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Abstract— In polynomial state feedback and observer design, it
is often assumed that the corresponding Lyapunov functions
are quadratic. This assumption allows to guarantee global
stability and to use semidefinite programming and the sum of
squares decomposition. In the present paper, state feedback and
observer design strategies based on semidefinite programming
and the sum of squares decomposition are proposed which can
deal with nonquadratic Lyapunov functions without jeopar-
dizing global stability. In particular, homogeneous Lyapunov
functions and generalized Krasovskii-type Lyapunov functions
are studied for state feedback design and Lyapunov functions
which are nonquadratic with respect to the control system
output are studied for observer design.

I. INTRODUCTION

Nonlinear control design has been passed through a
remarkable phase over the last two decades. Many
descriptive concepts for nonlinear analysis turned into
constructive design strategies [9]. However, nonlinear
control design is far away from being solved. Many existing
design strategies impose very particular assumptions on
the control system which are hard to verify or simply not
satisfied in many applications. Furthermore, the assumptions
on the system structure are often only locally valid so that
a global design is not feasible. Moreover, there exists only
a few design strategies for nonlinear control design which
can be efficiently and reliably solved on a computer. These
facts are often the main stumbling blocks for applying these
strategies to real world problems. Recently, polynomial
control systems have gained considerable attention in
nonlinear control [8], [15], [16], [5]. Polynomial control
systems are control systems where the maps in the control
system description are polynomial maps. This class of
control systems includes the class of linear control systems
and many nonlinear control problems can be formulated
or approximated by polynomial control systems. One
encounters this class of control systems in a wide range
of applications. For example, in modeling of chemical
processes and chemistry, electronic circuits and mechatronic
systems, biological systems, to name only a few. In
combination with semidefinite programming, in particular
with the help of the sum of squares decomposition, many
problems in polynomial control systems analysis and design
have been attacked successfully, due to the fact that the sum
of squares decomposition using semidefinite programming
can be solved reliably and efficiently on a computer. In

the present paper, computer-aided feedback and observer
design strategies are proposed. The design strategies are
able to deal with nonquadratic Lyapunov functions. The
first strategy is a state feedback design strategy which
is based on state dependend Riccati techniques. This
approach was also used in [15]. However, there global
stability can only be guaranteed using a quadratic Lyapunov
function. In the present paper, it is shown that semidefinite
programming and the sum of squares decomposition can be
also used for the case of homogeneous Lyapunov functions.
This is established using Euler’s homogeneity relation for
positive homogeneous functions. Furthermore, generalized
Krasovskii-type Lyapunov functions are proposed in the
spirit of state dependend Riccati techniques to allow
to deal with another type of nonquadratic (nonconvex)
Lyapunov functions. Notice that in [5], a state feedback
design strategy was proposed which allows to use convex
Lyapunov functions. The third strategy is an observer design
strategy. In contrast to feedback design, observer design, in
the context of polynomial control systems and semidefinite
programming, was studied very rarely. In the present paper,
it is shown that one can also use Lyapunov functions which
are nonquadratic with respect to the output. Furthermore, it
is shown that the proposed observer design is feasible in
case of a certain passivity condition is satisfied and if the
nonlinearities are Lipschitz nonlinearities with respect to
the state but not necessarily with respect to the output. The
proposed design strategies are illustrated on two examples.
The main advantages of the proposed design strategies
are that beside polynomial, no special system structure is
imposed, that the Lyapunov functions are nonquadratic, that
the results guarantee global stability, and that an simple and
efficient computer-aided design is possible.

The remainder of the paper is organized as follows: In
Section II, the feedback design strategies are presented. In
Section III, the observer design strategy is presented as
well as a feasibility condition is discussed. Two examples
are given in Section IV to illustrate the proposed design
strategies. A discussion and summary in Section V concludes
the paper.
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NOTATIONS. A function V : R
n → R is called positive

definite, if V (0) = 0,V (x) > 0,∀x ∈ R
n \ {0} and positive

semidefinite if V (x) ≥ 0,∀x ∈ R
n. A matrix P ∈ R

n×n is
positive definite if xT Px > 0,∀x ∈ R

n \ {0} and positive
semidefinite if xT Px ≥ 0, ∀x ∈ R

n. Furthermore, P(x) >
0 denotes a symmetric matrix function P : R

n → R
n×n

which is positive definite for all x ∈ R
n. The row vector

∇V (x) = (∂V/∂x)(x)T = Vx(x)T denotes the derivative of
V with respect to x and ∇2V (x) the Hessian of V . The
derivative along the vector field f : R

n → R
n is denoted by

∇V (x) f (x). A control Lyapunov function V of the control
system ẋ = f (x) + G(x)u is a radially unbounded positive
definite function such that for every nonzero x ∈ R

n there
exists a u∈R

p such that V̇ (x) = ∇V (x) f (x)+∇V (x)G(x)u <
0.

