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Abstract— A new approach to the mixed H2/H∞ control
of linear systems is presented. The proposed methodology is
based on a new stabilization condition leading the control para-
metrization to be independent of the Lyapunov function. This
nice property allows the use of multiple Lyapunov matrices to
the multi-objective control design in a numerical and tractable
way. A numerical example illustrates the approach as a tool
for H2/H∞ control synthesis.

I. INTRODUCTION

Nowadays, there are elegant solutions to several single
objective control specifications formulated in terms of con-
vex optimization problems such as the H2 (or LQG) and
H∞ control. Generally speaking, the H2 approach is applied
to meet performance specifications and/or impulsive distur-
bance rejection while guaranteeing closed-loop stability. On
the other hand, the H∞ framework has the ability to improve
the closed-loop robustness against system uncertainties and
deterministic disturbance signals [1]. However, in many prac-
tical applications it is common to appear conflicting design
specifications such as simultaneous rejection of disturbances
with different characteristics (white noise, bounded energy,
persistent); good tracking of classes of inputs or satisfaction
of bounds on the energy of the control or output signals,
cannot always be satisfied by a single norm form. So, a
mixed performance specification is naturally considered in
such cases [2].

Certainly, the linear matrix inequality (LMI) framework is
one of the most powerful formulation to the stability analysis
and control design for a wide variety of linear control
problems [3]. Such formulation offers a numerically tractable
manner to deal with problems where there is no analytical
solution. Therefore, a control problem recast in terms of
LMIs can be efficiently solved by powerful numerical tools.
Recently, LMI solutions to the H2/H∞ multi-objective have
been proposed such as the references [4], [5]. At least in the
continuous-time case, the LMI solutions for H2/H∞ control
consider a common Lyapunov function to compute a bound
on both norms at the cost of conservativeness [6], [7]. More
precisely, the individual H2 and H∞ problems are solved
using a control parametrization in terms of the Lyapunov
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matrix. Therefore, a convex solution to the multi-objective
control problem is only obtained if a common Lyapunov
matrix is considered. One can cite several examples of
iterative procedures for multi-objective control to consider
multiple Lyapunov matrices such as [8], [9].

Aiming at finding a robust solution in terms of parameter-
dependent Lyapunov functions, several researchers have pro-
posed alternative LMI characterizations to certain multi-
objective control problems leading to a controller parame-
trization that does not involve the Lyapunov matrix. See
for instance the references [10]–[12] for the continuous-time
case and [13], [14] to the discrete-time counterpart. However,
in the continuous-time case, there are some shortcomings
because either, the quadratic stability case is not recovered
[10], or there is an extra parameter to be determined through
a gridding (non-convex) approach [11].

Using an alternative control parametrization, not involv-
ing the Lyapunov matrix, convex characterizations for both
H2 and H∞ control problems are proposed in the present
paper. It will be shown that whenever there exists a solution
to the standard case (quadratic stability condition) one can
find a feasible solution for the improved H2 and H∞ condi-
tions. Then, a solution to the multi-objective control problem
is proposed in terms of LMIs considering multiple Lyapunov
matrices.

The rest of this paper is as follows. Section II establishes
the problem to be addressed, Section III proposes a new
stabilization condition for linear systems, and the extension
for multi-objective control design is given in Section IV. A
numerical example, in Section V, illustrates the approach and
Section VI ends the paper.

The notation used in this paper is standard. R
n denotes the

set of n-dimensional real vectors, R
n×m is the set of n×m

real matrices, In is the n × n identity matrix, 0n×m is the
n×m matrix of zeros and 0n is the n×n matrix of zeros. For
a real matrix S, S′ denotes its transpose and S > 0 means
that S is symmetric and positive-definite. For a symmetric
block matrix, the symbol � stands for the symmetric block
outside the main diagonal. Matrix and vector dimensions are
omitted whenever they can be inferred from the context.

II. PROBLEM STATEMENT

Consider the following linear time-invariant (LTI) system:⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t) + B1w1(t) + B2w2(t),
z1(t) = C1x(t) + D1u(t),
z2(t) = C2x(t) + D2u(t) + Ew2(t),
u(t) = Kx(t), x(0) = x0,

(1)

where x ∈ R
n is the state, u ∈ R

nu the control signal,
w1 ∈ R

n1 are impulsive disturbances, w2 ∈ R
n2 are
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disturbances with bounded energy, z1 ∈ R
m1 the output

channel for H2 performance, z2 ∈ R
m2 the output channel

for H∞ performance, K ∈ R
nu×n the control gain, and

A, B,B1, . . . , E are constant matrices with appropriate di-
mensions.

