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Abstract— It has been known that a matrix-valued transfer
function is dynamically stabilizable iff it has a doubly coprime
factorization. We extend this to operator-valued functions and
also to controllers with internal loop. We then present several
other equivalent conditions, such as having a stabilizable and
detectable realization. Our results lead to the extension of the
classical results on dynamic stabilization and dynamic partial
stabilization to general proper operator-valued functions. Part
of the results are new even for scalar-valued functions.

I. INTRODUCTION

A proper rational matrix-valued function P has the fol-

lowing properties (among others):

(i) P has a stabilizing dynamic controller.

(ii) P has a doubly coprime factorization.

(iii) P has a right coprime factorization.

(iv) P has a stabilizable and detectable realization.

(v) The LQR Riccati equation and its dual equation for

some realization of P have nonnegative solutions.

(The definitions will be given later in this article.) Not all

meromorphic functions on C
+
0 have these properties.

We show that these conditions and some others are
equivalent for general operator-valued transfer functions.

However, (v) will not be treated explicitly here.

A. Notation

U,X, Y : Hilbert spaces of arbitrary dimensions.

B(U, Y ): Bounded linear maps U → Y .

R+: {t ∈ R
∣∣ t ≥ 0}; R− := {t ∈ R

∣∣ t ≤ 0}.

C
+
ω : {s ∈ C

∣∣ Re s > ω}.

H∞
ω (U, Y ): the set of bounded holomorphic functions

C
+
ω → B(U, Y ).

H2
ω(U): The Hilbert space of holomorphic functions h :

C
+
ω → U for which.

‖h‖H2
ω

:= sup
r>ω

∫ ∞

−∞
‖h(r + it)‖2

U dt < ∞.

H2 := H2
0: H∞ := H∞

0 , H∞
ω (U) := H∞

ω (U,U).

By a proper function we mean a bounded holomorphic

operator-valued function on some right half-plane (C+
ω ). We

denote this class by H∞
∞ := ∪ω∈RH∞

ω .

The ones in H∞ are called stable.

We identify a holomorphic function on a right half-plane

C
+
ω with its restriction to any open subset of C

+
ω .
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Fig. 1. Controller Q for the plant P

II. DYNAMIC STABILIZABILITY

Before going into infinite-dimensional realizations, we

show that a function has a stabilizing controller iff it has

a coprime factorization.

We say that f, g ∈ H∞ are r.c. (right coprime) if Gg −
Ff ≡ I on C

+
0 for some G,F ∈ H∞, i.e., if [ f

g ] is left-

invertible. If P is a B(U, Y )-valued function defined on a

neighborhood of α ∈ C
+
0 , then we say that P has a r.c.f.

(right coprime factorization) iff P = fg−1, where f, g ∈ H∞

are r.c. and g(α)−1 exists (∈ B(U)).
Similarly, P = g̃−1f̃ is a l.c.f. if g̃G̃ − f̃ F̃ ≡ I for some

g̃, f̃ , G̃, F̃ ∈ H∞, g̃(α)−1 exists and P = g̃−1f̃ . Given a

r.c.f. and a l.c.f., we can redefine G̃ and F̃ so as to have[
g F
f G

] [
G̃ −F̃

−f̃ g̃

]
=

[
IU 0
0 IY

]
=

[
G̃ −F̃

−f̃ g̃

] [
g F
f G

]
.

(1)

We call (1) a d.c.f. (doubly coprime factorization) of P .

If P and Q are holomorphic functions on a neighborhood

of some α ∈ C
+
0 and [ I −P

−Q I ]−1 ∈ H∞ (this means that

there exists E ∈ H∞(Y × U) such that E [ I −P
−Q I ] =

I = [ I −P
−Q I ]E near α), then we say that P is dynamically

stabilizable and that Q is a stabilizing controller for P .

This is the case iff the maps [ uL
yL ] 	→ [ u

y ] in Figure 1 are

stable (i.e., H2 is mapped into H2).

We now extend a result that is well known in the matrix-

valued case [Vid85] [Smi89]:

Theorem II-A: A function is dynamically stabilizable iff

it has a d.c.f.

Further equivalent conditions will be given in Theorem V-

A.

