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Abstract— This paper shows how Nonlinear Finite Impulse
Response (NFIR) models realized by artificial neural networks
can be used for developing simulation models of the inside
temperature of greenhouses.

The proposed NFIR models use integrated variables to
reduce the number of past values needed as inputs. Several
NFIR models have been developed using past data following a
systems identification methodology. All data have been obtained
from a real greenhouse in Southern Spain dedicated to tomato
crop. The NFIR models are later compared with a model based
on first principles.

The results obtained in the a posteriori application of the
models to new real data show that the performance of the NFIR
model with integrated variables compares well with that of a
first principles model, although the generalization capabilities
of the latter are superior.

I. INTRODUCTION

Crop production in greenhouses has experimented a large
expansion recently especially in some regions of Europe. The
requirements for climate control has propelled the research
in this area and today there is a number of papers dealing
with modelling [1], short term climate control [2] and
long horizon control devised either to minimize the energy
consumption [3] or maximize economic profit [4].

For climate control purposes it is convenient to obtain
short term prediction models that allow the controller to
compute the best control move. A hierarchical scheme has
been proposed in [4] by the authors to control crop growth
by means of manipulating climate variables and taking into
account optimal production criteria (maximum benefits). In
this situation the temporal horizon considered can span a
whole season, hence the need for simulation models such as
the one proposed here.

Artificial neural networks (ANN) can be used for devel-
oping simulation models in many ways (see [5] and [6] for
a review of ANN applications in greenhouses). In this paper
we have restricted ourselves to feedforward networks whose
input vector contain past values of the independent variables.
This kind of models is a nonlinear extension of the Finite
Impulse Response (FIR) family well known in the signal
processing and control literature.

There are three main differences with previous work,
namely (i) the use of discrete time black box models for
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F. Rodrı́ guez, A. Raḿı rez-Arias and M. Berenguel are with Dpto. de
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simulation (not just one step ahead prediction), (ii) the use
of real data for training and validation spanning a whole
season, and (iii) the system identification approach employed
for variable selection, order selection and network training
and testing.

The models have been developed using past data and
compared with new data. All data have been obtained from a
real greenhouse in Southern Spain during normal operation
producing tomato crop. The neural models are also compared
with a model based on first principles whose parameters have
been selected to match the same greenhouse that provided
the data.

In the next section the data used for developing the models
is shown, followed by section III where the neural models
structures and the development of the actual models are
explained. Similarly, in section IV a model based in first
principles derived by the authors elsewhere is presented here
and compared with the NFIR models with both past and new
data. The paper ends with some conclusions.

II. DATA

Historical data have been obtained from a real greenhouse
belonging to the installations of the Estación Experimental
Las Palmerillas, located in El Ejido (Almerı́ a, Southeast
Spain, Lon. 2o 43’ W, Lat. 36o 48’ N, Alt. 151 m). A typical
greenhouse of this zone was used with 876 m2 of soil surface
and 4.4 m high, formed by two symmetric flat slope roof
with five North-South oriented naves (7.6 × 23.2 m). The
greenhouse has PE film of 200 microns thick as covering
material and lays on a structure made of galvanized steel.
The climate control actuators installed in the greenhouse are
natural vents (lateral and roof), shade screen and air heaters.

The data adquisition system provides values of control
actions and internal and external conditions sampled each
minute. Not all data have been disclosed in order to perform
a final test comparing different models. Figure 1 shows
graphically the disposition of the different data sets. Boxes
in gray correspond to days whose data has been used for
training or validation. The last boxes (marked with stripes)
belong to the end of the season and have not been used
except for final comparisons.

A subset of all variables are just considered as candidates
to be part of the input vector of the neural networks based
on previous experience on the problem and on the fact that
the model will be used for simulation (not just prediction).
They are presented in table I divided into two groups: control
actions (CA) and disturbances (D).
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Fig. 1. Marked boxes indicate days when data have been collected. Days
in grey have been used for training or validation, the striped boxes are days
used just for the fi nal comparison between models.

Symbol Variable Type
v1 Aggregated ventilation actuation CA
v2 Heating actuation CA
v3 External temperature D
v4 Wind speed D
v5 Radiation (PAR) D

TABLE I

SUBSET OF VARIABLES CONSIDERED AS CANDIDATES FOR INPUT

VARIABLES.