Typically, the closed-loop performance is characterized in
terms of input-to-output experiments by means of the H2-
and (or) H∞-norms. For random or impulsive disturbance
signals, the H2-norm is more appropriated to quantify the
system performance. On the other hand, the H∞-norm is
adequate to enforce robustness and to deal with square
integrable signals [5].

Let Ti denote the closed-loop transfer functions of sys-
tem (1) from wi to zi, i = 1, 2. For mixed performance
specifications, each objective is formulated in terms of
appropriate input-to-output (I/O) channels. In this paper,
the transfer function T1 represents the I/O channel for the
H2 performance and T2 to the H∞ case. For completeness,
the following definitions of system norms are given.

Definition 1: The H2-norm of system (1) is given by

‖T1‖2
2 �

m1∑
i=1

‖z̄1i(t)‖2
2 (2)

where z̄1i(t) is the system response to a unitary impulse in
the H2 input channels with x(0) = 0 and w2 ≡ 0. �

If the disturbance signal w1(t) is a white noise with zero
mean value and unitary power density spectra, the H2-norm
may be interpreted as follows

‖T1‖2
2 � ε(z1(t)′z1(t))

where ε(z1(t)′z1(t)) denotes the mathematical expectation
of the random variable z1(t)′z1(t).

For zero initial conditions, the greatest energy gain that
can be obtained from the disturbance signal w2(t) ∈ L2 to
the output z2(t) corresponds to the H∞-norm of system (1)
leading to the following definition.

Definition 2: The H∞-norm of system (1) is given by

‖T2‖∞ � sup
0 �=w2∈L2

‖z2(t)‖2

‖w2(t)‖2
(3)

where x(0) = 0, w1 ≡ 0, and L2 denotes the space of square
integrable vector functions on [0,∞). �

The computation of both norms is a standard LMI result
[3]. The next two lemmas characterize LMI solutions to the
H2 and H∞ control problems.

Lemma 1: (H2 control design) Consider system (1) and
the H2 I/O channel. There exist matrices (P1, Y,N) solving
the following optimization problem:

min trace(N) :[
N (C1P1 + D1Y )
� P1

]
> 0 (4)

[
(AP1 + P1A

′ + BY + Y ′B′) B1

B′
1 −In1

]
< 0 (5)

if and only if the system (1), in closed loop with u =
Y P−1

1 x, is asymptotically stable and ‖T1‖2
2 < trace(N).

�
Lemma 2: (H∞ control design) Consider the H∞ I/O

channel of system (1) and let γ be a given positive scalar.
There exist matrices (P2, Y,N) solving the following LMI
problem:

P2 > 0, (6)⎡
⎣ (AP2 + P2A

′ + BY + Y ′B′) B2 �
B′

2 −γIn2 E′

(C2P + D2Y ) E −γIm2

⎤
⎦ < 0

if and only if the system (1), in closed loop with u =
Y P−1

2 x, is asymptotically stable and‖T2‖∞ < γ. �
The classical multi-objective control approach, e.g.

min ‖T1‖2 : ‖T2‖∞ < γ, (7)

constraints the Lyapunov functions in Lemmas 1 and 2 to be
common obtaining a convex (and potentially conservative)
solution [7]. That is P = P1 = P2, where the control-gain
is parameterized as K = Y P−1.

The purpose of this paper is to devise alternative condi-
tions under which the controller parametrization does not
involve the Lyapunov matrix. If this is done we can solve,
for instance, (7) without the constraint P1 = P2 leading to
less conservative results.

III. IMPROVED STABILIZATION CONDITIONS

Let us start with the problem of deriving a new stabi-
lization condition where the control parametrization does
not involve the Lyapunov matrix. To this end, consider the
following LTI system

ẋ = Ax + Bu, u = Kx. (8)

The stability condition for the closed loop system may be
expressed by means of the following matrix inequality:

AP + PA′ + BKP + PK ′B′ < 0, (9)

where P > 0 and K are the decision variables. The above
condition is convex if the control-gain is parameterized by
K = Y P−1. As discussed in Section II, this parametrization
is conservative for multi-objective control design.

