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Abstract— In this paper we use the Hermite-Biehler theorem
to establish results for the design of proportional plus integral
plus derivative (PID) controllers concerning a class of time delay
systems. Using the property of interlacing at high frequencies
of the class of systems considered and linear programming we
obtain the set of all stabilizing PID controllers.

I. INTRODUCTION

The dynamic behavior of many industrial plants may be
mathematically described by linear time invariant systems
with time delays. The problem of stability of linear time
invariant systems with time delays involves finding the
location of roots of transcendental functions. An extension
of the Hermite-Biehler theorem to cope with transcendental
functions was first derived by Pontryagin [1]. In [1], neces-
sary and sufficient conditions for the negativity of the real
parts of all zeros of transcendental functions of the form
h(z,e*), where h(z,t) is a polynomial in two variables, are
given. The functions h(z, e*) are usually called exponential
polynomials or quasi-polynomials.

Recently, new results on the synthesis of PID controllers
for a first-order and a class of arbitrary order plants with time
delay using the extension of the Hermite-Biehler theorem
derived by Pontryagin [1] were given in [2] and [3], respec-
tively. In this paper, we obtain the set of stabilizing PID
controllers also for an arbitrary order plant with time delay
using the results on the proportional case derived in a previ-
ous paper [4]. In both [2] and [3] transcendental equations
need to be solved. However, in the proposed method only
linear inequalities need to be solved. The method is based on
a signature assigned to the quasi-polynomial involved in the
stabilizing problem using the fact that this quasi-polynomial
in the class considered has a finite set of right half plane
ZeTOoSs.

II. PRELIMINARY RESULTS ON TIME DELAY SYSTEMS

Linear time-invariant systems with delays can be math-
ematically described by homogeneous, linear, difference-
differential equations with constant coefficients as follows

[5]
>3 aiu(t— ) =0. (1)
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where a;, 1 = 0,---m, j = 0,---,n are real numbers,
m and n are positive integers, and 79,71, , T, are real
numbers satisfying 0 = 79 < 71 < --+ < 7, called delays.
If ag,, # 0 while the other a;,, = 0, then (1) is an equation of
retarded type. If ag,, # 0 and, if only for one i > 0, a;, # 0,
then (1) is an equation of neutral type. If ag, = 0, but, if
only for one i > 0, a;, # 0, then (1) is an equation of
advanced type.
The characteristic function associated to (1) is given by

s) = i i aijsle 5T )
i=0 j=0

Multiplying (2) by e*™, we have

H(s) = e F(s sz e*(rm =) 3)

with .
s):Zaijsj, i=0,---,m. “)

j=0

For m # 0, the function (3) belongs to a general class of
quasi-polynomials [6]. In particular, if the delays are integer
multiples of one another, the quasi-polynomial (3) can be
written in the form studied by Pontryagin [1]

m n—1

)+ D0 gt )

1=0 7=0

with XM (1) = 37 aint’ = @mnt™ + amo1 o™ +
--+aint+agn. The term a,,,t™s™ is denoted the principal
term if a,,, # 0.

The stability of the systems described in (1) depends on
the location of the roots of (2). It is evident that H and F
have the same zeros. Therefore, we now analyze the roots
of the quasi-polynomial (3) which has infinite roots. From
the fact that the quasi-polynomial (3) is an entire function,
we have that, in any bounded region of the complex plane
there is only a finite number of roots. The roots of (3) with
|s| sufficiently large can be assigned to a finite number of
asymptotic chains. The quasi-polynomials corresponding to
the retarded type equation contain asymptotic chain of roots
which go “deep” into the left-half complex plane, while the

h(s,t) = s"x* Mt
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one corresponding to the neutral type equation in addition to
such chains of roots it also has at least one asymptotic chain
of roots in a vertical strip of the complex plane. Finally,
the quasi-polynomials corresponding to the advanced type
equation contain at least one asymptotic chain of roots that
goes “deep” into the right-half complex plane [7].

The quasi-polynomial (3) is said to be stable if and only
if there exists a positive number € such that the real part
of all zeros of H are less than —e. It is worth mentioning
that only quasi-polynomials corresponding to the retarded or
neutral type equation may be stable and that stability of the
former is equivalent to the negativity of the real parts of all
zeros of H. For easy reference, let us now state the following
results by [1].