II. FEEDBACK DESIGN

The following problem is considered in this section:

State Feedback Problem Given a polynomial control
system of the form

ẋ = f (x)+G(x)u, (1)

where x ∈ R
n is the state and u ∈ R

p is the input. f is a
polynomial vector field with f (0) = 0 and G is a polynomial
map, i.e., the components fi,Gi j are polynomials in x. Find
a polynomial state feedback u = K(x)x, such that the closed
loop is globally asymptotically stable w.r.t. the origin x = 0.

In the first part, the polynomial control system (1) in
combination with the state dependend Riccati approach [3],
[20] is considered, by factorizing the control system (1) as
follows:

ẋ = A(x)x+G(x)u. (2)

Note that the matrix A(x) is not unique, i.e., there are
different matrices A(x) to write f (x) = A(x)x. However, one
can show now very easily (cf. [3], [15]) that if there exists
a positive definite matrix Q ∈ R

n×n and a polynomial matrix
function M : R

n → R
p×n such that

A(x)Q+G(x)M(x)+QAT (x)+MT (x)GT (x) < 0, (3)

for all x, then u = K(x)x with K(x) = M(x)Q−1 is a globally
asymptotically stabilizing state feedback. This follows by
multiplying inequality (3) from left and right with Q−1.
Using the quadratic Lyapunov function V (x) = 1

2 xT Q−1x, one
arrives at the Lyapunov inequality

xT Q−1(A(x)+G(x)K(x)+AT (x)+KT (x)GT (x))x < 0. (4)

The step from inequality (4) to inequality (3), is necesary
and well-known in semidefinite programming [1] to
obtain (matrix) inequalities which are linear (affine) in
the unknown. Since the unknown Q,M appear linear in
inequality (3), the inequality can be solved via semidefinite
programming and the sum of squares decomposition (cf.
[12]). Note that the affine appearance of the unknown is
essential to apply semidefinite programming and the sum

of squares decomposition. All the following results are
basically driven by the wish to find inequalities which are
linear (affine) in the unknown. Now, the problem which
appears if one wants to extend the state dependend Riccati
techniques to nonquadratic Lyapunov functions of the
form V (x) = 1

2 xT Q(x)−1x, with Q(x) > 0 is the following.
By replacing the constant positive definite matrix Q in
inequality (3) by a positive definite matrix function Q(x),
one has to ensure that Q(x)−1x is a gradient of a positive
definite function [7], [11], i.e., for global stability must
hold: ∇V (x) != xT Q(x)−1. Unfortunately, the constraint

∇V (x) != xT Q(x)−1 is nonconvex and hence cannot be
combined with semidefinite programming. An interesting
but difficult questions is now, in how far is it possible to
get away from quadratic Lyapunov functions. In a first step,
it is shown that this is at least possible for homogeneous
Lyapunov functions.

Definition 1: A function V : R
n →R is said to be a (positive)

homogeneous (control) Lyapunov function of degree r, if V
is a (control) Lyapunov function and if

V (λx) = λ rV (x) (5)

holds for all x and all λ ≥ 0.

An important property of homogeneous functions is
expressed by an appealing property, namely, by Euler’s
homogeneity relation (Euler’s identity) [18]:

Theorem 1: (Euler’s homogeneity relation). V is a homoge-
neous function of degree r, if and only if V satisfies

∇V (x)x = rV (x). (6)
The proof is quite simple and follows by differentiation of
(5) w.r.t. λ and by setting λ = 1. Another useful relation is:

Corollary 1: Let V be a homogeneous function of degree r,
then V satisfies

xT ∇2V (x)x = (r−1)V (x). (7)
The proof is quite simple again and follows by differentiation
of (6) w.r.t. x and using (6). Using the relations (6), (7), the
first result of this paper can be established:

Theorem 2: If there exists a polynomial matrix function M
and a homogeneous positive definite matrix function Q such
that

A(x)Q(x)+G(x)M(x)+Q(x)AT (x)+MT (x)GT (x) < 0, (8)

for all x, then u = K(x)x with K(x) = M(x)Q(x)−1 is a
globally asymptotically stabilizing state feedback for the
control system (1).

