

r×n, and D ∈ C
n×q are known. Such a

description is referred to as LFT uncertainty.
Remark 2.1: In this work, all the matrices are assumed

to be complex. However, in practice, state matrix Ac is real.
In that case, ∆ is then real and B(ρ) must be restricted to
real matrices. Actually, this restriction is more difficult to
take into account and this case is not investigated in the
paper although some interesting results exist [26], [15].

B. Clustering region D
Consider the following geometric curves ∀k ∈

{1, ...,m}:

∂Dk =
{
s ∈ C|fk(s) = rk00 + (rk10s)

H + rk11s
′s = 0

}
,

{rk00 , rk10 , rk11} ∈ R × C × R

(2)
Relevant curves are lines or circles. Each curve ∂Dk enables
us to define an associated region:

Dk = {s ∈ C | fk(s) < 0} ∀k ∈ {1, ...,m}. (3)

Clearly, Dk denotes either one side or the other side of
the boundary ∂Dk. It can then be a half plane, a disc
or the exterior of a disc. It is an open region (i.e. not
including ∂Dk) in order to encompass the concept of
asymptotic stability for linear time invariant systems. Dk

can actually correspond to the scalar case of regions defined
in [25] or to a special case of second order Ω-regions [13].
Also define the region D as a combination, i.e. any union
and/or intersection of the various subregions Dk. Such a
formulation of D clearly enables a very large choice of
clustering regions.

C. Problem Statement

This contribution aims at computing the complex D-
stability radius. More precisely, assume that A is D-stable
i.e λ(A) ⊂ D. Define rD as the largest value of ρ, the
radius of B(ρ), such that Ac defined in (1) remains D-stable
for any ∆ ∈ B(ρ). Such a value is the so-called complex
D-stability radius. A lower bound ρ� of rD, as tight as
possible, is to be computed. For this purpose, the concept
of ∂D-regularity is introduced in the next section.

III. ∂D-REGULARITY

In this section, only nominal matrices are considered. The
concepts of matrix ∂D-regularity and matrix ∂D-singularity
are introduced. A necessary and sufficient condition for
matrix ∂D-regularity to be satisfied when ∂D is defined as
in (2) is expressed in terms of an LMI. After preliminary
notions and assumptions in subsection 1, subsection 2
presents this condition through a first theorem. In subsection
3, the distribution of the matrix eigenvalues with respect to
the boundary ∂D is connected to the inertia of the solution
to the LMI, owing to a second theorem. Subsection 4 is
devoted to a discussion of these theorems.

A. Preliminaries

Definition 3.1: Let ∂D be any curve in the complex
plane, then matrix A ∈ C

n×n is called:
• ∂D-singular when λ(A) ∩ ∂D �= ∅.
• ∂D-regular when λ(A) ∩ ∂D = ∅.
Remark 3.1: Assume that ∂D is a boundary separating

two open regions D and D̄C (then C = D ∪ ∂D ∪ D̄C).
Matrix A is D-stable if and only if it is ∂D-regular and the
whole of its spectrum lies in D. Otherwise, it is D-unstable.
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First assume that ∂D reduces to one curve i.e. m = 1:

∂D = {s ∈ C | f(s) = r00 + (r10s)H + r11s
′s = 0}. (4)

In parallel with the work of Hill [14], we state two
theorems in the next two parts. The result in [14] is based on
Ostrowski and Schneider’s theorem [22] and on Frobenius’s
theorem. Our contribution is more part of Lyapunov’s
framework [21] and its extensions to root-clustering [13].

B. LMI condition for ∂D-regularity

Theorem 3.1: Let A and ∂D be, respectively, a complex
square matrix of dimension n and a curve as defined in (4).
Matrix A is ∂D-regular if and only if there exists a matrix
P = P ′ ∈ C

n×n such that

F (A,P ) = r00P + (r10PA)H + r11A
′PA < 0. (5)

Proof: See [3].