It has to be noted that in order to perform a simulation
the input signals must be either forecasted (this is quite
feasible with temperature and radiation), controlled (as is
the case with the actuations) or selected in some way to
provide a realistic scenario. This latter case correspond to
wind direction and speed that are difficult to forecast but
whose effect can be considered statistically.

III. DESCRIPTION OF THE MODELS

There are many model structures available for identifi-
cation. In this application we are interested in obtaining a
discrete-time model for simulation where the real output of
the system (y(k)) is not known at any time (except perhaps
at the beginning of the simulation k = 0).

A model that uses past values of y (i.e. an autoregressive
model) must then use its own output ŷ as an estimation
of the true output and use it recursively during the entire
simulation time. This can cause a built-up of the simulation
error producing errors that are larger for larger simulation
horizons. A model that uses just past values of the input
signal belongs to the family of Finite Impulse Response
(FIR) models. The output of a FIR model is obtained as
a linear combination of past values of the system’s input.
Since the real output of the system is not needed, this kind
of models produces simulation errors that are independent
of the simulation horizon. Also, any FIR model obtained by
identification is stable (in the BIBO sense) since the output of
the model is obtained as a combination of past input values.

In a FIR model the convolution of the system’s impulse
response is truncated to the first m terms. This poses serious
problems when the model is intended to represent a system
that has poorly damped poles. In fact, a large number of past
values of u may be needed to represent a simple transfer
function model. Also, model variance error is usually high
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Fig. 2. Views of the historical data used for training: evolution of some
normalized variables during three different time periods. On each plot the
variable and its effect on the inside temperature of the greenhouse is shown.
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for a FIR model due to its high order. Bias error is also
high due to the necessary truncation of the convolution
product. In this application a method is derived to diminish
the drawbacks while retaining the benefits of using a FIR-
like model structure. The rationale behind the method is that
for many physical systems the output does not react to short
variations in the input but rather to the accumulated effect of
these variations. This is specially true for sampled systems
with short sampling periods. In these situations it makes
sense to use as model inputs the integrated values of the
input variables instead of the variables themselves, reducing
the number of values actually used as input variables of the
model. In the case presented here, the output of the model is
the indoor temperature. It can be deduced from physical con-
siderations (and confirmed by observation) that this variable
does not change significantly due to high frequency changes
of some inputs such as radiation or heating. In other words,
some input variables have to maintain their value for many
sampling periods in order to exert changes in the output. This
provides a justification for the use of integrated variables.

The NFIR model structure is the nonlinear counterpart
of the FIR family. The input variables used are the same,
but in the first case the function that combines them is a
nonlinear mapping produced in this paper by an artificial
neural network. As a result, the input vector for the ANN at
sample time k is computed as:

z(k) = [ v1(k − d1 − 1), ..., v1(k − d1 − n1),
..., vnv(k − dnv − nnv)] (1)

where all variables included (v1 to vnv) are control actions
or disturbances. The values dj j = 1, ..., nv are the dead time
for variable j. Model orders are the number of lagged values
nj of each variable from j = 1 to j = nv. The dimension
of the input vector is thus dim z =

∑nv
j=1 nj

The output variable is assumed to be a nonlinear function
of the input vector plus a white noise signal n

y(k) = f(z(k)) + n(k + 1) (2)

In this paper we have first determined the time lag for
variables v3 and v5 because they show daily cycles that are
followed by the output. Then the effect of both variables in
the output has been crudely determined by a low order model
and subtracted from the output. The residual has been used
to determine time lags for other variables using a correlation
technique with controlled portions of the data where the input
variable has significant variations. The results are: d1 = 1,
d2 = 6, d3 = 1, d4 = 1 and d5 = 2.

