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Abstract— This paper introduces appropriate concepts of
input-to-state stability (ISS) and integral-ISS for systems with
impulsive effects. We provide a set of Lyapunov-based sufficient
conditions to establish these properties. When the continu-
ous dynamics are stabilizing but the impulsive effects are
destabilizing, the impulses should not occur too frequently,
which can be formalized in terms of an average dwell-time
condition. Conversely, when the impulses are stabilizing and
the continuous dynamics are destabilizing, there must not be
overly long intervals between impulses, which is formalized
in terms of a reverse average dwell-time condition. We also
investigate limiting cases of systems that remain stable for
arbitrarily small/large average dwell-times.

I. INTRODUCTION

Impulsive systems combine continuous evolution (typically

described by ordinary differential equations) with impulse

effects (also referred to as state jumps or resets). Stability

properties of such systems have been extensively investigated

in the literature; see, e.g., [3].

When investigating stability of a system, it is important

to characterize the effects of external inputs. The concepts

of input-to-state stability (ISS) and integral-input-to-state
stability (iISS), introduced by Sontag in [16] and [17],

have proved useful in this regard. Originally introduced

for continuous-time systems, they were subsequently also

studied for discrete-time systems [9] and switched sys-

tems [13]. The possibility of impulse effects, however, has

been excluded in these works.

In this paper we study input-to-state stability properties

of impulsive systems, with external signals affecting both

the continuous dynamics and the state impulse map. These

systems are formally defined in Section II, where we also

define notions of ISS and iISS for such systems.

We provide a set of Lyapunov-based sufficient conditions

to establish ISS and iISS with respect to suitable classes

of impulse time sequences (see Sections III for ISS and

Section VI for iISS). It is shown that when the continuous

dynamics are ISS but the impulse effects are destabilizing,

the impulsive system is ISS if the impulse times do not

occur too frequently, which can be formalized in terms of

an average dwell-time condition [7]. Conversely, when the

impulses are stabilizing but the continuous dynamics are

destabilizing, the impulsive system is ISS if the impulse
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times satisfy a novel “reverse” average dwell-time condition,

which prevents overly long intervals between impulse times.

Section IV considers impulsive systems for which both the

continuous dynamics and the impulsive effects are stabiliz-

ing. Such systems are ISS regardless of how often or how

seldom impulses occur. For these systems we show that there

is no loss of generality in searching for Lyapunov functions

that decrease at exponential rates. This result is analogous to

what happens with ISS of purely discrete- or continuous-time

systems (cf. [15]).

We also investigate impulsive systems that, although ex-

hibiting destabilizing impulsive effects, remain ISS for arbi-

trarily small average dwell-time. Such systems typically arise

when a continuous-time ISS system is perturbed by additive

impulses. We also consider the dual case of impulsive

systems that exhibit destabilizing continuous dynamics but

remain ISS for arbitrarily large reverse average dwell-time.

These systems typically can arise when a discrete-time ISS

system is perturbed by a continuous drift between sampling

times. Lyapunov-based stability conditions that cover both

cases are provided in Section V.

The motivation to study the class of systems considered in

this paper comes from multiple sources. Impulsive systems

with external inputs arise naturally in control systems with

communication constraints, as explicitly discussed in [8, 12,

14, 19]. A special case of one of our results was used in [12]

to analyze stability of such a system. The results presented

here can be used to construct deterministic versions of the

results that appeared in [19] for stochastic disturbances.

Impulsive systems with inputs also describe the evolution

of multiple Lyapunov functions for switched systems with

inputs (even if the latter exhibit no state jumps), which in

turn arise in the analysis of switching control algorithms for

uncertain systems [5, 11]. Due to lack of space most proofs

have been omitted. These can be found in [6].

II. BASIC DEFINITIONS

The general impulsive system with disturbances that we

consider takes the form{
ẋ(t) = f

(
x(t), w(t)

)
, t �= tk, k = 1, 2, . . .

x(t) = g
(
x−(t), w(t)

)
, t = tk, k = 1, 2, . . .