If P is matrix-valued (i.e., dimU,dimY < ∞) and has

an r.c.f., then it can be stabilized by some Q ∈ H∞, by

[Qua04].

III. WELL-POSED LINEAR SYSTEMS

We have now treated the conditions (i)–(iii) to some extent.

The remaining two conditions and some others are given

in terms of realizations. This means that we interpret the

given function P as the transfer function of a system. To

cover all proper functions, the realizations must be taken

from a very general class of infinite-dimensional systems.
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Fig. 2. Input, state and output of a system

Our choice is the Salamon–Weiss class, or the class of well-

posed linear systems (WPLSs, or abstract linear systems),

developed in, e.g., [Sal87] [Sal89] [Wei94b] [Wei94a]. The

readers not interested in state-space results may proceed

directly to Section V.

These systems are generalizations of the following type of

systems: {
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (t ≥ 0) (2)

x(0) = x0.

In the simplest possible case, the generators [ A B
C D ] ∈ B(X×

U,X ×Y ) are bounded linear operators between the Hilbert

spaces U, X and Y . Given an initial state x0 ∈ X and an

input u ∈ L2
loc(R+; U), the state trajectory x : R+ → X

and the output y : R+ → Y of the system (2) are obviously

given by {
x(t) = A tx0 + Btu
y = C x0 + Du,

where (3)

A t = eAt, Btu =
∫ t

0

A t−sBu(s) ds,

C x0 = CA ·x0, Du = CB·u + Du.

(4)

It is possible to extend the above theory to the case where

A is a generator of a strongly continuous semigroup A , and

B : U → (Dom(A∗))∗ and C : Dom(A) → Y .

In this setting we can, e.g., require u to be smooth and

allow y to be a distribution.

An important special case is the one where y is a function

and the maps x0, u 	→ x(t), y are continuous in X × L2
loc,

for some (hence all) t > 0, equivalently, that

‖x(t)‖2
X +

∫ t

0

‖y(s)‖2
Y ds ≤ Kt

(‖x0‖2
X +

∫ t

0

‖u(s)‖2
U ds

)
for some (equivalently, all) t > 0, where Kt does not depend

on x0 nor u. Such systems are called well-posed.

Throughout this article, all systems are assumed to be

well-posed.

Set L2
ω := e·ωL2, with ‖u‖2

L2
ω

:=
∫

R
‖u(t)‖2

Ue−2ωt dt;

π+f := χ
R+f , π−f := χ

R−f , (τ tf)(r) := f(r + t).
An equivalent definition of WPLSs is as follows:

Definition III-A: Let ω ∈ R. An ω-stable well-posed
linear system (WPLS) on (U,X, Y ) is a quadruple Σ =

[ A B
C D

]
, where A t, B, C , and D are bounded linear

operators of the following type:

(1.) A t : X → X is a strongly continuous semi-

group of bounded linear operators on X satisfying

supt∈R+
‖e−ωtA t‖ < ∞;

(2.) B : L2
ω(R;U) → X satisfies A tBu = Bτ tπ−u

for all u ∈ L2
ω(R;U) and t ∈ R+;

(3.) C : X → L2
ω(R; Y ) satisfies C A tx = π+τ tC x for

all x ∈ X and t ∈ R+;

(4.) D : L2
ω(R;U) → L2

ω(R; Y ) satisfies τ tDu =
Dτ tu, π−Dπ+u = 0, and π+Dπ−u = C Bu for

all u ∈ L2
ω(R;U) and t ∈ R.

(The above B corresponds to the Bt : u|[0,t]
	→ x(t) in

(3)–(4) through Bt := Bτ tπ+ = Bτ tπ[0,t]. By x and y we

always denote the state and output, through (3).)

By û we denote the Laplace transform of u:

û(s) :=
∫

R

e−stu(t) dt (s ∈ C
+
ω ). (5)

The Laplace transform is an isometric (modulo
√

2π) iso-

morphism of L2
ω := e·ωL2 onto H2

ω.

Proposition III-B: Let ω ∈ R. For any ω-stable WPLS

[ A B

C D
] there exists a unique transfer function D̂ ∈ H∞

ω s.t.