A. Integrated variables

A variation of NFIR models consists of including in-
tegrated values of some variables. Then, instead of using
v(k−d− i) for i = 1, 2..., n it is possible to accumulate the
effect in just m sums with m < n being the new variables

w(k, j) =
i=fj∑
i=sj

v(k − d − i) (3)

Variable model orders Windows lengths
v1 n1 = 1 25

n1 = 2 18, 40
n1 = 3 16, 41, 90
n1 = 4 16, 41, 90, 162
n1 = 5 16, 41, 90, 162, 283

v2 n2 = 1 19
n2 = 2 12, 20
n2 = 3 10, 18, 23
n2 = 4 10, 18, 23, 35
n2 = 5 10, 18, 23, 35, 54

v3 n3 = 1 45
n3 = 2 32, 130
n3 = 3 29, 110, 220
n3 = 4 29, 110, 220, 312
n3 = 5 29, 110, 220, 312, 534

v4 n4 = 1 14
n4 = 2 14, 24,
n4 = 3 14, 24, 45
n4 = 4 14, 24, 45, 74
n4 = 5 14, 24, 45, 74, 114

v5 n5 = 1 54
n5 = 2 40, 120
n5 = 3 32, 91, 215
n5 = 4 30, 87, 198, 279
n5 = 5 27, 85, 198, 279, 540

TABLE II

WINDOWS LENGTHS CHOSEN TO PRODUCE INTEGRATED VARIABLES.

for j = 1 to j = m. Obviously the initial and final index for
the sums must verify: s1 = 1, sα+1 = fα + 1 for all α =
1, ...,m − 1 and fm = n.

The initial (s) and final index (f ) define a time window
in which the integration of variable v takes place to yield
the integrated variable w. The lengths (f − s + 1) of these
time windows do not need to be equal. A simple method
to derive windows lengths from data is to compute the
correlation between the output variable and the integrated
variable for different lengths and choosing the best values.
Results are more accurate if just controlled portions of the
data are used, for instance, to compute correlations between
integrated heating action and inside temperature one has to
use data of nights were the heating has been used.

It is worth noting that the proposed method does not imply
the training of models at all (unlike forward inclusion that
will be used later for model order selection). The results
obtained for variables v1 to v5 are shown in Table II. It can
be seen that windows lengths depends on model order as one
should have expected since the relative effect of past inputs
in the output decreases with time.

Using the integrated variables, the input vector for a neural
NFIR model at sample time k is computed as:

z(k) = [ w1(k, 1), ..., w1(k, n1), ...
w5(k, 1), ..., w5(k, n5) ] (4)

At this point the only structural parameter that need to be
selected is the number of inputs for each integrated variable
n1 to n5.
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It has to be noted that the use of integrated variables
produces some loss of high frequency information. This can
pose a problem if the model is later used in situations where
this frequency is of importance, for instance in model based
control. The windows lengths and the sample time determine
the cutoff frequency. In this application, the sample time
is fixed and cannot be increased. On the other hand, the
windows lengths are selected in such a way that the resulting
integrated variables allow the construction of an accurate
simulation model.

B. Input variable selection

For linear model structures Akaike’s criterion and others
may be used to choose the model order that achieves a
balance between accuracy and complexity of the model.
For neural models other procedures must be used. Here
we restrict ourselves to forward inclusion, leaving the ex-
ploration of other techniques for future work. In forward
inclusion lagged variables are included in the model one by
one, selected according to how much they help reducing the
model error.

Since the expected nature of the relationship between
input variables and observed output (or residuals of previous
models) is nonlinear it does not make sense to look for linear
correlations among them. The procedure to select variables
should be done in a different manner. A possible approach
is to use a nonlinear measure of correlation such as the
one proposed in [7] or orthogonal forward selection and
backward elimination [8].

The problem arises on when to stop adding independent
variables, since any new variable will introduce new degrees
of freedom in the model that will allow to reduce the error
in the available data. Validation techniques must be carefully
used to perform model selection.

C. Model creation and selection

The adjustable parameters of the models are obtained
minimizing a quadratic criterion of the simulation error
e(k) = y(k) − ŷ(k). In order to assess the goodness of the
models the root mean squared error (RMSE) is used as a
figure of merit. For a given set S of data the root mean
squared error over this set is computed as:

JS =

√√√√ 1
NS

NS∑
t=1

e(t)2 (5)

being NS the number of observations in the set.
Usually a training set (TS) is used to minimize J , pro-

ducing a set of model parameters. The usual practice is to
produce many models of different orders or types and to
compare them using some left aside data named validation
set (VS). It is expected that models with a larger number
of parameters will produce a lower value of JTS . The
comparison on the VS will hopefully provide an estimate of
the generalization capabilities of each model. The selection
of the final model should be based on this estimation.