Proof. Suppose

A(x)Q(x)+G(x)M(x)+Q(x)AT (x)+MT (x)GT (x) < 0,
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is satisfied for all x. Then, by multiplication the above matrix
inequality from left with xT Q(x)−1, and from right with
Q(x)−1x, one gets the scalar inequality

2xT Q(x)−1(A(x)+G(x)K(x))x < 0. (9)

with K(x) = M(x)Q(x)−1. Finally, by multiplication of the
inequality (9) with det(Q(x)), one arrives at

2xT ad j(Q(x))(A(x)+G(x)K(x))x < 0. (10)

with the adjugate matrix ad j(Q(x)) = det(Q(x))Q(x)−1. It
has to be shown now that xT ad j(Q(x)) is related with a
gradient function. First, notice that the function V �(x) =

1
r−1 xT ad j(Q(x))x is homogeneous and positive definite.
Therefore, using Euler’s homogeneity relation (6), one can
write

V �(x) =
1

r−1
xT ad j(Q(x))x =

1
r

∇V �(x)x. (11)

Hence, together with (7), the desired property
∇V �(x) = r

r−1 xT ad j(Q(x)) and ad j(Q(x)) = ∇2V �(x)
follows. Finally, notice that the constant factor r

r−1 is
irrelevant and can be easily eliminated. �

It is hard to say in how far homogeneous Lyapunov
functions are more useful than quadratic Lyapunov
functions. However, Theorem 2 may be of particular interest
for the class homogeneous (polynomial) control systems,
which is gaining more and more interest in the literature (see
[17], [21] and reference therein). Also in combination with
homogenization techniques and generalized homogeneity
notions [21], further investigations are necessary in this
direction.

The next theorem uses now quadratic Lyapunov functions.
As a result, a state dependend Riccati-type result [3], [20],
[15], is recovered.

Theorem 3: If there exists a polynomial matrix function M
and a positive definite matrix Q such that

yT (A(x)Q+G(x)M(x))y < 0, (12)

for all nonzero x,y. Then u = K(x)x with K(x) = M(x)Q−1

is a globally asymptotically stabilizing state feedback for
the control system (1).

First notice that inequality (12) is not written as matrix
inequality anymore. The reason for this is to avoid to write
long symmetric matrix inequalities. Second, as already
mentioned, the matrix A(x) in (2) is not unique, i.e., there
are different matrices A(x) to write f (x) = A(x)x. However,
instead of this factorization, one could think to use the
Jacobian fx of f . In the following, Krasovskii methods [6]
is used as a design strategy with Lyapunov functions of the
type V (x) = f (x)T P f (x) to obtain a globally asymptotically
stabilizing state feedback. This is worked out in the second
part of this section, starting with the following theorem:

Theorem 4: If there exists a polynomial matrix function M
and a positive definite matrix Q such that

yT fx(x)(Q+G(x)M(x))y < 0, (13)

for all nonzero x,y. Then u = K(x) f (x) with
K(x) = M(x)Q−1 is a globally asymptotically stabilizing
state feedback for the control system (1).

Proof. The change of coordinates z = Qy leads to

zT Q−1 fx(x)(I +G(x)M(x)Q−1)z < 0.

With z = f (x) and K(x) = M(x)Q−1 one obtains

f (x)T (Q−1 fx(x)+Q−1 fx(x)G(x)K(x)) f (x) < 0,

which is nothing else then the derivative of the Lyapunov
function V (x) = 1

2 f (x)T Q−1 f (x) w.r.t. the control system
(1). Note that a necessary condition that (13) can be
satisfied, is that the Jacobian fx must have full rank.
Hence the mapping y = f (x) is one-to-one and since f is
polynomial, V (x) = 1

2 f (x)T Q−1 f (x) is positive definite and
radially unbounded. �

Moreover, the idea of Krasovskii can be generalized by the
following type of Lyapunov function:

V (x) = w(x)T Pw(x), (14)

where s(x) = W (x)x and W = (Wi j) is a quadratic, lower
triangular, polynomial matrix function with all diagonal
elements are 1, i.e.,

w(x) = W (x)x =

⎡
⎢⎢⎢⎣

1 0 . . . 0
w11(x) 1 0 0

...
. . . 0

wn1(x) wn2(x) . . . 1

⎤
⎥⎥⎥⎦x. (15)