Let f(z,u,v) be a polynomial in z, u and v written in

the form n m
Fluw) =33 26 (u,0) ©6)

i=0 j=0

where ¢§J )(u, v) is a polynomial of degree j, homogeneous
in u e v, that is, the sum of exponents in u and v is
j. The principal term in the polynomial f(z,u,v) is the
term zigbz(-J )(u,v) for which ¢ and j simultaneously attain
maximum values n and m, respectively. Let ¢*(") (u,v) be
the coefficient of z” in f(z,u,v) such that

¢* ™ (u,0) = > ¢ (u, v) @)
7=0

and define ®*(™)(2) = ¢*(™) (cos z, sin 2).

Theorem 1: Consider real transcendental functions
fr(w,cos(w),sin(w)) and f;(w, cos(w),sin(w)) such that
H(jw) = fr(w,cos(w),sin(w)) + jfi(w,cos(w),sin(w)).
Assume that f,.(w,u,v) and f;(w,u,v) are polynomials
with principal terms of the form wh ™ (u,v). Let
n be an appropriate constant such that ¢*(™)(u,v) in
fr(w,u,v) and f;(w,u,v) do not vanish at w = 7. Then
for the equations Fy(w) := fr(w,cos(w),sin(w)) = 0
or Fj(w) := fi(w,cos(w),sin(w)) = 0 to have only real
roots it is necessary and sufficient that in the interval
—2ml+n <w <21l 41, frw,u,v) and f;(w,u,v) has
exactly 4m/? + n real roots starting with a sufficiently large
L.

Theorem 2: Let h(z,t) be a polynomial of the form of (5)
having principal term a.,,,,t"* 2™ with a,,,, # 0 and consider
H(z) = h(z,€?). If the function X*(")(e*) has roots in
the open right half plane, then H(z) has an unbounded set
of zeros in the open right half plane. If all the zeros of
X*(")(e*) lie in the open left half plane, then the function
H(z) has no more than a bounded set of zeros in the open
right half plane.

Consider a special class of (2) appearing in control engi-
neering problems

F(s) = D(s) +e*IN(s) ®)

with L > 0, N(s5) = by,s™ + byp_18™ 1 + -+ + by and
D(s) = s" 4+ a,_18""1 + -+ + ap. Multiplying F'(s) in (8)

L we obtain

8(s) = h(s,el)

by e®
=e*t'D(s) + N(s). ©)
Performing the change of variables z = sL in (8), we have

5(2) = ﬁ(%,eZ) = eZD(% %). (10)

The polynomial associated with the quasi-polynomial (10)
can be written as

)+ N(

z z
hz,t) = tD(L) + N(L).
This polynomial has the principal term L~"2"¢ if m < n or
L="2"(t+b,) if m = n. We make the following assumption

Al) m <norm=n and |b,| < 1.

Under Assumption Al), note that the quasi-polynomial (9) is
a quasi-polynomial of a retarded or neutral type equation. In
[4] only the retarded quasi-polynomials type are considered.
There are transcendental real functions p(w) and ¢(w) in
the real variable w associated with (9) such that §(jw) =
p(w) + jg(w), where p(w) and g(w) denote the real and
imaginary parts of (jw). From the used terminology, we say
that the zeros of the real functions p(w) and ¢(w) interlace,
or alternate, along the w-axis if each of the functions has no
multiple zeros and between every two zeros of one of these
functions there exists only one zero of the other and if the
functions are never simultaneously equal to zero.

Lemma 1: Consider the quasi-polynomial given in (9).
Let p(w) and g(w) be the real and the imaginary parts of
d(jw), respectively. Under Assumption A1), there exists 0 <
wp < oo such that in [wg, 00) the functions p(w) and ¢(w)
have only real roots and these roots interlace.

Proof: The proof of Lemma 1 follows from Theorem
2. As a matter of fact, under Assumption Al) the roots of
d(s) in (9) goes into the left hand plane for |s| large so that
interlacing occurs for wy sufficiently large. [ ]

Remark 1: As a result of Lemma 1, under Assumption
Al) the sufficiently large zeros of p(w) and ¢(w) interlace
in [wo, +00), being the quasi-polynomial (9) stable or not.