Aiming at reducing the conservativeness, consider the
following parametrization

K = rFS−1, (10)

where r ∈ R, F ∈ R
nu×n and S ∈ R

n×n (supposed to be
nonsingular) are the variables to be determined such that the
closed-loop system is asymptotically stable.

Taking into account (9) and (10), one get the following
condition:

x′(AP + PA′ + BFrS−1P + P (S′)−1rF ′B′)x < 0,

3742



for all x ∈ R
n. Introducing the auxiliary variable y such that

rS−1Px = x − y, the above inequality yields

[
x
y

]′ [
AP + PA′ + BF + F ′B′ �

−F ′B′ 0

] [
x
y

]
< 0,

∀
[

x
y

]
:
[

(S − rP ) −S
] [

x
y

]
= 0. (11)

From the Finsler’s Lemma [15], one get the following
condition[

AP + PA′ + BF + F ′B′ �
S − rP − F ′B′ −S − S′

]
< 0, (12)

where r, F, S, P are the decision variables.
Notice that the proposed parametrization as defined in (10)

does not involve the Lyapunov matrix, and hence it appears
more suitable for multi-objective control design.

The following theorem summarizes the above result.

Theorem 1: (A new stability condition) Consider system
(8). There exist matrices P > 0, F, S and the scalar r
satisfying (12) if and only if there exist matrices P > 0,K
satisfying (9). In the affirmative case, the solution of (12) is
such that P > 0 and K = rFS−1 also satisfy (9). �

Proof. Suppose that there exist matrices P > 0, F, S and
the scalar r satisfying (12) and rewrite it as

⎡
⎣

(
AP + PA′+
BF + F ′B′

)
�

−F ′B′ 0

⎤
⎦ + Q′

1Q2 + Q′
2Q1 < 0, (13)

where

Q1 =
[

0 I
]
, Q2 =

[
(S − rP ) −S

]
.

Define a matrix Q3 such that Q2Q
′
3 = 0, e.g.

Q3 =
[

I S−1(S − rP )
]
.

Observe that (12) implies S is nonsingular. Multiplying
(13) by Q3 to the left and Q′

3 to the right, we see that (9)
is satisfied with

K = rFS−1.

Suppose now there exist matrices P > 0,K satisfying (9).
We show in the sequel that (12) is satisfied for F = KP ,
S = rP and r large enough. With the Schur complement and
the above choices of F, S, the inequality (12) is equivalent
to:

AP + PA′ + BKP + PK ′B′ + BKPK ′B′(2r)−1 < 0,

which is guaranteed to be satisfied for r large enough. �

Observe that (12) is not convex with respect to the scalar
r. In the sequel we present a quasi-convex procedure to
determine this scalar.

A. The r parameter

From the above proof we see that for S = rP and r large
enough the inequality (12) is satisfied whenever the usual
quadratic stabilizability condition AP +PA′+BF +F ′B′ <
0 is satisfied. The miminum value of r leading (12) to be
satisfied with S = rP can be easily computed by solving
the quasi-convex problem

min r :
[

AP + PA′ + BF + F ′B′ �
−F ′B′ −2rP

]
< 0

Once this minimum value of r, namely r = r∗ is computed
we can increase r from r∗ in (12) while removing the
constraint S = rP . The interest of this procedure is twofold.
Firstly, this problem can be recast as another quasi-convex
problem with the change of variable r = r∗ + ε−1 leading
to: miminize ε such that

ε

[
AP + PA′ + BF + F ′B′ �

S − r∗P − F ′B′ −S − S′

]
+

−
[

0 P
P 0

]
< 0

Secondly, this procedure will never be more conservative
than the usual quadratic stabilizability condition AP +PA′+
BF + F ′B′ < 0 because in the limit case, where ε tends
to zero, the scalar r tends to infinity and thus the choice
S = (r∗+ε−1)P = rP renders the condition (12) equivalent
to

AP + PA′ + BF + F ′B′ < 0.

At the two extremes, namely r = r∗ and r → ∞, the
constraint S = rP leads the proposed controller parame-
trization to be the usual K = FP−1. However, in between
these extremes situations the controller parametrization is
K = FS−1r which does not involve the Lyapunov matrix.
In summary, the problem of increasing the scalar r from r∗

in (12) has nice properties under the constraint S = Pr.
Unfortunately, it is not possible to show that these same
nice properties hold when we let S to be a free decision
variable. However, numerical results reported in the next
section indicate that a similar behavior could be expected.
These ideas are exploited in the next section to solve the
mixed H2/H∞ control problem via state feedback.