(1)

where the state x takes values in R
n; w is a measurable

locally bounded disturbance input taking values in R
m;

f and g are functions from R
n × R

m → R
n, with f

locally Lipschitz; and {t1, t2, t3, . . . } is a sequence of strictly
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increasing impulse times in [t0,∞), where t0 is the initial

time. By construction the solution x : [t0,∞) → R
n to (1) is

right-continuous and (·)− denotes the left-limit operator, i.e.,

x−(t) = lims↗t x(s). Given a sequence {tk} and a pair of

times s, t satisfying t ≥ s ≥ t0, we will let N(t, s) denote

the number of impulse times tk in the semi-open interval

[s, t).

Suppose that a sequence {tk} is given. We say that the

impulsive system (1) is input-to-state stable (ISS) if there

exist functions1 β ∈ KL and γ ∈ K∞ such that for

every initial condition and every input w, the corresponding

solution of (1) satisfies

|x(t)| ≤ β(|x(t0)|, t − t0) + γ
(
‖w‖[t0,t]

)
, ∀ t ≥ t0 (2)

where ‖ · ‖J denotes the supremum norm on an interval J .

Because of the dual role of w as a continuous and discrete

perturbation, it is acceptable to discard its values on a set

of measure zero, provided that this set does not contain any

impulse times. This can be achieved by redefining the norm

of w as

‖w‖[t0,t] := max
{

ess sup
s∈[t0,t]

|w(s)|, sup
tk∈[t0,t]

|w(tk)|
}
. (3)

With this more general definition, all the subsequent devel-

opments remain valid. Considering only one function γ in

(2) leads to no loss of generality, compared to a bound in

which the two terms on the right-hand-side of (3) appear

weighted by different class K∞ functions.

Since the above definition applies to a fixed sequence {tk}
of impulse times, the ISS property depends on the choice of

the sequence. However, it is often of interest to characterize

ISS over classes of sequences {tk}. To this effect, we say

that the impulsive system (1) is uniformly ISS over a given

class S of admissible sequences of impulse times if the ISS

property expressed by (2) holds for every sequence in S with

functions β and γ that are independent of the choice of the

sequence.

The above ISS property characterizes robustness to dis-

turbances in the L∞/l∞ sense. Another possibility is to

consider “integral” variants, in the spirit of [17]. We say

that the impulsive system (1) is integral-input-to-state stable
(iISS) if there exist functions β ∈ KL and α, γ ∈ K∞

such that for every initial condition and every input w, the

inequality

α(|x(t)|) ≤ β(|x(t0)|, t − t0) +

∫ t

t0

γ(|w(s)|)ds

+
∑

tk∈[t0,t]

γ(|w(tk)|), ∀ t ≥ t0 (4)

1We say that a function α : [0,∞) → [0,∞) is of class K, and write
α ∈ K, when α is continuous, strictly increasing, and α(0) = 0. If α is
also unbounded, then we say it is of class K∞ and write α ∈ K∞. We
say that a function β : [0,∞) × [0,∞) → [0,∞) is of class KL, and
write β ∈ KL when β(·, t) is of class K for each fixed t ≥ 0 and β(s, t)
decreases to 0 as t → ∞ for each fixed s ≥ 0.

holds on the domain of the corresponding solution of (1).

The notion of uniform iISS over a given class S of impulse

time sequences is defined in the same way as for ISS.

III. SUFFICIENT CONDITIONS FOR ISS

We say that a function V : R
n → R is a candidate expo-

nential ISS-Lyapunov function for (1) with rate coefficients
c, d ∈ R if V is locally Lipschitz, positive definite radially

unbounded and2

∇V (x) · f(x, w) ≤ −cV (x) + χ(|w|) ∀x, w a.e. (5)

V (g(x, w)) ≤ e−dV (x) + χ(|w|) ∀x, w (6)

for some function χ ∈ K∞. For generality, we are assuming

that V is locally Lipschitz but not necessarily differen-

tiable everywhere. However, from Rademacher’s Theorem

we know that the former is sufficient to guarantee that the

gradient ∇V (x) of V is well defined except on a set of

measure zero. For this reason we qualify the quantifier in

(5) with “almost everywhere.” We do not require the rate

coefficient c, d to be non-negative and therefore V will not

necessarily decrease, even when w = 0. However, when

these coefficients satisfy an appropriate constraint one can

use V to show that the impulsive system is ISS.