The idea behind this Ansatz is twofold. First, if the
control engineer has some inside in the structure of the
control system (1), then it can be reasonable and useful to
incooperate this structural inside into the design strategy
by specifying W . Of course, it is needless to say that the
right choice of W may be hard to find even in the case
some inside in the structure of the control system is given.
However, the design allows to combine analytic reasoning
with efficient computating. In Section IV, an example is
given for the well-known class of systems in strict feedback
form for which also backstepping [19] can be applied and in
which also a lower triangular (backstepping) structure of the
control system (1) appears. Using the Ansatz above and the
fact that the inverse of W is polynomial, since det(W ) = 1,
the following state feedback design method is proposed:

Theorem 5: Let W be a given polynomial matrix function as
defined in (15). If there exists a polynomial matrix function
M and a positive definite matrix Q such that

yT wx(x)(A(x)W (x)−1Q+G(x)M(x))y < 0, (16)
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for all nonzero x,y. Then u = K(x)x with K(x) =
M(x)Q−1W (x) is a globally asymptotically stabilizing
state feedback for the control system (1).

Proof. The change of coordinates y = Q−1W (x)z, leads to

zTW T (x)Q−1wx(x)(A(x)W (x)−1Q +
G(x)M(x))Q−1W (x)z < 0.

With z = x and K(x) = M(x)Q−1W (x) one obtains

xTW T (x)Q−1wx(x)(A(x)x+G(x)K(x))x < 0,

which is nothing else then the derivative of the Lyapunov
function V (x) = 1

2 w(x)T Q−1w(x) w.r.t. the control system
(1). �

Summarizing, Theorem 2, 4, and 5 give different variations
of state feedback design strategies based on nonquadratic
Lyapunov functions. Of course, the nonquadratic Lyapunov
functions are motivated by quadratic Lyapunov functions.
However, the problems with general nonquadratic Lyapunov
functions like no guaranteed stability or computational com-
plexity motivates the use such type of Lyapunov functions
as considered here.

III. OBSERVER DESIGN

The following problem is considered in this section:

State Observer Problem Given a control system of
the form

ẋ = f (x)+φ(y,u),
y = Cx

(17)

where x ∈ R
n is the state, u ∈ R

p is the input, and y ∈ R
q

the output. f is a polynomial vector field with f (0) = 0 and
C is a constant matrix of appropriate dimension. Finally φ
is an general (nonpolynomial) function. Furthermore, given
a Luenberger-type observer

˙̂x = f (x̂)+φ(y,u)+L(y− ŷ,y)(ŷ− y)
ŷ = Cx̂.

(18)

Find an observer gain L = L(y− ŷ,y), such that the observer
error e = x̂−x is asymptotically stable. Note that in contrast
to state feedback design, almost no attention has been paid
to state observer design for the class of polynomial control
systems, semidefinite programming and the sum of squares
decomposition. A standard approach to obtain a globally
asymptotically stabilizing observer gain is to stabilize the
error dynamics

ė = f (x+ e)− f (x)+L(Ce,y)Ce (19)

by the observer gain L = L(Ce,y). Basically, the problem
boils down to find an observer gain L = L(Ce,y) and (ob-
server) Lyapunov function V = V (e) such that

∇V (e)( f (x+ e)− f (x)+L(Ce,y)Ce) < 0 (20)

for all x and all nonzero e. This is definitely a hard
problem. However, almost all Luenberger-type observer

design strategies are based on stabilizing the error dynamics.
This is often achieved under particular assumptions and
often by using a quadratic Lyapunov function V . Instead
of introducing a lot of assumptions, one can directly try to
solve inequality (20) using semidefinite programming and
the sum of squares decomposition. But this is not possible,
since in inequality (20), the unknown V,L does not appear
in a linear fashion. Therefore, semidefinite programming
and the sum of squares decomposition cannot be applied
directly. However, similar to the state feedback problem,
one can try to find a formulation which is as general as
possible but affine in the unknowns. This is worked out in
the next theorem:

Theorem 6: If there exists a polynomial matrix function M,
an (observer) Lyapunov function V and a positive definite
matrix function Q = Q(Ce) such that

∇V (e) = eT Q(Ce) (21)

eT Q(Ce)( f (x+ e)− f (x))+ eT M(Ce,y)Ce < 0

for all x and all nonzero e. Then L(Ce,y) = Q(Ce)−1M(Ce,y)
is a globally asymptotically stabilizing observer gain for the
observer error (19).