(1)

ITI. STABILIZATION OF A CLASS OF TIME DELAY
SYSTEMS

Consider a polynomial P(s) and write P(jw) = P.(w) +
jP;(w). Let o(P) := number of zeros of P(s) in the open
left-half complex plane — number of zeros of P(s) in the
open right-half plane zeros of P(s) be the signature of
P(s) [8]. Let AZOp denote the net change in the argument
Op(w) := arctan| 5:((‘:))] as w increases from 0 to oco. Then,
we can state the following lemma by Gantmacher [9].

Lemma 2: Let P(s) be a real polynomial with no imagi-

nary axis roots. Then AF0p = Jo(P).
In the sequel, the key results on the design of proportional
controllers for a class of time delay systems given in [4],
which are completed with more detailed proofs of Lemmas
3 and 4, are reviewed.

Consider now the quasi-polynomial §(s) as in (9) under
Assumption Al). We shall analyze the roots of §(jw) in

the frequency range determined by wg. Differing from the
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polynomials, the quasi-polynomials have infinite roots. The
results given in [8] deal with polynomials and make use
of the number of roots to establish a procedure to design
fixed order controllers. There, the number of roots of the
polynomial is related to the real zeros of P,.(w) and P;(w).
For the quasi-polynomial case, let §(jw) = p(w)+ jg(w),
with p(w) and ¢(w) as before, and 0 = wy, < wy, < Wy, <

- < Wy, and wp, < wp, < -+ < wp, real, distinct
finite zeros of ¢(w) and p(w), respectively. The following
definition is crucial to select the frequency range to analyze
the distribution of the roots of §(s).

Definition 1: Let m+ 1 be the number of zeros of ¢(w) in
[0,wy,,] and r the number of zeros of p(w) in [0,w,, ], with
Wg,, and wy, as in Lemma 1 such that the zeros of ¢(w) and
p(w) in [wg,,,00) and [wy,,00) interlace. For m + r even
we define wy = wy,, , otherwise we define wy = wy, ..

Definition 2: Let §(s) be a given quasi-polynomial de-
scribed as in (9) with no jw axis roots. For a sufficiently
large wp as in Definition 1, let 0 = wq, < wq, < wq, <
o<Wy, Swo and wy, < wp, < - < wp, < wo be real,
distinct finite zeros of g(w) and p(w), respectively. Then,
the signature for 6(s) in [0, wo] which we denote as 04(d) is
given by

{sgn[p(wq,)] — 2sgn[p(wq, )] + 2sgn[p(wy, )]+
(1) 2sgnlpliy, )
+(=1)™sgn[p(wq, )} (=1)™ tsgng(w] )]
if m + r is even
{sgn[p(wq,)] — 25gn[p(wy, )] + 2590 [p(wy, )+
-+ (=1)"2sgn[p(wg,, )]} (=1)"sgn[g(wy )]
if m +r is odd

12)
where sgn is the standard signum function and sgn[q(w;")]
denotes the sign of g(w) soon after the occurrence of the
zero q(w;).

Remark 2: The signature o,(J) as in Definition 2 is the
counterpart to the signature of polynomials.

Lemma 3: Consider a stable quasi-polynomial §(s) de-
scribed as in (9) under Assumption Al). Let m and r be as
already defined. Then, the signature for the quasi-polynomial

d(s) is given by 04(d) = m +r.

Proof: See [4]. |
Let the plant to be controlled be described by
~ N(s)e sk

For this plant, the characteristic function of the feedback
system with a controller C(s) = k,, is thus given by

F(s,ky) = D(s) + kpe *EN(s) (14)

where D(s) and N(s) are as in (8). Assuming L > 0
we obtain a quasi-polynomial of the form of (9). Now,
multiplying (14) by e results the quasi-polynomial of the
form

5(s,kp) = e*ED(s) + k,N(s). (15)

Again we consider J(s, k,) under Assumption Al). In the
stabilization problem we construct a quasi-polynomial of the

form §(s, k)N (—s) for which only the real part depends on
ky, as we can write

5(jw, kp)N(—jw) = p(w, kp) + jq(w) (16)

where

= p1(w) + kppa(w)

Lemma 4 below gives a frequency range signature for the
product (s, kp)N(—s) which is used to establish Theorem
3 in the stabilization problem. For a stabilizing k,, we can
associate to m and r the number of zeros of d(s,kp) in
the frequency range determined by frequency wg using the
Hermite-Biehler theorem. Thus, the product (s, kp) N (—s)
introduces a finite number of zeros in the frequency range
considered. In fact, it can be showed that the signature of
this product is [o4(d) — o(N)], with (V) the signature of
the polynomial N(s).