Theorem 1 (uniform ISS) Let V be a candidate exponen-
tial ISS-Lyapunov function for (1) with rate coefficients c, d ∈
R with d �= 0 3. For arbitrary constants µ, λ > 0, let Sµ,λ

denote the class of impulse time sequences {tk} satisfying

−dN(t, s) ≤ µ + (c − λ)(t − s), ∀ t ≥ s ≥ t0. (7)

Then the system (1) is uniformly ISS over Sµ,λ. �

Before proving Theorem 1, we provide some insight into

the significance of condition (7).

When d < 0, we must necessarily have c ≥ λ > 0
for (7) to hold. In this case, (5) says that the continuous

dynamics ẋ = f(x, w) are ISS with respect to w. Indeed,

the existence of an ISS-Lyapunov function V satisfying

∇V (x) · f(x, w) ≤ −α(V (x)) + χ(|w|) with α, χ ∈ K∞

is equivalent to ISS [18], and taking α to be linear is no loss

of generality [15].

Since d < 0, the impulses can potentially destroy ISS,

and we must require that they not happen too frequently.

Not surprisingly, in this case the condition (7) enforces an

upper bound on the number of impulses times: for c = λ it

only holds when the number of impulse times is no larger

than N0 := µ
|d| and for c > λ it can be re-written as

N(t, s) ≤
t − s

τ∗
+ N0, ∀ t ≥ s ≥ t0, (8)

2Taking the same function χ in (5) and (6) is no loss of generality,
because we can always consider the maximum of two functions; however,
it is also easy to treat the case of two different functions, which would lead
to slightly more complicated notation but less conservative estimates.

3When d = 0, Theorem 1 can still be applied because (6) also holds for
every d < 0. This case is closely related to the results in Section V.
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where τ∗ := |d|
c−λ

, N0 := µ
|d| . This corresponds to the con-

cept of average dwell-time for switched systems introduced

in [7]. The special case N0 = 1 reduces to a dwell-time
condition in which consecutive impulses must be separated

by at least τ∗ units of time.

When d > 0, the condition (7) only poses a constraint

when λ > c. In this case, it enforces a lower bound on the

number of impulse times and it can be re-written as

N(t, s) ≥
t − s

τ∗
− N0, ∀ t ≥ s ≥ t0, (9)

where τ∗ := d
λ−c

, N0 := µ
d

. It now corresponds to a reverse
average dwell-time condition that demands, on average, at

least one impulse per interval of length τ ∗ > 0. With

d > 0, (6) says that the discrete dynamics x(k + 1) =
g
(
x(k), w(k)

)
are ISS with respect to w. When we have

c < 0, the continuous flow can potentially destroy ISS,

so we must require flows to be persistently interrupted by

impulses through the reverse average dwell-time condition.

We recall that, according to [1, Theorem 1], the condition (5)

with c < 0 is equivalent to forward completeness (bounded

response to bounded inputs) of the continuous dynamics. The

following result follows from the discussion above:

Corollary 2 (average dwell-time ISS) Let V be a candi-
date exponential ISS-Lyapunov function for (1) with rate
coefficients c, d ∈ R.

1) Let Savg[τ
∗, N0] denote the class of average dwell-time

impulse time sequences that satisfy (8). When d < 0,
(1) is uniformly ISS over Savg[τ

∗, N0], for every τ∗ >
|d|/c and N0 > 0.

2) Let Sr−avg[τ
∗, N0] denote the class of reverse average

dwell-time impulse time sequences that satisfy (9).
When d > 0, (1) is uniformly ISS over Sr−avg[τ

∗, N0],
for every τ∗ < d/(−c) and N0 > 0. �

PROOF OF THEOREM 1. Dividing both sides of (7) by 1+ε >
0, we conclude that

−d̄N(t, s) − c̄(t − s) ≤ µ̄ − λ̄(t − s), ∀ t ≥ s ≥ t0. (10)

where

d̄ :=
d

1 + ε
, c̄ :=

c − λ
2

1 + ε
, µ̄ :=

µ

1 + ε
, λ̄ :=

λ

2(1 + ε)
.