C. Root-distribution and the inertia of P

Theorem 3.2: Let A and ∂D be, respectively, a complex
square matrix of dimension n and a curve as defined in (4).
Matrix A is ∂D-regular with n+ eigenvalues in D and n−
eigenvalues outside D if and only if any solution P = P ′

to LMI (5) has inertia In(P ) = [n+, n−, 0].
Proof: see [3].

As mentioned in subsection III-A, our result is an alterna-
tive to results by Hill [14]. However, our result consists of
one single theorem valid for any line or any circle. It does
not require preliminary lemmas except Sylvester’s well-
known theorem (In(H) = In(MHM ′) for any nonsingular
M ). The proofs basically require simple algebraic manip-
ulations that might help extension to other curves. In that
sense, it is closer to the result of [17]. Nevertheless, some
differences are pointed out in the forthcoming discussion.

Corollary 3.1: Let A and ∂D be, respectively, a complex
square matrix of dimension n and a curve as defined in (4).
Also let D and D̄C be the regions defined by f(s) < 0
and f(s) > 0 respectively. Matrix A is D-stable (resp. D̄C-
stable) if and only if there exists a positive (resp. negative)
definite matrix P = P ′ ∈ C

n×n such that (5) holds.
Proof: The proof follows directly from theorem 3.2.

As special cases, D can be the OLHP or the OUD. Lya-
punov and Stein’s theorems [21], [29] are then recovered.

Remark 3.2: Since any solution to (5) is nonsingular then
there is no need to specify it as a constraint, and (5) is a
simple LMI in P . Note that the nonstrict LMI cannot be
considered because it would allow ∂D-singularity.

D. Discussion

With appropriate changes, the above reasoning might be
adapted to any second order Ω-transformable region. In that
sense, this could be seen as a special case of [17]. However,
although [17, Theorem 1] seems suitable to prove the first
statement in theorem 3.1, we do not agree with the proof
of [17, Theorem 2] related to the inertia of P . Indeed after

having proven that some solution P to an LMI exists and
has expression [17, equation (6)], it is claimed that for any
choice of the negative definite right handside member of the
associated equality, the solution to this equality keeps the
same expression. We do not agree with that point. Perhaps
the same doubt led Jury to achieve a special proof for the
nonsingularity of the solution of a GLE [19, Theorem 3.16].
The notion of Ω-transformability was required to prove this
nonsingularity (see also [13, Theorem 12]). It could at first
sight directly be derived from [17, Theorem 2] but we also
think that this special proof was necessary.

Going on with Ω-transformability, it is interesting to see
that although transformability seemed to be required to
prove the nonsingularity of the solution to a GLE [13], we
show here that, owing to the notion of ∂D-regularity (rather
than just D-stability), D and D̄C are considered altogether
(the reader is here reminded of the fact that D-stability
and D̄C-stability are only special cases of ∂D-regularity
as stated in corollary 3.1). As a consequence, the exterior
of a disc is a non Ω-transformable region for which it is
impossible to find a singular solution to a corresponding
GLE. Otherwise, it would be in contradiction with Remark
3.2. In other words, any solution to a GLE attesting matrix
root-clustering is necessarily nonsingular (existence and
uniqueness of the solution to a GLE is another problem;
see [13]). The exterior of the disc is then a region for
which Ω-transformability is not required to guarantee the
nonsingularity of the solution to a corresponding GLE. It is
what was illustrated by an example proposed in [31].

Apart from our doubt about the proof of [17, Theorem 2],
we would like to add that this contribution seems to have
been overlooked. Actually, [17, Theorem 1] is nothing but
an LMI test for matrix root-clustering in an Ω-region. In
1971, such a test was not tractable from a computational
point of view (at about the same time, Willems was just
beginning to warn the control community about the great
interest in handling LMIs [33]). For this reason, it mattered
to “convert” this LMI test into a GLE [13]. Now that LMIs
have become classical tools, although some significant
contributions enabled to test matrix root-clustering via LMI
conditions [10], many authors should remember the pioneer
work [17].