Lemma 4: Let m + 1 and r define the number of real,
distinct and finite zeros of the imaginary and real parts
of §(jw, kp) in (15), respectively, for a stabilizing k, and
a sufficiently large frequency wg defined as before. Then,
d(s, kp) is stable if and only if for any stabilizing k, the
signature for d(s, k)N (—s) determined by the frequency
wy is given by m +r — o(N).

Based on the results given in [8] we introduce the follow-
ing definition.

Definition 3: Let 0 = wq, < wq, < wg, < -+ < wg, be
real, distinct and finite zeros of ¢(w). Then the set of strings
Ay in a frequency range determined by the frequency wy is
defined as Ay = {z0,21, -+ ,2;} with z; € {—1,1} with 2
identified to sgn[p(wg, )] in Definition 2.

Theorem 3: Consider p(w, kp) and ¢(w) as the real and
imaginary parts of (jw,k,)N(—jw), respectively. Let
0 = wg < wy < wg < -+ < wgy be real, distinct and
finite zeros of ¢(w) in a frequency range. Assume that
N(—jwg,) #0,t =0,---,i and N(—s) has no zero at the
origin. Suppose there exists a stabilizing k, and choose wg
associated to the quasipolynomial 4(s, k,) as in Definition
1. Then the set of all k, such that (s, k,) for a given plant
G(s) under Assumption Al) is stable are obtained using the
following expression for the signature of d(s, k) N*(s)

p(w, kp)

7q(0(s, kp) N(=s) =

{z0 — 221+ 220 + - - -+

(1) 12201 + (=1)'2i}.(=1)" 'sgn[g(wy, )]

if m+r+m' is even

{20 =22, + 22, +--- + (—1)i2zi}.(—1)isgn[q(w;’;)]
if m+r+m'is odd

and
kp = Ukp,
where

1 1

k, = ma; ——, min -~
be zteA1,§>0[ G(jwqt)] zteAI,zt<0[ G(jwg,)
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,2i} € Ay such that

1 . 1
ma. —_—— < min e e—
ZtGA[.;(t>0[ G(]th)] ZtEA172t<0[ G(jwqt)

with {zo, 21, - -
)

and ¢ the number of feasible strings, d(jw, kp)N(—jw) =
p1(w) + kppa(w) + jg(w), m' the degree of N(s) and
04(8(s, kp)N(—s)) given by m +r — o(N).

Proof: Considering the frequency range determined by
wp and Lemma 4, the proof follows the same lines as for the
polynomial case given in [8]. [ ]

We now present an example to illustrate the application
of Theorem 3.

Example 1: Consider the stabilization of a given time
delay system using a proportional controller. The system is
a non-minimum phase, fifth order plus a single time delay

in the input
o e 0 15(st + 45% 4 235 + 465 — 12)
(s) = §5 4 25% 4+ 2353 4+ 4452 + 975 + 98

In this case we have N(s) = s* + 4s® + 2352 + 465 — 12,
D(s) = s°42s*+2353+4452+97s+98 and L = 0.1. We use
the Nyquist criterion and choose a stabilizing k, = 6. Now,
we choose m = 4 and r = 4 yielding o4(d) = 8 with wg =
wq, = 47.65. We obtain m + r + deg(N(s)) = 12, which
is even. Finally, we must have o4(3(s, kp)N(—s)) = m +
r—o(N) =6, where o(N) = 2. Writing (jw, k,) N (—jw)
= p1(w) + kppa(w) + jg(w) we find the zeros of g(w) of
§(jw, kp)N(—jw) as 0, 1.972, 4.126, 5.044, 14.199, 46.693.
Figure 1 presents the plots p(w) and g(w) of (s, k,) for
k, = 6 and the plots of g(w) of d(s,k,)N(—s). To find
the zeros of ¢(w) one can use the function “fzero” of the
Matlab. We now find the strings

Ar = {{-1,1,-1,1,1,1},{-1,1,-1,—1,-1,1},
{=1,-1,-1,1,-1,1},{-1,1,1,1,—1,1}}

which satisfies —zg + 221 — 229 + 223 — 224 + 25 = 6 and
Theorem 3. Hence, we have the set of stabilizing gains as
k, € [—0.589, —0.508] U [2.967, 8.166].