Moreover, we can always choose ε ∈ R sufficiently small so

that c̄ < c and d̄ < d. We can then rewrite (5) as

∇V (x) · f(x, w) ≤ −c̄V (x) − (c − c̄)V (x) + χ(|w|),

and conclude that

(c − c̄)V (x) ≥ χ(|w|) ⇒ ∇V (x) · f(x, w) ≤ −c̄V (x),
(11)

∀x, w a.e.. Similarly, from (6) we also conclude that

(e−d̄ − e−d)V (x) ≥ χ(|w|) ⇒ V (g(x, w)) ≤ e−d̄V (x),
(12)

∀x, w a.e. Let

ť1 := min
{
t ≥ t0 : V (x(t)) ≤ aχ(‖w‖[t0,t])

}
≤ ∞,

a := 1
min{c−c̄,e−d̄−e−d}

> 0. This is well defined because

both x(t) and ‖w‖[t0,t] are right-continuous in t (recall the

definition (3) of the norm). In view of (11) and (12),

V̇
(
x(t)

)
≤ −c̄V (t), ∀ t ∈ [t0, ť1) a.e.

along the continuous dynamics4 and V (x) ≤ e−d̄V (x−)
during the impulses. Thus on this time interval we have the

bound

V (x(t)) ≤ e−d̄N(t,t0)−c̄(t−t0)V (x(t0)), ∀ t ∈ [t0, ť1) (13)

(cf. [10, Theorem 1.10.2]). Combining this with (10), we

conclude that

V (x(t)) ≤ ek−λ̄(t−t0)V (x(t0)), ∀ t ∈ [t0, ť1). (14)

When ť1 = +∞, an ISS bound could already be deduced

from here using standard arguments. Otherwise, let t̂1 :=
inf

{
t > ť1 : V (x(t)) > aχ(‖w‖[t0,t])

}
≤ ∞. By construc-

tion, we have

V (x(t)) ≤ aχ(‖w‖[t0,t]), ∀ t ∈ [ť1, t̂1).

Next, let ť2 := min
{
t > t̂1 : V (x(t)) ≤ aχ(‖w‖[t0,t])

}
≤

∞. Repeating the argument used to establish (14), with t̂1
in place of t0, we obtain

V (x(t)) ≤ eµ̄−λ̄(t−t̂1)V (x(t̂1))

≤ eµ̄−λ̄(t−t̂1)
(
e−dV (x−(t̂1)) + χ(|w(t̂1)|)

)
≤ eµ̄−λ̄(t−t̂1)

(
a e−dχ(‖w‖[t0,t]) + χ(|w(t̂1)|)

)
≤ eµ̄

(
a e−d̄ + 1

)
χ(‖w‖[t0,t]) ∀ t ∈ [t̂1, ť2).

Arguing in the same way for all future times, we arrive at

the bound

V (x(t)) ≤ eµ̄−λ̄(t−t0)V (x(t0))+

eµ̄
(
a e−d̄ + 1

)
χ(‖w‖[t0,t]), ∀ t ≥ t0.

The ISS estimate (2) follows from this by standard argu-

ments. Namely, since V is positive definite and radially

unbounded, it satisfies α1(|x|) ≤ V (x) ≤ α2(|x|) for some

α1, α2 ∈ K∞, which allows us to convert a KL estimate

for V (x) into that for |x|. Uniformity is also clear, since the

final bound on V and hence the functions β and γ in (2)

do not depend on the particular choice of the impulse time

sequence.

Remark 1 We can see from the proof of Theorem 1 that

the condition (7) on the impulse rate only needs to hold for

times t on which

V (x(t)) >
χ(‖w‖[t0,t])

min{c − c̄, e−d̄ − e−d}
. �

4The function t �→ V (x(t)) is absolutely continuous because V is locally
Lipschitz and x absolutely continuous on [t0, ť1). Therefore V (x(t)) has
time-derivative almost everywhere in this interval.
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IV. NON-EXPONENTIAL ISS-LYAPUNOV FUNCTIONS

When the rate coefficients of a candidate exponential

ISS-Lyapunov function are both positive, we have ISS for

arbitrary impulse time sequences, because (7) poses no

constraints on the impulse time sequences, as long as we

choose λ ≤ c. In this case, we may ask whether there would

be an advantage in allowing a non-linear dependence on V
in the right-hand-sides of (5)–(6). In particular, we can ask if

it would be possible to show that a larger class of systems is

ISS for arbitrary impulse time sequences by simply demand-

ing the existence of a “non-exponential” locally Lipschitz,

positive definite, radially unbounded Lyapunov function U
that satisfies5

∇U(x) · f(x, w) ≤ −α
(
U(x)

)
+ χ(|w|) ∀x, w a.e. (15)

U(g(x, w)) ≤ (id − α)
(
U(x)

)
+ χ(|w|) ∀x, w

(16)

with α, χ ∈ K∞. The following result answers this question

in the negative:

Theorem 3 (exponential vs. non-exponential) The
following two statements are equivalent:

1) There exists a locally Lipschitz, positive definite, ra-
dially unbounded function U : R

n → R that satisfies
(15)–(16).