D̂u = D̂ û on C
+
ω for any u ∈ L2

ω(R+; U).
Conversely, any D̂ ∈ H∞

ω (U, Y ) is the transfer function

of some ω-stable WPLS (which is called the realization of

D̂).

If B ∈ B(U,X) or C ∈ B(X, Y ), then

D̂(s) = D + C(s − A)−1B. (6)

By the resolvent equation, we get

D̂(s) = D̂(z) + (z − s)C(s − A)−1(z − A)−1B. (7)

The formula (7) is valid for arbitrary WPLSs, so a WPLS

can be defined by giving suitable A, B, C and D̂(z) for

some z in a suitable right half-plane.

Proposition III-B explains why WPLSs are the correct

choice of realizations for our purposes. Another important

property is that the dual system of a WPLS is also a WPLS.

The dual system means the one generated by ( A∗ C∗
B∗ D∗ ) in

place of ( A B
C D ) (if B or C is bounded; similarly in the general

case).

The WPLSs have also been called abstract linear systems

or Salamon–Weiss systems. The Lax–Phillips scattering sys-

tems [LP67] [AN96] and the continuous-time version of the

operator-based models of Béla Sz.-Nagy and Ciprian Foiaş

[SF70] can be interpreted as special cases of WPLSs (see

[Sta05, Sections 2.7 and 2.9 and Chapter 11]).

IV. STATE FEEDBACK

Bounded state feedback means that we use u(t) = Kx(t)
as the input (for some K ∈ B(X,U)). Substituted into (2),

this leads to the closed-loop system

ẋ(t) = (A + BK)x(t), y(t) = (C + DK)x(t), (8)
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�ẋ �

∫

�y

�v = Kx �

��
+

+�u� �u = Kx + u��

�
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Fig. 4. State-feedback connection for a general WPLS

or, if we allow an external input u�, i.e., u(t) = Kx(t) +
u�(t), as in Figure 3, this leads to{

ẋ(t) = (A + BK)x(t) + Bu�(t),
y(t) = (C + DK)x(t) + Du�(t). (9)

Thus, the generators
(

A B

C D
K 0

)
and

(
A+BK B

C+DK D
K 0

)
, deter-

mine the open-loop and closed-loop systems, respectively, if

we take into account the feedback signal Kx(t).
So state feedback means adding an extra output to the

system and feeding that output back to the input (like v(t) =
Kx(t) in Figure 3).

For a general WPLS, the definition is the same: a state

feedback means a pair [ K F ] such that the extended

system Σext in Figure 4 is a WPLS. (By (7), it suffices to

give a suitable K ∈ B(Dom(A), U) and F̂ (z) ∈ B(U).)
The state feedback is called admissible if (I−F̂ )−1 exists

and is proper, or equivalently, if the map (I − F ) : u 	→
u� has a bounded and causal inverse on L2

ω for some ω ∈
R. This means that the (closed) state-feedback loop is well-

posed under external disturbance.

Any K ∈ B(X, U) determines an admissible state feed-

back (with F̂ (s) := K(s−A)−1B, so that v(t) = Kx(t)+
0u(t)), but so do also some unbounded operators.

An admissible state feedback is called stabilizing if the

resulting closed-loop system is stable, i.e., if there exists

M < ∞ such that for each x0 ∈ X and u� ∈ L2 the

state x and output [ y
v ] of Σ� satisfy

‖x(t)‖X +‖ [ y
v ] ‖2 ≤ M (‖x0‖X + ‖u�‖2) (t ≥ 0). (10)

If dimX < ∞, then an equivalent condition is that σ(A +
BK) is contained in the open left half-plane C

− := {Re s <
0}. If there exists a stabilizing state feedback, then we call

the system stabilizable. We call the system detectable if its

dual system is stabilizable.

An admissible state-feedback pair is called output-
stabilizing if there exists M < ∞ such that

‖ [ y
v ] ‖2 ≤ M‖x0‖X (x0 ∈ X) (11)

(when u� = 0; note that then u = v). Obviously, a

necessary condition for this is the output-FCC (output-

Finite Cost Condition): For each x0 ∈ X, there exists u ∈
L2(R+; U) such that y ∈ L2(R+;Y ). That is, some stable
(i.e., L2) input makes the output stable. This condition is

also necessary:

Theorem IV-A: There exists an output-stabilizing state-

feedback pair iff the output-FCC holds.

