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Abstract— We consider the problem of optimizing the average
reward of Markov chains controlled by two sets of parameters
1) a set of tunable parameters and 2) a set of fixed but
unknown parameters. We study the convergence characteristics
of recursive estimation procedures based on the observation
of regenerative cycles. We also provide sufficient conditions
for the convergence to local optima of existing simulation-
based optimization procedures under parameter certainty, in
order to achieve simultaneous optimal selection of the tunable
parameters and identification of the unknown parameters. To
illustrate our approach, we discuss an algorithm which exploits
the gradient of the likelihood of an observed regenerative cycle
and its application to a regenerative simulation-based algorithm
introduced in [1]. Our results are illustrated numerically in a
problem of optimal pricing of services in a multi-class loss
network.

I. INTRODUCTION

Dynamic programming models have long been recognized
as the right way to characterize many stochastic research
allocation and control problems. Unfortunately, the dynamic
programming algorithm itself suffers from the so called
“curse of dimensionality”. Recent efforts to address dynamic
programming scalability issues have focused on the develop-
ment of simulation-based techniques, such as neuro-dynamic
programming or approximate dynamic programming [2],
reinforcement learning [3]–[6], and actor-critic methods [7].
Many of these techniques resort to parameterization in order
to develop compact representations of one, or sometimes
both, of two elements: the cost-to-go functions, and the
policies themselves. These methods are simulation-based in
the sense that they recur to simulation to 1) improve the
cost-to-go representations in the first case (see [2], [6]), and
2) improve policies, typically through the estimation of the
gradient of the performance function with respect to the
control actions (see [8], [9], and relevant to the control of
Markov chains the works in [1], [10]–[17]).

While some of the algorithms mentioned above are implic-
itly adaptive, in the sense that they do not require knowledge
of the system model, (e.g. general stochastic approximations
[18], [19]), they exhibit slow convergence due to biased
gradient estimates, or large variances. This problem can be
alleviated by incorporating knowledge of the system model,
for example by exploiting regenerative structure to eliminate
bias [20].
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On the other hand, the problem of adaptive control of
Markov chains has been also been studied, but only few
and limited studies of model-based on-line algorithms are
available. Most of the available works address the problem
when a finite number of possible models is available, as
in [21]–[25]. Other authors, overcome this restriction, but
assume that the optimal policies for each model have been
precomputed [26]. Others, embed the estimation process
in a value iteration procedure [27], which is not efficient
computationally when the state spaces are large. The work
in [28], [29] estimates Q-factors, a technique that is adaptive
since no system model is in principle needed, but requires
the action set to be finite in order to build a Q-factor for
each state-action pair, which quickly becomes impractical
as the state space increases. In some specific cases, the Q-
factors can be approximated via a neural network or other
architectures [2], with limited success.

In this paper we study the problem of adaptive optimiza-
tion of parameterized Markov reward processes. Specifically,
we study on-line optimization with respect to the average
reward criterion of Markov reward processes, where the
transition probabilities, as well as the expected reward per
stage, are functions of two sets of parameters: 1) a set
of tunable parameters, and 2) a set of fixed but unknown
parameters. We provide sufficient convergence criteria for
estimation procedures that are based on the observation of
regenerative cycles, and study the use of such estimation
procedures to carry out simultaneous optimization under
parameter certainty for existing simulation-based algorithms,
such as the algorithm of [1]. Sufficient conditions are also
provided for the simultaneous optimization-estimation algo-
rithms. We illustrate the use of these criteria in an application
to optimal pricing of multi-class loss networks for several
scenarios of parameter uncertainty.

The paper is organized as follows. In Section II we present
the problem of adaptive Markov control, and address the
problem of estimation of unknown parameters. In Section
III we discuss the use of the estimation algorithms in the
algorithms of [1], and provide sufficient conditions for the
convergence of the adaptive scheme to a local optimized/true
parameter value. One of the key benefits of this adaptive
algorithm is that it can be implemented in an on-line fashion
given its small memory and computation requirements. In
Section IV we introduce the problem of pricing services in
a multi-class loss network, and verify the conditions for the
convergence of the adaptive algorithm introduced in Section
III. This section ends with a numerical example, where the
adaptive algorithm is used to find optimal prices in a scenario
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where the service rates are unknown.