2) There exists a candidate exponential ISS-Lyapunov
function V for (1) with positive rate coefficients.

In either case, (1) is uniformly ISS over all impulse time
sequences.

It should be clear from the proof of Theorem 3 that if

(16) is replaced by U(g(x, w)) ≤ U(x), ∀x, w, i.e., if the

impulses are “neutral” rather than “helpful” for ISS, then

there exists a candidate exponential ISS-Lyapunov function

V with rate coefficients c = 1, d = 0, for which the χ
term is absent from (6). In this case, it is straightforward to

prove that (1) is also uniformly ISS over all impulse time

sequences.

The dual case—when the continuous dynamics are “neu-

tral” and the impulses are “helpful” for ISS—is also of

interest, but then we must require that the impulses are

persistent in the sense of (9) with τ∗ > 0 arbitrary. Taking

into account Remark 1, here is one way to state the result.

Theorem 4 (neutral continuous dynamics) Suppose that
there exist a locally Lipschitz, positive definite, radially
unbounded function V : R

n → R such that

∇V (x) · f(x, w) ≤ 0, ∀x, w a.e.

and class K∞ functions α and ρ such that

V (x) ≥ ρ(|w|) ⇒ V (g(x, w)) − V (x) ≤ −α(V (x)) (17)

5Taking the same functions α and χ in (15) and (16) is no loss of
generality, because we could always consider the minimum of the two α’a
and the maximum of the two χ’s.

and

V (x) ≤ ρ(r) and |w| ≤ r ⇒ V (g(x, w)) ≤ ρ(r). (18)

Fix an arbitrary positive integer N0 and an arbitrary positive
real number τ∗. Let SN0,τ∗ denote the class of impulse
time sequences {tk} with the following property: for each
t > t0 such that V (x(t̄)) ≥ ρ(‖w‖[t0,t̄]) for all t̄ ∈ [t0, t],
the number N(t, t0) of impulse times in the interval [t0, t]
satisfies the inequality (9) with s = t0. Then the system (1)

is uniformly ISS over SN0,τ∗ . �

V. ISS FOR ARBITRARY AVERAGE DWELL-TIMES

This section addresses two classes of systems for which

one may not have uniform ISS over all impulse sequences,

but one still has ISS over classes of impulse sequences

with arbitrarily small average dwell-time or arbitrarily large

reverse average dwell-time.

Impulsive systems often arise out of applying impulsive

perturbations to an ISS continuous-time system. This occurs,

e.g., in [12, Section 4] in the context of control with

limited information. For such systems, one should not expect

uniform ISS over all impulse sequences, but one can still ask

“how often” can these perturbations occur without destroying

ISS. The first part of Corollary 2 provides an answer to this

question in terms of a minimum average dwell-time τ ∗ >
|d|/c. However, it prompts the question of whether or not we

could have uniform ISS for an arbitrary small (but nonzero)
average dwell-time τ∗ > 0. Motivated by this observation,

we say that the impulsive system (1) is ISS for arbitrarily
small average dwell-time (a.d.t) when it is uniformly ISS

over every class Savg[τ
∗, N0] of average dwell-time impulse

time sequences that satisfy (8) with τ∗ > 0, N0 < ∞.

Alternatively, impulsive systems can arise out of applying

continuous-time perturbations to an ISS discrete-time sys-

tem. This occurs, e.g., in [19] in the context of networked

control systems6. In this case, one may ask for “how long”

can the system flow between jumps without destroying ISS.

The second part of Corollary 2 provides an answer to this

question in terms of a maximum reverse average dwell-

time τ∗ := d/(−c), λ > 0. However, also in this case

one may have uniform ISS for an arbitrary large (but
finite) reverse average dwell-time τ∗ > 0. Motivated by this

observation, we say that the impulsive system (1) is ISS for
arbitrarily large a.d.t. when it is uniformly ISS over every
class Sr−avg[τ

∗, N0] of reverse average dwell-time impulse

time sequences that satisfy (9) with τ∗, N0 < ∞.