Furthermore, if solving an LMI is not an obstacle, results
in [17] can be used to consider problem 85 formulated
by Wang in the electronic book proposed by Blondel and
Megretski [6]. In problem 85, the analysis of root-clustering
in Ω-transformable regions of order greater than 2 is con-
cerned and expressed in terms of GLEs. Of course, it is an
interesting challenge from a mathematical point of view. For
low-dimensional problems, the LMI approach of [17] might
enable us to be free of the transformability assumption and
of GLEs but for high-dimensional problems, the GLEs are
still fundamental. So problem 85 is discerning. See [3] for
further discussion.
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IV. COMPLEX D-STABILITY RADIUS

In this section, the uncertain case is studied. First, a
condition for the uncertain Ac defined in (1) to be ∂D-
regular when ∂D complies to (4) is given. This condition
is then used to compute the D-stability radius when D is
some combination of regions as defined in subsection II-B.

Theorem 4.1: Let Ac and ∂D be, respectively, an un-
certain matrix as defined in (1) and a geometric curve as
defined in (4). Assume that matrix A is ∂D-regular. Ac is
robustly ∂D-regular against B(ρ) if and only if there exists
P = P ′ with inertia In(P ) = [n+, n−, 0] such that

Q(P, γ) =

»
C′C C′D
D′C D′D − γII q

–
+

»
r00P + (r10PA)H + r11A

′PA r10PB + r11A
′PB

r′10B
′P + r11B

′PA r11B
′PB

–
< 0.

(6)

with γ = ρ−2. In this event, Ac keeps n+ eigenvalues inside
D and n− outside D.

Proof: The proof is based on the Kalman-Yakubovich-
Popov (KYP) lemma [27]. See [3].
The value of ρ obtained when minimizing γ under (6) is
the largest acceptable value of ρ. It is the complex ∂D-
regularity radius, denoted here by �∂D.

Now come back to region D defined as a combination
of several regions Dk (see subsection II-B). Referring to
previous works on stability radii [16], [26], the complex
D-stability radius can also be defined as follows:

rD = inf{||∆||2 |∆ ∈ C
q×r : A + B∆C is D-unstable}.

(7)
The complex ∂D-regularity of a complex matrix A is

�∂D = inf{||∆||2 |∆ ∈ C
q×r : λ(A + B∆C) ∩ ∂D �= ∅}

(8)
where ∂D is the boundary of D. The formulation of rD
implicitly assumes that A is D-stable. That is the basic
difference from the formulation of �∂D. It follows that

A is D-stable ⇒ �∂D = rD. (9)

Also define the set ∂U by

∂U =
m⋃

k=1

∂Dk. (10)

It is clear that ∂D ⊂ ∂U . Hence, Ac has no eigenvalue on
∂D if it has no eigenvalue on ∂U , so we have

�∂U = min
k∈{1,...,m}

�∂Dk
≤ �∂D. (11)

Moreover, if ∂U = ∂D, the above inequality becomes an
equality. Besides, if A is assumed to be D-stable and if
∂U ∩ D = ∅, it can be assessed that �∂U = rD.

From the previous reasoning, one deduces:

Theorem 4.2: Let Ac, D, ∂D be, respectively, an uncer-
tain matrix as defined in (1), a clustering region as defined in
subsection II-B and its boundary. Then Ac is robustly ∂D-
regular against B(ρ) if there exist m Hermitian matrices
Pk, k = 1, ...,m, such that

Qk(Pk, γ) < 0 ∀k ∈ {1, ...,m}, (12)

where Qk(Pk, γ) complies with the same description as
Q(P, γ) (but with rkij and Pk instead of rij and P ) and
where and γ = ρ−2. In this event, Ac keeps the same
number of eigenvalues inside D for any ∆ ∈ B(ρ).
Moreover, if ∂D = ∂U , then LMIs (12) are also necessary.

Proof: See [3].
In the light of this theorem, the following statements,

which can be seen as corollaries, can be formulated:

• γ can be minimized under LMI constraints (12) down
to γ� and then ρ� = (γ�)−1/2 equals �∂U . If A is
D-stable, then ρ� is a robust D-stability bound.