If we drop the admissibility requirement, then Theo-

rem IV-A can be found in [Zwa96] (or already in [FLT88] for

systems having a bounded output operator C ∈ B(X,Y )).
As such, the theorem was proved in [Mik05c], where it was

also shown that if the output-FCC holds, we can actually

satisfy

‖ [ y
v ] ‖2 ≤ M(‖x0‖X +‖u�‖2) (x0 ∈ X, u� ∈ L2). (12)

Moreover, the state-feedback can be chosen so that, in

addition, the map (say,
[

R
S

]
) u� 	→ [ y

u ] is weakly right
coprime (w.r.c.), which means that u� ∈ L2 ⇔ [ y

u ] ∈ L2

for any u� ∈ L2
ω(R+; U), ω ∈ R. (This defines a w.r.c.f.

RS −1 : u 	→ y of the transfer function; even in the scalar

case it need not have a r.c.f. For rational functions, w.r.c. and

r.c. are equivalent. Our definition of “w.r.c.” is equivalent

to the standard matrix-valued-case definition “no common

(square) right factors” used in [Fuh81] and [Smi89], by

[Mik05e].)

V. EQUIVALENT CONDITIONS

In Theorem V-A we list several equivalent conditions for

a proper function. The terminology will be explained later

in this section (see [Mik05a] or [Mik02] for more details or

further equivalent conditions).

Theorem V-A (D.c.f.⇔...): The following are equivalent

for any P ∈ H∞
∞(U, Y ):

(dcf) P has a d.c.f.

(rcf) P has a r.c.f. or a l.c.f.

(SC) P has a stabilizing controller.

(CC) P has a stabilizing canonical controller.

(IL) P has a stabilizing controller with internal loop.

([ P 0
0 I ])

[
P 0
0 IZ

]
has a d.c.f. for some Hilbert space Z.

(FCC) P has a realization Σ s.t. the output-FCC holds for

Σ and for its dual system.

(s&d) P has a stabilizable and detectable realization.

(j.s&d)P has a jointly stabilizable and detectable realiza-

tion.

Condition (IL) is equivalent to the following:

(ILreal)P has a realization that is stabilizable by a con-

troller (system) with internal loop.

The analogous variant of (CC) is also equivalent.

If dimU,dimY < ∞, then “with internal loop” can be

removed from (ILreal), and any of the above conditions is

equivalent to the following Corona condition:
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(C) P = FG−1 with F, G ∈ H∞, F ∗F + G∗G ≥ εI on

C
+
0 for some ε > 0, and detG �≡ 0.

Given a d.c.f.
[

g F
f G

]
=

[
G̃ −F̃

−f̃ g̃

]−1

∈ H∞(U × Y ) of

P , all stabilizing controllers with internal loop for P are

obtained from the standard Youla parameterization

(F + gJ)(G + fJ)−1 (J ∈ H∞(Y, U)). (13)

(The controller is proper iff (G + fJ)−1 ∈ H∞
∞(U).)

We list below the previously known and the newly es-

tablished implications between the conditions (this is also a

sketch of the proof):

P has a stabilizing (dynamic) controller��
Mik05a

(Theorem II−A)
��

d.c.f.��
Tolokonnikov

Treil05
(Mik05b) ��

�� Sta98 �� jointly stab.&det. real.

trivial

��
r.c.f. or l.c.f.��

CWW01

��

stab.&det. real

trivial

��

Stab. canonical controller

trivial

��
Stab. contr. with internal loop

Mik02

��
[ P 0

0 I ] has a d.c.f.
Mik05a

�� FCC for Σ and dual

CO05
(Mik05d)

����������������������������������������

��������������������������������������

The implication from a r.c.f. to a d.c.f. is from [Tol81] in

the matrix-valued case and [Tre04] in the (separable) infinite-

dimensional case (the nonseparable case from [Mik05b]).