IV. MULTI-OBJECTIVE CONTROL DESIGN

In the following, the new stabilization condition is ex-
tended to the H2 and H∞ control design. Then, the main
result of this paper ends this section.

A. H∞ Control

From Lemma 2 it follows that the system (1), in closed
loop with u = Kx, is asymptotically stable and ‖T2‖∞ < γ,
if and only if there exist matrices P2,K such that:

ξ′2Ψ2ξ2 < 0, ∀ ξ2 �= 0,

3743



where ξ2 =
[

x′ z′2 w′
2

]′
and Ψ2 is as follows

Ψ2 =

⎡
⎢⎢⎣

(
(A + BK)P2

+P2(A + BK)′

)
B2 �

B′
2 −γIn2 E′

(C2 + D2K)P2 E −γIm2

⎤
⎥⎥⎦ (14)

Considering the controller parametrization K = rFS−1,
as in the previous section, and introducing the auxiliary
variable g2 = x − S−1Prx, we get the identity

ξ′2Ψ2ξ2 = φ′
2Γ2φ2,

where φ2 =
[

x′ z′2 w′
2 g′2

]′
and Γ2 is given by

Γ2 =

⎡
⎢⎢⎣

Π2 B2 � �
B′

2 −γIn2 E′ 0
C2P2 + D2F E −γIm2 �

−F ′B′ 0 −F ′D′
2 0

⎤
⎥⎥⎦ , (15)

with
Π2 = AP2 + P2A

′ + BF + F ′B′. (16)

Observing that the auxiliary variable g2 is such that
[

S − rP2 0 0 −S
]
φ2 = 0,

and using the Finsler’s lemma, as in the previous section, it
follows that

φ′
2Γ2φ2 < 0, ∀ φ2 �= 0 :

[
S − rP2 0 0 −S

]
φ2 = 0,

if the inequality Ω2 < 0 is satisfied, where

Ω2 =

⎡
⎢⎢⎣

Π2 B2 � �
B′

2 −γI E′ 0
C2P2 + D2F E −γI −D2F

S − F ′B′ − rP2 0 � −S − S′

⎤
⎥⎥⎦ (17)

The above results may be summarized as follows.

Theorem 2: (A new H∞ condition) There exist matrices
P2 > 0, F, S and the scalar r satisfying Ω2 < 0 if and
only if the system (1), in closed loop with u = rFS−1x, is
asymptotically stable and ‖T2‖∞ < γ.

�

The proof is similar to the proof of Theorem 1 and will
be omitted.

B. H2 Control

From the lemma 1 it follows that the system (1), in closed
loop with u = Kx, is asymptotically stable and ‖T1‖2

2 <
trace(N) if and only if there exist matrices (P1,K,N)
solving the following optimization problem.

min trace(N) :

Ψ1a =
[

N C1P1 + D1KP1

� P1

]
> 0

Ψ1b =
[

AP1 + P1A
′ + BKP1 + P1K

′B′ B1

B′
1 −In1

]
< 0

Considering the same controller parametrization used in
the H∞ control, i.e.

K = rFS−1,

and introducing the auxiliary variable

g1 = x − S−1Prx,

we get the identity

ξ′1Ψ1bξ1 = φ′
1Γ1bφ1,

where ξ1 = [ x′ w′
1 ]′, φ1 = [ x′ w′

1 g′1 ]′, and

Γ1b =

⎡
⎣ Π1 B1 �

B′
1 −In1 �

−F ′B′ 0 0

⎤
⎦ , (18)

with

Π1 = AP1 + P1A
′ + BF + F ′B′. (19)

Observing that the auxiliary variable g1 is such that

[
S − rP1 0 −S

]
φ1 = 0

and using the Finsler’s lemma, it follows that

φ′
1Γ1bφ1 < 0, ∀ φ1 �= 0 :

[
S − rP1 0 −S

]
φ1 = 0,

if the inequality Ω1b < 0 is satisfied, where

Ω1b =

⎡
⎣ Π1 B1 �

B′
1 −In1 �

−F ′B′ + S − rP1 0 −S − S′

⎤
⎦ . (20)

On the other hand, introducing the auxiliary variables

ξ3 =
[

z′ x′ ]′
, φ3 =

[
z′ x′ g′3

]′
,

and g3 = x−S−1Prx, and following the same above steps,
we get

φ′
3Ψ1aφ3 > 0, ∀ φ3 �= 0,

if the inequality Ω1a > 0 is satisfied, where

Ω1a =

⎡
⎣ N C1P + D1F −D1F

� P ∗
� rP − S S + S′

⎤
⎦ . (21)

To sum up, we introduce the following result.