Proof. The proof follows from Q(Ce)L(Ce,y) = M(Ce,y) and
by the Lyapunov inequality

∇V (e)( f (x+ e)− f (x)+L(Ce,y)Ce) < 0. �

Notice that in contrast to the state feedback design, an
inversion of Q(Ce)−1 is not necessary. Therefore, from this
point of view, the observer design is easier than the the state
feedback design and allows “more” nonquadratic Lyapunov
function candidates. However, a general Lyapunov function
V seems to be not feasible since one has to ensure that L
contains only measurable quantities. This is the reason why
Q depends only on the output error ŷ− y and L depends on
ŷ− y and y. Moreover, in some sense, the inequality in (21)
in Theorem 6 is not very satisfactory, since it is hard to say
when or for which class it is possible to find an observer
gain. Notice, that up to now, no observability assumptions
are made. However, complementary to an analytic design
strategy, the spirit of a computer-aided design strategy is to
allow a more general setup but instead one cannot say in
advance that the computer will give a (satisfactory) solution
until to put the problem on the computer and to run the
algorithms. Nevertheless, it is needless to say that it is very
important to have a kind of ”lower bound for success”. The
next theorem is such a kind of result.

Theorem 7: Let the control system (17) be of the form

ẋ = Ax+GΦ(x,y)+φ(y,u),
y = Cx.

(22)

Assume that Φ is Lipschitz in x, i.e.,

‖Φ(x,y)−Φ(x̂,y)‖ ≤ γ(y)‖x− x̂‖. (23)
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and assume that the linear control system

ξ̇ = (AT −L0C)ξ +Gν
η = Cξ

(24)

can be (strictly) passified via a constant matrix L0 and
a (storage) Lyapunov function S = ξ T Qξ , i.e., there
exist positive definite matrices Q, P and a matrix L0

such that: Q(AT − L0C) + (AT − L0C)T Q = −P < 0 and
QG =CT . Then, inequality (21) in Theorem 6 has a solution.

Proof. It has to be shown that inequality (22) for the control
system 24 has a solution, i.e.,

∇V (e)(Ae+G(Φ(x+ e,y)−Φ(x,y))+L(Ce,y)Ce) < 0.

To show this, the Lyapunov function V is of the form V (e) =
1
2 eT Qe and L(Ce,y) = L0 +L1(y). Hence, one obtains

eQ(A−L0C)e+
eQG(Φ(x+ e,y)−Φ(x,y))+ eQL1(y)Ce) < 0

and by using Q(AT −L0C)+(AT −L0C)T Q =−P < 0, QG =
CT , one arrives at

−1
2

ePe+ eC(Φ(x+ e,y)−Φ(x,y))+ eQL1(y)Ce) < 0.

The expression eC(Φ(x + e,y) − Φ(x,y)) can be upper
bounded by using standard arguments for Lipschitz non-
linearities. In particular, the Cauchy-Schwarz inequality
aT b ≤ ‖a‖‖b‖ and the Young inequality ‖a‖‖b‖ ≤ ε‖a‖2 +
1
ε ‖b‖2, ε > 0 in combination with the Lipschitz assumption
‖Φ(x,y)−Φ(x+ e,y)‖ ≤ γ(y)‖e‖ leads to

−1
2

ePe+ εeT e+
γ(y)2

ε
eTCTCe+ eQL1(y)Ce < 0.

With L1(y) = − γ(y)2

ε Q−1CT , one finally arrives at

−1
2

ePe+ εeT e < 0.

Hence, by ε sufficiently small, the inequality holds. �

Summarizing, Theorem 6 allows to design state observer
with the help of semidefinite programming and the sum
of squares decomposition by using nonquadratic Lyapunov
functions. Theorem 7 provides a class of control system,
where the proposed observer design is guaranteed feasible
in case of polynomial nonlinearities, by using a quadratic
observer Lyapunov function. Finally, the proposed observer
design strategy can be extended to control systems which
contains nonpolynomial but Lipschitz nonlinearities by com-
bination with Lipschitz observers [4]. Furthermore, even
constraints for example positivity of states and implicit
systems of the form f (x, ẋ,u) = 0 can be incooperated in the
design by using S-procedure type arguments (cf. e.g. [12]).