Implication (FCC)⇒d.c.f. is from [CO05] (in the separable

case under the assumption that σ(A) does not contain the

imaginary axis; the general case from [Mik05d]). Carleson’s

Corona condition (C) was extended to the matrix-valued

case in [Fuh68]. The claim on (ILreal) is from [Mik02],

and the Youla parameterization is well known. On the other

implications the above chart is self-explanatory.

Moreover, a stabilizing controller with internal loop is a

stabilizing controller (without internal loop) for [ P 0
0 I ], which

thus has a d.c.f., by Theorem II-A. Using [Sta98], we obtain

a jointly stabilizable realization of [ P 0
0 I ], and the top-left part

of this realization satisfies (FCC). The result in [CO05] is

based on showing that the canonical normalized factorization

of P has a Hankel norm strictly less than one, which implies

left invertibility, i.e., r.c. (The standard d.c.f. formula method

cannot be used, as explained below “joint stabilizability and

detectability” below.)

From Theorem V-A it easily follows that if the function[
P 0
0 IZ

]
has a d.c.f. for some Z, then it actually has a d.c.f.

for any Z.

We call a function R a stabilizing controller with internal
loop for P if R ∈ H∞

∞(Y ×Ξ, U×Ξ) for some Hilbert space

Ξ and (I −S)−1 ∈ H∞, where S =
[

0 R11 R12
P 0 0
0 R21 R22

]
. Note from

P

R11 R12

R21 R22

�
+ +

ỹ
�

yL � � y

�u
�

+ +� uL

�̃u

�ξ
�

+ + ξL�

ξ̃�
Fig. 5. Controller R with internal loop for P ∈ H∞∞(U, Y )
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�
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�
x0

�

x�

�ξ
�

+ + ξL�

�x̃0
�

x̃�

Fig. 6. Controller Σ̃ with internal loop for the WPLS Σ

Figure 5 that (I − S)−1 − I maps
[

uL
yL
ξL

]
	→

[ u
y
ξ

]
. Thus, R

is stabilizing iff the maps
[

uL
yL
ξL

]
	→

[ u
y
ξ

]
are well-posed and

stable. [WC97] [CWW01] An equivalent condition is that

[ I −P0
−R I ]−1 ∈ H∞(Y × Ξ × U × Ξ), where P0 := [ P 0

0 I ].
[Mik02]

The equivalent condition (ILreal) is formally stronger: it

means (the existence of a realization Σ for this fixed P and of

another system Σ̃ such) that all 25 maps from initial states

and external inputs to states and outputs in Figure 6 are

stable. (It obviously follows that the transfer function of Σ̃ is

a stabilizing controller for P with internal loop.) See Section

7.2 of [Mik02] for further details.

If F ∈ H∞(Y,U) and G ∈ H∞(U) are r.c., then

R :=
[

0 F
I I−G

]
is called a (right) canonical controller (see

[CWW01] or [Mik02]). Sometimes we denote it by FG−1,

as in the Youla parameterization above.

Two controllers with internal loop for P are considered

equivalent if the closed-loop signals [ uL
yL ] 	→ [ u

y ] are the

same (but those from ξL or to ξ may differ).

The Youla parameterization covers all stabilizing con-

trollers in the sense that the others are equivalent to exactly

one of those given by the parameterization.

A controller R with internal loop is equivalent to a

controller (without internal loop, i.e., to a B(Y, U)-valued

function) iff (I − R22)−1 exists somewhere. If so, then

it is equivalent to Q = R11 + R12(I − R22)−1R21 ∈
H∞

∞(Y,U). Similarly, R is equivalent to a proper controller

iff (I − R22)−1 is proper. Even in the scalar case, some

stabilizing controllers with internal loop do not correspond

to any function (I − R22 is nowhere invertible), and such

controllers have practical engineering applications (“short

circuit stabilization”) [CWW01]. However, one can always

choose the J in (13) so that the controller becomes a function

(or G + fJ becomes invertible near a predetermined point
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of C
+
0 where also P is defined). It is not known whether the

controller can always be made proper (in the matrix-valued

case the answer is positive [Qua04], as mentioned above).