To address these questions it is convenient to introduce

the following terminology: We say that V : R
n → R is

non-expansive for the impulse map g(x, w) when, for every

d < 0, there exists a function χ ∈ K∞ such that

V (g(x, w)) ≤ e−dV (x) + χ(|w|) ∀x, w. (19)

6The analysis in [19] deals with stochastic disturbances w and considers
more general vector fields. A deterministic version of the framework in [19]
with marginally stable processes leads to the class of systems considered
here.
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This terminology is motivated by the observation that these

functions must necessarily satisfy V (g(x, 0)) ≤ V (x), ∀x.

Alternatively, we say that a locally Lipschitz function V is

non-expansive for the vector field f(x, w) when, for every

c < 0, there exists a function χ ∈ K∞ such that

∇V (x) · f(x, w) ≤ −cV (x) + χ(|w|) ∀x, w a.e. (20)

These functions must always satisfy ∇V (x) · f(x, 0) ≤ 0,

∀x a.e. The following result follows from the formulas given

above for τ∗:

Corollary 5 (ISS for arbitrary a.d.t) Let V be a candi-
date exponential ISS-Lyapunov function for (1).

1) If V is non-expansive for the impulse map g(x, w),
then (1) is ISS for arbitrarily small a.d.t.

2) If V is non-expansive for the vector field (f, w), then
(1) is ISS for arbitrarily large reverse a.d.t. �

The remaining of this section is devoted to the question

of whether or not a given function V is non-expansive.

A. Non-expansiveness for impulse maps

To state the following result we say that a function h(x, w)
has linear growth on w uniformly over x if

∃L > 0 : |h(x, w)| ≤ L|w|, ∀x, w.

Theorem 6 (non-expansive for impulse maps) Assume
that g(x, w) − x has linear growth on w uniformly over
x. A locally Lipschitz, positive definite, radially unbounded
function V : R

n → R is non-expansive for the impulse map
g(x, w) if any of the following conditions holds:

C1 ∀ d < 0, there exists a function χ̄ ∈ K∞ such that

V (x + y) ≤ e−dV (x) + χ̄(|y|), ∀x, y. (21)

C2 there exists a function α ∈ K∞ such that7

α(V (x))|∇V (x)| ≤ V (x), ∀x a.e. (22)

C3 V (x)
|∇V (x)| is radially unbounded a.e. �

Remark 2 Theorem 6 indicates that there is a broad class

of positive definite functions V that are non-expansive for

impulse maps for which g(x, w) − x has linear growth. In-

deed, C3 simply requires that the gradient of V be dominated

by V itself, which happens for large classes of polynomial

functions as well as for every homogeneous function. One

may then wonder if there are interesting systems with such

impulse maps that are ISS for a given average dwell-time

τ∗ > 0 but are not ISS for arbitrarily small a.d.t. The answer

is affirmative and a simple example is given by{
ẋ = − sat(x), t �= tk, k = 1, 2, . . .

x = x− + sat(w), t = tk, k = 1, 2, . . . ,

7Since V is positive definite, one could replace α(V (x)) by α(‖x‖) in
(22).

where sat(·) denotes the saturation function limited at ±1
and with unit slope on [−1, 1]. This system is uniformly ISS

over the class of average dwell-time impulse time sequences

that satisfy (8) for any τ∗ > 1 because

V (x) :=

{
x2 |x| ≤ 1

e2(|x|−1) |x| > 1
(23)

is a candidate exponential ISS-Lyapunov function with rate

coefficients c = 2 and d = −2. However, it is not ISS for

arbitrarily small a.d.t. since x can explode with bounded

disturbances, provided that the impulse times are closely

spaced. As expected, the function (23) does not satisfy (22).

�

Corollary 7 (GES vs. ISS for arbitrarily small a.d.t.)
Impulsive systems of the following form are always ISS for
arbitrarily small a.d.t.:{

ẋ = f1(x) + f2(w), t �= tk, k = 1, 2, . . .

x = g(x−, w), t = tk, k = 1, 2, . . . ,

where ẋ = f1(x) is globally exponentially stable, f1 is
globally Lipschitz, f2(0) = 0, and g(x, w) − x has linear
growth on w uniformly over x. This includes the case of
linear continuous dynamics. �

B. Non-expansiveness for vector fields

The following results address ISS for arbitrarily large

reverse a.d.t.