IV. EXAMPLES

Feedback Design. The following simple example illustrates
the Krasovskii-type feedback design strategy present in The-
orem 5. In [20], it was shown that the simple control system
in backstepping form

ẋ1 = x2
1 + x2

ẋ2 = u

does not have a solution for the state dependend Riccati
approach. However, using the backstepping idea, it is clear
that if x2 can be driven to the manifold x2 + x1 + x2

1 = 0,
stability can be easily established. This inside can be used
in the Krasovskii-type feedback design strategy by specifying

w(x) = W (x)x =
[

1 0
1+ x1 1

]
x =

[
x1

x1 + x2
1 + x2

]
.

Note that w vanishes only if x1 +x2
1 +x2 = 0. The solution of

inequality (16) was calculated by using the software package
SOSTOOLS [14]. The results, where M was chosen to be a
polynomial of degree one, are

V (x) = 1.7x2
1 +2.2x3

1 +2.2x2x1 +1.5x4
1 +3x2x2

1 +1.5x2
2

u = K(x)x = −1.5x1 −2.4x2
1 −2x3

1 −2.4x2 −2x2x1.

Notice the nonconvex level sets of V (Fig. 1). Finally,
remark that the Krasovskii-type feedback design strategy
may be especially helpful for control systems of the form
ẋ = Ax + f (x)+G(x)u, where f has backstepping structure.
Moreover, notice that one can use in an analogous way an
upper triangular W to apply the ideas of forwarding design.

−3 −2 −1 0 1

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

Fig. 1. Nonconvex level sets of the Lyapunov Function V .

Observer Design. A polynomial predator-prey model of HIV-
1 is given by [2]:

ẋ = a(x0 − x)−bxz

ẏ = c(y0 − y)+dyz

ż = z(ex− f y),

with the (normalized) parameters a = 0.25, b = 0.01, c =
0.25, d = 0.002, e = 0.01, f = 0.006, x0 = 1000, y0 = 550
and where x, y is the CD4 and CD8 lymphocyte population
and z is the HIV-1 viral load. It is assumed that the virual load
z is measurable. Notice, that the linearization of the model
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is not observable. However, a nonlinear observer gain via
solving inequality (21) was found using the software package
SOSTOOLS [14]. The results, where M was chosen to be a
polynomial of degree one and Q constant, are:

V (e) = eT Qe = eT

⎡
⎣ 1.06 0.09 −0.46

0.09 0.33 −0.13
−046 −0.13 0.47

⎤
⎦e

L(z) = Q−1M(z) =

⎡
⎣ −1.88−0.034z

−0.94+0.069z
−5.25+0.013z

⎤
⎦ .

Simulation results for the initial condition [x0 y0 z0] =
[1000 550 0.0003], [x̂0 ŷ0 ẑ0] = [1300 165 0.00003] are
shown below in Fig. 2 and 3.
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Fig. 2. x: System (solid), Observer (dashed).
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Fig. 3. y: System (solid), Observer (dashed).

V. SUMMARY

In the present paper, new state feedback and observer design
strategies based on semidefinite programming and the sum
of squares decomposition are proposed for the class of
polynomial control systems. The proposed design strategies
uses nonquadratic Lyapunov functions without jeopardizing
global stability. In particular, homogeneous Lyapunov func-
tions and generalized Krasovskii-type Lyapunov functions
are studied for state feedback design and Lyapunov functions
which are nonquadratic with respect to the control system
output are studied for observer design. One may argue
that in some sense a kind of quadratic structure allways
appears in the proposed Lyapunov functions. This is true,
however, one has to keep in mind the many so called analytic
design strategies use often quadratic Lyapunov functions or
the assumptions on the control system structure are strong
enough to construct Lyapunov functions easily. In contrast

to that, the advantages of the proposed design strategies
are that no special requirements on the system structure
are imposed and that a computer-aided design is possible
which leads to global stability results. Finally, it should be
pointed out that the results derived here may be of special
interest for an incremental stability analysis [10], [13], with
applications, for example, to synchronization problems. In
particular, the conservatism introducted in the present state
feedback design in order to get affine dissipation inequalities
is in an incremental stability analysis “necessary”, since the
notion of incremental stability is a stronger notion than the
ordinary notion of stability [10], [13].
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