Theorem 3: (A new H2 condition) There exist matrices
N, P1 > 0, F, S and the scalar r satisfying Ω1b < 0, Ω1a >
0 if and only if the system (1), in closed loop with u =
rFS−1x, is asymptotically stable and ‖T1‖2

2 < trace(N).
�

The proof is similar to the proof of Theorem 1 and will
be omitted for brevity.
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C. Main Result

By lumping together the results in the previous sub-
sections we can state the main result of the paper, namely, a
sufficient condition for designing a state feedback controller
such that the system (1), in closed loop with this control law,
minimizes an upper bound of ‖T1‖2 subject to ‖T2‖∞ < γ
for a given γ.

Theorem 4: (A new H2 /H∞ condition) For a given scalar
γ > 0, if there exist matrices N,P1, P2 > 0, F, S and a
scalar r solving the optimization problem below:

min trace(N) : Ω1b < 0,Ω1a > 0, Ω2 < 0.

Then, system (1), in closed loop with u = rFS−1x, is
asymptotically stable, ‖T1‖2

2 < trace(N) and ‖T2‖∞ < γ.
�

The above optimization problem must be solved iteratively
on r. Based on the result proposed in Section III-A, the idea
is to find the minimum r, namely r∗, solving the problem
under the following constraint

S = rP1 = rP2, (22)

This is a quasi-convex problem having a solution whenever
the usual H2 /H∞ control has a solution. Next, solve the
problem iteratively on r by removing the constraint (22) and
increasing r from r∗.

For some r > r∗, the above procedure will never lead to
a more conservative result if compared to the usual H2 /H∞
control.

V. ILLUSTRATIVE EXAMPLE

To demonstrate the approach, consider a 4-th order LTI
system as described in (1) with the following matrices [16]:

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
−k k −f f
k −k f −f

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ; B1 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ;

B2 = B1;
D2 = D1;

D1 =
[

0
0.01

]
; E =

[
0

0.1

]

C1 =
[

1 0 0 0
0 0 0 0

]
; C2 =

[
0 1 0 0
0 0 0 0

]
;

where k = 0.245 and f = 0.0219.
To check the performance of the proposed methodology,

the results obtained from Theorem 4, considering the interval
r∗ ≤ r < ∞, are compared to the standard H2/H∞ multi-
objective control design (Lemmas 1 and 2 with a single
Lyapunov function).

Figure 1 shows a curve of the system H2-norm, i.e.
‖T1‖2

2 = trace(N) as a function of the scalar r, where the
r parameter is varying from r∗ = 3.3 to r → ∞ for a given
γ = 0.7. The value of r∗ was obtained by taking (22), and
the procedure specified at the end of Section IV.

For comparison purposes, the standard approach has led
to ‖T1‖2

2 < 35 (the straight line in Figure 1) and Theorem
4 has obtained a less conservative estimate, i.e. ‖T1‖2

2 < 30,
for an optimal ropt = 10.3.

0 100 200 300 400 500
20

30

40

50

60

70

80

90

trace(N)  X  r

Fig. 1. ‖T1‖2
2 estimates for r∗ ≤ r < ∞.

VI. CONCLUSION AND FUTURE WORK

A. Concluding Remarks

This paper has introduced a new approach to the H2/H∞
multi-objective control design of linear systems in terms of
LMIs considering multiple Lyapunov functions.

The key point of the proposed result is that the controller
parametrization that does not involve the Lyapunov matrix.
This interesting feature allows for the use of multiple Lya-
punov functions in contrast with the (potentially conserva-
tive) standard technique to the multi-objective control design
that considers a single Lyapunov function.

The control design conditions depend on tuning a para-
meter r through an iterative technique. Even though it is
non-convex, some interesting properties of this problem are
shown and a simple strategy to solve it is also proposed in the
paper. In particular, it is shown that, under certain conditions,
it is possible to transform the non-convex conditions over r
into a pair of quasi-convex problems that can be solved by
standard LMI packages.

B. Future Work

A point that remains open is to study the geometry of
trace(N) as a function of r. If this function has always
the same nice properties as exhibited in Figure 1, the line
search required for tuning the scalar r may be considerably
simplified.
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