IV. STABILIZATION USING A PID CONTROLLER

Initially, we consider a PI controller of the form C(s) =
kp + % For the plant G(s) in (13), the feedback system
characteristic function takes the form

F(s,kp, ki) = sD(s) + (ki + kps)e °N(s)  (17)

where D(s) and N(s) are as already defined. Again, as-
suming L > 0, after multiplying (17) by e*X, we obtain a
quasi-polynomial of the form

5(s,kp, ki) = eFsD(s) + (ki + kyps)N(s).  (18)

The problem of stabilization with a PI controller involves
the determination of the set of (kp, k;) for which the quasi-
polynomial (s, kp, k;) is stable. Following the proportional
case, a new quasi-polynomial of the type d(s, kp, ki) N (—s)
is constructed such that its real part depends only on k; and

p
—q
0
0 4
5 i i i i /
0 10 20 30 40 50
4 . q
2 L
ot
2}
—4 i
0 10 20 30 40 50

Fig. 1. Plots of p(w) and g(w) for d(s, kp)(upper) and plot of g(w) for
6(s, kp)N(—s) (lower) with k;, = 6.

the imaginary part only on k,. Substituting s = jw in (18)
we obtain

where
plw, ki) = pi(w)+ Ekip2(w) (20)
q(w,kp) = q(w)+kpge(w) 21

For every fixed k,, the zeros of ¢(w,k,) do not depend
on k; and the results for the proportional case can be used to
find k;. Thus, the set of all stabilizing (kp, k;) for the system
can be obtained by sweeping over all real k,, and solving the
proportional case to find the corresponding range of k;.

The search for the range of k; for a fixed stabilizing &,
can be reduced by finding the real breakaway points on the
root loci of ¢1(w) + kpg2(w) = 0. The breakaway points
correspond to a real multiple root and satisfy % = 0 for
¢(w, kp) = 0. Furthermore, note that a necessary condition
for the existence of a stabilizing k; is that ¢(w, k,,) must have
at least m+r_g(N(s)) or m+T_U(2N(S))+1 real, non-negative,
distinct finite zeros of odd multiplicities, accordingly as m’+
m+r is even or odd, respectively. This condition eliminates
the need to sweep over all the ranges of stabilizing k.

Example 2: As in [10], consider the problem of finding
stabilizing PI gains for the plant

e

Gls) =1

where N(s) =1, D(s) = 4s+ 1, L = 1 and the controller
is given by C(s) =k, + % To obtain the signature for the
corresponding quasi-polynomial we first encounter a value
for k, and k; which stabilizes the feedback system. To
find them, one could use the Nyquist criterion. We use the
stabilizing set of (kp, k;) given in [10] and choose k, = 3
and k; = 1. We now plot p(w, k;) and g(w, k,) to obtain,
form =4 and r = 4, we, = 0.5, we, = 1.6, we, = 4.8,

—S

(22)
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—40

Fig. 2. Distribution of the real zeros of q(w, kp).

We, = 7.8, wo, = 0, wo, = 1, wo, = 3, woy = 6.4,
wo, = 9.3. This yields 04(6) = 8 and wy = w,, = 9.3.
To find the real breakaway points on the root loci we write

q(w, kp) = —4w?sin(w) + weos(w) + kyw  (23)
and
Zl EZ; = —dwsin(w) + cos(w) = —k,. (24)
2
We find dk
d—j = 5sin(w) + 4w cos(w). (25)
The positive zeros of % are 0, 2.1064, 4.9593, 8.0088.