• If ∂U = ∂D, then ρ� equals �∂D.
• If A is D-stable and if ∂U ∩ D = ∅, then ρ� equals

both �∂D and rD, the complex D-stability radius.

When ∂U∩D �= ∅, ρ� might not equal �∂D or rD and the
condition (12) in Theorem 4.2 might even fail as in the case
illustrated by Figure 1. The two eigenvalues of the matrix
are here symbolized by the big dots which belongs to ∂D1

and ∂D2 respectively but lie inside D = D1∪D2. Therefore,
the matrix is here D-stable but is both ∂D1-singular and
∂D2-singular. As a consequence, condition (12) cannot be
checked although D-stability holds.

∂D2

D = D1 ∪ D2

∂D1

eigenvalues of A

Fig. 1. �∂U cannot be computed

V. EXTENSION TO POLYTOPIC LFT UNCERTAINTY

It is now assumed matrices A, B, C and D belong to a
polytope of matrices so that one can define the following
convex combination:

M(θ) =
[

A B
C D

]
=

N∑
i=1

θi

[
Ai Bi

Ci Di

]
, (13)

where the vertices Ai, Bi, Ci, and Di are known and the
coordinates θi are unknown but belong to the set Θ defined
by θi ≥ 0∀i and

∑N
i=1 θ1 = 1. This section does not aim at

computing a “polytopic” complex stability radius but simply
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aims at computing a good lower bound ρ� through LMI
machinery.

Theorem 5.1: Let Ac, D, ∂D be, respectively, an uncer-
tain matrix as defined in (1) with (13), a clustering region
as defined in subsection II-B and its boundary. Then Ac is
robustly ∂D-regular against B(ρ) and Θ if there exist Nm
matrices Pki

= P ′
ki

, k = 1, ...,m, i = 1, ..., N , and m
matrices Gk, k = 1, ...,m, such that

Wki =
`
Gk

ˆ
Ai −In Bi 0

˜´H
+,

2
64

rk00Pki rk10Pki 0 C′
i

r′k10Pki rk11Pki 0 0
0 0 −II q D′

i

Ci 0 Di −γII r

3
75 < 0 ∀{k, i} (14)

with γ = ρ−2. In this event, Ac keeps the same number of
eigenvalues inside D for any ∆ ∈ B(ρ) and for any θ ∈ Θ.

Proof: This is just an outline. The convex combination

N∑
i=1

θiWki
(15)

is necessarily negative definite. Using [28, Theorem 2.3.12]
and Schur’s complement, one equivalently gets the same
condition as (12) but for any θ ∈ Θ i.e. with M(θ) and

Pk(θ) =
N∑

i=1

θiPki = P ′
k(θ), θ ∈ Θ. (16)

Hence, by virtue of Theorem 4.2 applied for each θ, Ac

is robustly ∂D-regular against B(ρ) and Θ. The statement
on root-distribution relies on the fact that inertias cannot
change, by virtue of Theorem 3.2.
Once again, it is possible to minimize γ in order to reach
a better value pf ρ� which is however conservative because
(14) is only sufficient for (15).

Remark 5.1: The derivation of the implicit parameter-
dependent “Lyapunov”-matrices given in (16) follows the
same idea as in [12], later used in [25]. Besides, it can be
proven that the matrix Gk can comply with the structure

Gk =
[

Ḡk

0

]
where Ḡk ∈ C

2n×n, (17)

with no loss of generality, following arguments given in [7].