Model denomination orders (n1, ..., n5) JTS+V S

NFIR12212 (1, 2, 2, 1, 2) 0.74oC
NFIR12213 (1, 2, 2, 1, 3) 0.68oC
NFIR12214 (1, 2, 2, 1, 4) 0.63oC
NFIR12314 (1, 2, 3, 1, 4) 0.61oC
NFIR12315 (1, 2, 3, 1, 5) 0.60oC
NFIR13315 (1, 3, 3, 1, 5) 0.59oC

TABLE III

COMPARISON OF SEVERAL NFIR MODELS.

For any particular model structure, a neural network has to
be constructed. This typically involves training more that just
a network because the number of nodes of the network, the
initial value for its weights, the training rule and the number
of iterations are all factors that have an influence on the
performance of the network. There is a number of techniques
for neural model selection [9] or regularization theory [10]
can be tested in order to try to improve the generalization
capabilities of the models. In this work we will make an
intensive use of the VS for neural selection.

In this application the VS consists of 70 % of all data pairs
available up to November 9th. The other 30 % constitutes
the TS. Data from November 21th, 22th and 23th (see figure
1) will be referred to as comparison set (CS) and will not
be used in any way until the final comparison.

Before comparing the neural approach with first principles
models it is interesting to show the performance obtained by
the different neural models. Table III shows also some figures
of merit: the root mean squared error (RMSE) in Celsius
degrees for available data set (comprising both TS and VS)
for some selected models.

Figure 3 shows the temperature for a day in which the
heating was used and the simulation obtained using model
NFIR12314 realized by a neural network of 20 hidden nodes.

IV. COMPARISON WITH A FIRST PRINCIPLES MODEL

This model is derived in [1] although its physical parame-
ters have been refitted to the particular greenhouse were data
has been obtained. This procedure has been straightforward
for some magnitudes (mass, length, and so on) but more
elaborate in others (e.g. heat transfer coefficients).

Table IV shows the RMSE for some NFIR models and
for the first principles model (FPM). It can be seen that the
black-box models achieve a smaller simulation error in the
data set that has been used for validation. However, the FPM
provides a better simulation in the comparison set (CS). This
data set has been spared for this comparison (see figure 1).
This set was not disclosed until the end and so was not used
to guide the model selection.

It is also worth noting that the NFIR model that performs
better in the CS is not the same that did better during training
and validation. This is due to the fact that model selection
based on set aside data is often biased towards higher orders
and thus prone to overfitting.

The simulation error is, for all models, less than 1oC RMS.
This is more than enough for the purpose of hierarchical
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Fig. 3. Actual interior temperature (solid line) and simulation obtained by
model NFIR12314 (dashed line) in a clear day (upper plot), in a day when
ventilation was in use (middle plot) and in a day with heating (lowerplot).
In all cases the horizontal scale is given in sampling periods (minutes).

Model JV S JCS

NFIR12214 0.79oC 1.09oC
NFIR12314 0.78oC 1.01oC
NFIR12315 0.72oC 1.12oC
NFIR13315 0.66oC 1.18oC
FPM 0.88oC 0.93oC

TABLE IV

RMS ERRORS OF SOME NFIR MODELS AND A FIRST PRINCIPLES MODEL

(FPM).

control that motivated their development. However, the FPM
took vastly more experimentation and work to be developed
(see [1]).

V. CONCLUSIONS

The paper has shown that the NFIR model family is
suitable for producing low order simulation models of the
inside temperature of greenhouses provided that integrated
variables are used.

A simple method for determining the time windows to be
used to obtain integrated values of input variables has been
presented.

The results show that the performance of the neural model
compares well with that of a first principles model, although
the generalization capabilities of the latter are superior.
However the time spent to produce the NFIR model is
much smaller. Consequently the work to be done to produce
simulation models for a new built greenhouse (with different
structure and/or size) is smaller using the black box data-
driven approach.
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