From (24) the corresponding values for k,, are found as k,, =
—1.0000, k,, = 7.7560, k,, = —19.4800, k,, = 31.8062.
Now, from the plots of g; EZ;, —kpyy —kpy, —kp, we
can find the distribution of the non-negative real zeros of
¢(w, kp) in the interval [0,wp], except for the zero at the
origin. In the example we have to look for 7" —= 4 real
non-negative distinct zeros of ¢(w, k). The plots are shown
in Figure 2. Therefore, the acceptable values for k, are in
between k,, = —1 and k,,, = 7.756 where there are at least 4
real non-negative distinct zeros of ¢(w, kp). Sweeping over
k, € (—1,7.756), the stabilizing range —1 < k, < 6.93
is found, which is in agreement with the results found in
[10] using another method. The stabilizing region in the k,k;
—plane is shown in Figure IV.

The result in Example 2 can be checked using the Nyquist
criterion via the Nyquist plot of G(s). However, we give in
this note an analytical characterization of all the stabilizing
PI gains and this is useful to the design of optimal solutions
considering various performance criteria such as the Hy and
H, norms of certain closed loop transfer functions. In what
follows, we yield an algorithm to search for the stabilizing
(kp, ki) values by sweeping over a range for k.

_kpo’

Algorithm 1 (PI controller):
Step 1) Adopt a value for the pair (k,,k;) to stabilize
the given plant G(s). Select m and r and choose wy as in
Definition 1.
Step 2) Enter functions for p;(w) and pa(w) as in (20).
Step 3) In the frequency range determined by wy,
find the zeros of ¢(w,k,) defined by (19) denoted as

k'
o

[¢

n

TTﬁﬂ L

0 2 4 6
kp

Fig. 3. Stabilizing region for k;, and k;.

Wo,,J =0,1,--- for ky(1) using Z;E:g = —kp(1).
Step 4) Initialize n = 2.
Step 5) Obtain mink;(n — 1) and maxk;(n — 1)

using Theorem 3 for p;(w), p2(w)
max k;(n — 1) < min k;(n — 1) make
maxk;(n —1) =0 and maxk;(n — 1) = 0.

Step 6) If n < size(ky(n)) + 1 find w,,,j =0,1,--- ,i for
kp(n) using % = —ky(n).

Step 7) Make n =n + 1.

Step 8) If n < size(kp(n) + 1 go to Step 5. End.

in Step 2. If

The development of PID controllers follows the same lines
as the PI design with the new characterization of a signature
for §(s) as in (12). For a PID controller we have

k;
C(s) = kp+ — + kas. (26)

The corresponding characteristic function is

F(s,kp, ki, ka) = sD(s)+(ki+kps+kqs®)e " N(s) (27)
and, as before we obtain

(8, kp, kiyka) = se*2D(s) + (k; + kps + kas®)N(s). (28)

Now, we consider the same approach used for the PI stabi-
lization problem. Substituting s = jw in (28) we obtain

5(]0}, kpa k’ia kp)N(_.]w) = p(w7 kiv kd) + .]Q(w7 kp) (29)
where

p(wa k’iv kd) =
Q(w7 kp) =

For every fixed k,, note that ¢(w, k,) does not depend on
k; and k4. Because of that, we can use the constant gain
stabilization approach to obtain the stabilizing k; and k4 by
solving a linear programming problem for each k,,.

Lemma 5: Let m + 1 and r define the number of real,
distinct and finite zeros of the imaginary and real parts
of §(jw,kp, ki, kq) in (28), respectively, for a stabilizing
value for (ky, ki, kq) and a sufficiently large frequency wg
defined as before. Then, d(s,kyp, ki, kq) is stable if and
only if for any stabilizing set (k,, k;, kq) the signature for

pr(w) + (ki — kaw?)p2(w)
q1(w) + kp g2(w)

(30)
(€19}
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3(s, kp, ki, kq)N(—s) determined by the frequency wy is
given by m +r — o(N).