VI. NUMERICAL ILLUSTRATION

In this section, we propose a simple illustration of the
application of Theorem 5.1. This model is inspired from [2].
The lateral dynamic of an aircraft is modeled by uncertain
state and input matrices:

A0 =

2
6664

−0.3400 0.0517 0.0010 −0.9970 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000

−2.6900 0.0000 −1.1500 0.7380 0.0000
5.9100 0.0000 0.1380 −0.5060 0.0000

−0.3400 0.0517 0.0010 0.0031 0.0000

3
7775 ±

δ1

2
64

1 0.1 0.01 0
0 0 0 0
0 0 0 0
1 0.1 0.01 0

3
75 ,

B0 =

2
6664

0.0755 0.0000 0.0246
0.0000 0.0000 0.0000
4.4800 5.2200 −0.7420

−5.0300 0.0998 0.9848
0.0755 0.0000 0.0246

3
7775 ± δ2

2
64

1 0 0.5
0 0 0
0 0 0
1 0 0.5

3
75 ,

where the additional terms correspond to an uncertain
parametric uncertainty with two deflecting parameters δ1

and δ2 such that |δ| ≤ 0.1 and |δ2| ≤ 0.02. A static state
feedback control law associated with matrix

K =

2
4

−3.9063 −0.2869 0.0006 −1.5109 −1.8135
0.8077 −2.4178 −0.9356 −0.2877 −0.0296

−21.5282 −1.2212 −0.0424 −10.1518 −11.1581

3
5

is applied to obtain nominal spectrum:

{−0.5;−2 ± 2i;−3 ± 2i}. (18)

It is assumed that K is also subject to an additive uncer-
tainty ∆ ∈ B(ρ) so analyzing both robustness against uncer-
tain parameters and nonfragility of the control corresponds
to the robustness analysis of (1) where A = A0 + B0K,
B = B0, C = I5, and D = 0. The polytope has four
vertices. To analyze the robustness of the pole location in
the presence of the uncertainty, D is chosen as the union
of 5 discs Dk, k = 1, ..., 5, centered around the nominal
eigenvalues given by (18) and all of radius 0.5. Since D2

and D3 (respectively D4 and D5) are symmetric to each
other with respect to the real axis, it is only required to
consider three regions. Theorem 5.1 leads to:

ρ� = min{0.1944; 0.0601; 0.0618} = 0.0601.

ρ� appears here as a nonfragility index with respect to some
desired transient performances.
Many spectra are plotted for various values of ∆ ∈ B(ρ�)
and θi, i = 1, ..., N ; see Figure 2. It can be seen that
the bound is not very conservative although this example
is not trivial. The pole migration is not very far from
∂D. Since the nominal part of A is D-stable and since
the five open subregions are disjoint (which implies that
∂U ∩ D = ∅), the only source of conservatism is the
polytopic uncertainty. The LFT-based uncertainty (in this
case, only norm-bounded one) is taken into account with
no conservatism.

Computing ρ� leads to derive 20 Lyapunov matrices Pki
.

Each matrix Pki
is such that In(Pki

) = [1, 4, 0], as forecast
by Theorem 3.2 since Ac has one root inside and four roots
outside each Dk.

VII. CONCLUSION

In this paper, the concept of matrix ∂D-regularity was
used to compute, through a Lyapunov approach, a robust
D-stability bound. An original point in the paper is the
wide class of allowed clustering regions since D can be
a combination (i.e. the union and/or intersection) of several
possibly non symmetric half planes, discs and exteriors of
discs. Such an originality in the choice of the region is
made possible by using Lyapunov matrices which are not
necessarily positive definite, but that preserve inertia over
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Fig. 2. Pole migration with polytopic norm-bounded complex uncertainty

the uncertainty domain. When the boundaries of various
subregions do not intersect D, this bound turns to be the
exact complex D-stability radius, that is the largest bound
on a complex LFT-based uncertainty preserving D-stability.
The bound is deduced from the solution of an LMI problem.
It is also extended to polytopic LFT-based uncertainty with
weak conservatism. This extension to the polytopic case
might be seen a step further compared to [3] where only
norm-bounded uncertainty is considered.

As extensions of our work, the case of real matrices
could be addressed and the associated real D-stability radius
could be seeked, maybe with the use of arguments of
[26], [15]. But the most interesting perspective would be
a way to circumvent the limit induced by the possible
intersection between ∂U and D (see Fig. 1). We conjecture
that the generalized KYP lemma [18], with appropriate
modifications, could solve this problem.
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