Theorem 8 (non-expansive for vector fields) Assume that
f(x, w) has linear growth on w uniformly over x. A locally
Lipschitz, positive definite, radially unbounded function V :
R

n → R is non-expansive for the vector field f(x, w) if any
of the following conditions holds:

C4 ∀ c < 0, there exists a function χ̄ ∈ K∞ such that

|∇V (x)| · |y| ≤ −cV (x) + χ̄(|y|), ∀x, y a.e. (24)

C5 there exists a function α ∈ K∞ such that

α(V (x))|∇V (x)| ≤ V (x), ∀x a.e. (25)

C6 V (x)
|∇V (x)| is radially unbounded a.e. �

Corollary 9 (GES vs. slow-switching ISS) Impulsive sys-
tems of the following form are always slow-switching ISS:{

ẋ = f(x, w), t �= tk, k = 1, 2, . . .

x = g1(x
−) + g2(w

−), t = tk, k = 1, 2, . . . ,

where x(k + 1) = g1(x(k)) is globally exponentially stable,
g1 is globally Lipschitz, g2(0) = 0, and f(x, w) has linear
growth on w uniformly over x. �
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VI. SUFFICIENT CONDITIONS FOR INTEGRAL ISS

We now provide iISS counterparts to Theorems 1 and 3.

The first result establishes iISS for suitably constrained

impulse time sequences under the hypotheses of Theorem 1,

and the second one establishes iISS for arbitrary impulse

time sequences under hypotheses weaker than (15)–(16).

Theorem 10 (uniformly iISS) Let all hypotheses of Theo-
rem 1 hold and define the class of impulse time sequences
Sµ,λ, µ, λ > 0 also as in Theorem 1. Then the system (1) is
uniformly iISS over Sµ,λ. �

PROOF OF THEOREM 10. From (5) and (6) we see that

V (x(t)) is upper bounded by the (nonnegative) solution v(t)
of the impulsive system{

v̇ = −cv + χ(|w|), t �= tk, k = 1, 2, . . .

v = e−dv− + χ(|w|), t = tk, k = 1, 2, . . .

with the initial condition v(t0) = V (x(t0)). Let z(t) be the

(nonnegative) solution to{
ż = χ(|w|), t �= tk, k = 1, 2, . . .

z = z− + χ(|w|), t = tk, k = 1, 2, . . .

with the initial condition z(t0) = 0. Define y := v−z. Then

y satisfies y(t0) = V (x(t0)) and{
ẏ = −cv = −cy − cz, t �= tk

y = e−dv− − z− = e−dy− − (1 − e−d)z−, t = tk.

Applying the proof of Theorem 1, with y and z playing the

roles of V and χ(|w|), respectively, we see that this impulsive

system is ISS with respect to z with linear gain:

y(t) ≤ β(y(t0), t − t0) + γz(t)

for some function β ∈ KL and constant γ > 0. Collecting

the above formulas, we obtain

V (x(t)) ≤ v(t) = y(t)+z(t) ≤ β(y(t0), t−t0)+(γ+1)z

= β(V (x(t0)), t − t0) +

∫ t

t0

(γ + 1)χ(|w(s)|)ds

+
∑

tk∈[t0,t]

(γ + 1)χ(|w(tk)|)

from which the iISS estimate (4) follows.

The following result is a relatively straightforward exten-

sion of the proof of the corresponding result for continuous

systems given in [2].

Theorem 11 Suppose that there exists a positive definite,
radially unbounded, locally Lipschitz function V : R

n → R,
a positive definite function α, and a class K∞ function χ
satisfying

∇V (x) · f(x, w) ≤ −α(V (x)) + χ(|w|), ∀x, w a.e., (26)

and
V (g(x, w)) ≤ V (x) + χ(|w|), ∀x, w. (27)

Then the system (1) is uniformly iISS over all impulse time
sequences {tk}. �

VII. CONCLUSIONS

We introduced concepts of ISS and integral-ISS to sys-

tems with impulsive effects and provided Lyapunov-based

sufficient conditions to establish these properties. Converse

Lyapunov results for systems with impulsive effects will be

reported in a forthcoming paper. These results are based on

the converse Lyapunov theorems for hybrid systems in [4].
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