Theorem 4: Consider  p(w, k;, kq) and q(w,k,) as
the real and imaginary parts of the quasipolyno-
mial  (jw, kp, ki, ka)N(—jw), respectively.  Suppose
there exists a stabilizing set (k,, k;, kq) for a given plant
G(s) satisfying Assumption Al). Choose wq associated
to 0(s,kp, ki, kq¢) as in Definition 1. For a fixed kp, let
0=w, <w, <w, <--- < w, be real, distinct and finite
zeros of g(w, k,) in a frequency range. Then, the (k;, kq)
values such that d(s, kp, ki, kq) is stable are obtained by
solving the following linear programming problem for
z; € Aj such that the signature for (s, kp, ki, kq) N(—s)
equals m+r —o(N)) and t =0,1,...,1

pr(we) + (ki — kqw?)pa(wy)
pr(we) + (ki — kaw? )p2(wr)

> 0, forzz =1 (32)
< 0, for z; = —1 (33)

Algorithm 2 (PID controller):

Step 1) Adopt a value for the set k,, k;, kq to stabilize
the given plant G(s). Select m and r and choose wq as in
Definition 1.

Step 2) Enter functions for p;(w) and p2(w) as in (30).
Step 3) In the frequency range determined by wq find the
zeros of g(w, k) defined by (29) for a fixed k.

Step 4) Using Definition 2 for (s, kp, ki, k¢) N(—s), find
the strings A; that satisfy o (d(s, kp, ki, ka) N(—s)) = m+
r—o(N)).

Step 5) Apply Theorem 4 to obtain the inequalities (32) and
(33).

Example 3: As in [3], consider the problem of
finding the set of PID gains to stabilize the plant
G(s) = %]SV)(S) with N(s) = &% — 4% + s + 2,
D(s) = s® + 8s" + 325> + 46562 + 465 + 17 and L = 1.
For k, =1, k; =1 and kg = 0 we plot

quw = inline('3. x w.3 +3*xw — (0.5 —32xw.* + 46 % w.?)
xsin(w) + (8 w.5 — 46 x w.2 + 17 * w). * cos(w)’,’ w')

to choose m = 8 and r = 8 to obtain o,(d) = 16
and wy = 16.2095. As m + 4 — deg(N(s)) = 17,
which is odd, the strings in A; must satisfy
20 — 221 + 220 — 223 + 224 — 225 + 22 — 227 + 228 = 17.
The imaginary part of §(jw,kp, ki, kq)N(—jw) denoted
q(w, kp) is affine in k, and thus for a fixed k, its zeros can
be obtained with the MATLAB function inline

inline([w. * (—w.® + 65 % w.% — 246 x w.* + 22 x w.2 + 34)
ckcos(w) + (—12%w.® 4+ 180 * w.% — 149 x w.* — 75 % w.?)
S sin(w)+kp* (w.” +14%w.> +17xw.3 +4*w)'], w', kp')

Thus, the zeros of ¢(w) of 6(jw, kp)N(—jw) are found as
0, 0.5377, 1.1764, 2.5880, 4.3155, 6.6001, 9.1734, 12.0136,
14.9422. From (30) we obtain p;(w) and pa(w) as follows

p1 = inline([—w. * (—w.® + 65 % .5 — 246 * w. 4+
22xw.2 +34). % sin(w) + (—12xw.8 + 180 xw.b — 149 w.*—

75 % w.2). * cos(w)'], w')
pa = inline('w.5 + 14wt + 17+ w.2 + 4"/ w').

Finally, the inequalities affine in k; and k; obtained
using Theorem 4 are found as k; > 0 and
ki —0.289135k4 < 3.11984; k; — 1.38400ky > —4.83381
ki —6.69759k, < 27.1568; k; — 18.6231k4 > —84.5249
ki — 43.5614k4 < 271.696; k; — 84.1517kq > —732.245

ki —144.328kq < 1669.5 ; k; — 223.271kq > —3247.82
and the solution is shown in Figura 4.
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Fig. 4. Stabilizing values (k;, kq) for kp =1 and L = 1.

V. CONCLUSION

In this paper we use a extension of results of stabilization
of linear time invariant systems to a class of time delay
systems using the Hermite-Biehler Theorem. A signature de-
rived for the quasi-polynomial case was used in the problem
of stabilizing PID controllers. To obtain the value of the
signature for a quasi-polynomial a known stabilizing value
for the set (kp, ki, kq) is used. The proposed approach yields
the set of stabilizing PID controllers and can be applied to
any time delay system which obeys the interlacing property
at high frequencies, being it stable or not.
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