In Section IV we explained that if the state-space is finite-

dimensional, then stabilizing state feedback means an oper-

ator K ∈ B(X, U) such that σ(A + BK) ⊂ C
−. Similarly,

then detectability means the existence of T ∈ B(Y,X) such

that σ(A+TC) ⊂ C
−. An equivalent condition is that when

we connect the second output to the first input or the first

input to the second output in the augmented system ΣJoint :=( A B T

C D 0
K 0 0

)
, the resulting closed-loop system becomes stable.

We call this joint stabilizability and detectability, and the

I/O maps of the resulting two closed-loop systems (plus

identities) are the inverses of each other; this produces a

d.c.f. [Sta98] [WC97].

When dimX = ∞ and K and T are stabilizing and

detecting, respectively, the situation is otherwise the same

but the “mixed terms” (e.g., T (·−A−BK)−1K) in the I/O

maps mentioned above need not be stable (not even be proper

if both T and K are unbounded). Thus, joint stabilizability

and detectability is strictly stronger than stabilizability and

detectability.

The factorizations (and controllers) presented above can be

found by solving corresponding algebraic or integral Riccati

equations [Mik05d] [Mik05c]; see [CO05] and [Mik02, The-

orem 7.3.12(c)] for simpler constructive formulas in certain

special cases.

VI. FURTHER RESULTS AND NOTES

All positive results mentioned above and below are true

also in their obvious “discrete-time” forms.

Sometimes one wants to stabilize a system dynamically

through partial feedback (measurement-feedback), where the

controller can measure only to a part of the input and

affect only a part of the output. The standard results, as

presented in, e.g., [Fra87] for finite-dimensional systems (or

rational transfer functions), can be extended to the infinite-

dimensional setting using the above results.

Naturally, all above results have analogies for exponential

stabilization (and exponential coprime factorizations: the

maps belong to H∞
ω for some ω < 0). Moreover, the results

lead to many other implications between different forms

of stabilizability, detectability and dynamic stabilizability

(including external and exponential stabilizability) for a fixed

system.

Weak coprimeness (“quasi-coprimeness”) was presented in

[Mik02], motivated by the fact that w.r.c. output-stabilization

is the weakest form of stabilization that allows the reduction

of optimal control problems to the output-stable case. By

the comments below Theorem IV-A, this approach applies

to any typical solvable control problem.

As shown in [Mik05d] and [Mik05c], weak coprimeness is

in many ways a more natural (direct) extension of coprime-

ness to irrational functions than the (Bézout) one used in

this article. E.g., the following are equivalent for any proper

function P :

(i’) P has a weakly right coprime factorization.

(ii’) P = fg−1 with f, g ∈ H∞ and g−1 proper.

(iii’) P has a stabilizable realization.

(iv’) P has an output-stabilizable realization.

(v’) A certain integral LQR Riccati equation for some

realization of P has a nonnegative solution.

(vi’) A certain algebraic LQR Riccati equation for some

realization of P has a nonnegative solution.

(From (iii’) and (iv) it follows that also the condition (v)

in the introduction is equivalent to (i)–(iv).)

However, not every P satisfying (i’)–(vi’) has an r.c.f. For

those that do, every w.r.c.f. is an r.c.f. Naturally, not all proper

functions satisfy even (i’)–(vi’) (e.g., P (s) = (s − 1)−1/2).

Weak coprimeness also plays a key role in the proofs of

Theorem II-A, which in turn was needed for Theorem V-A.

The definitions are mainly from [Sta98] (or [Sta05]), but

equivalent definitions are wide-spread, most of them origi-

nating in [Sal87], [Sal89], [Wei94b], [Wei94a] etc. Otherwise

the sources of previously known results have been explained

above. See, e.g., [Mik05c], [WC97] and [Mik02] for further

historical notes.

REFERENCES

[AN96] Damir Z. Arov and Michael A. Nudelman, Passive linear
stationary dynamical scattering systems with continuous time,
Integral Equations Operator Theory 24 (1996), 1–45.

[CO05] Ruth F. Curtain and Mark R. Opmeer, Normalized doubly
coprime factorizations for infinite-dimensional linear systems,
Math. Control Signals Systems (2005), to appear.

[CWW01] Ruth F. Curtain, George Weiss, and Martin Weiss, Stabilization
of irrational transfer functions by controllers with internal loop,
Systems, approximation, singular integral operators, and related
topics, Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel,
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