II. ADAPTIVE CONTROL OF MARKOV CHAINS

Consider a discrete-time Markov chain {in}∞n=0, with
finite state space S = {1, 2, . . . , N}. The evolution of the
system depends on a continuous parameter vector u ∈ <K .
The system behavior depends also on a set of unknown, but
fixed parameters θ∗ ∈ Θ ⊂ <l, where Θ is a compact set.
In this way, the transition probabilities

pij(u, θ∗) = P (in+1 = j | in = i, u, θ∗),

are functions of the control vector u, and the parameters θ∗.
We let P (u, θ∗) denote the matrix with entries pij(u, θ∗).
Also, the expected cost per transition observed at state i,
denoted by gi(u, θ∗) is a function of both u, and θ∗.

The optimization problem to be addressed is to find the
average reward problem defined as

λ∗(i) = max
u∈<K

lim inf
T→∞

1
T

E

[
T∑

n=0

gin(u, θ∗)

∣∣∣∣∣ i0 = i

]
. (1)

The problem is twofold. On one hand it is necessary to
estimate the unknown parameter θ∗; on the other hand, the
optimization problem has to be solved. While is possible to
estimate the parameters offline, and solve the optimization
problem using this knowledge, this paper will focus on
tackling the two problems at the same time, in order to obtain
a greater degree of adaptation.

A. Structural Assumptions

To set the stage for a discussion of the adaptive algorithm,
it is convenient at this point to state the following structural
assumptions, which are similar to those commonly used in
the adaptive Markov control literature (see for example [22]).

Assumption 1: The Markov chain defined by P (u, θ) is
irreducible for all values of u ∈ <K and θ ∈ Θ, and
aperiodic for all u ∈ <K .

An immediate consequence of this assumption is that for
all u ∈ <K and θ∗ ∈ Θ, all states are positive recurrent
and the steady-state distribution π(u, θ∗) exists, and hence
the average reward associated with control vector u and
unknown parameter vector θ∗, is given by

λ(u, θ∗) =
∑
i∈S

π(u, θ∗)gi(u, θ∗).

Assumption 2: The functions P (u, θ), and gi(u, θ) are
twice differentiable with bounded first and second derivatives
both in u, and θ.

An immediate consequence of Assumption 2 is that both
g and p are Lipschitz continuous on θ.

Assumption 3 (Observability): For all i, j ∈ S, either
pij(u, θ) = 0 for all u ∈ <K , and θ ∈ Θ or pij(u, θ) ≥
ε > 0, for all u ∈ <K , and θ ∈ Θ.

This assumption is commonly used in the Adaptive
Markov Control literature. It states that if a transition can
be observed at a particular control vector u, and vector θ∗,
and it has to be observable for any other values for u and θ∗

with some probability uniformly bounded below by ε > 0
(see for example [22]).

Finally, with respect to an estimation process, we assume
the following properties of an estimator function E . Later
in this section we illustrate two instances of such functions,
and illustrate its use in a network control problem in Section
IV-B.

Assumption 4: Given a regenerative cycle
{i0, i1, . . . , iT = i0}, the function

E(u, θ̃) = E(u, θ̃; i0, i1, . . . , iT ),

and its expected value e(u, θ̃) = E
[
E(u, θ̃)

]
are such that

1) Function E(u, θ̃) is Lipschitz continuous with respect
to the estimate θ̃ for all values u ∈ <K .

2) The ODE associated with the expected direction of
E(u, θ̃)

θ̇ = e(u, θ),

is asymptotically stable around θ∗ for all u ∈ <K .
The following are some examples of such functions

E(u, θ̃).
Example 1: (Ideal Estimator) Suppose that there exists

a function θ̄(u; i0, . . . , iT ) such that
1) It provides an unbiased estimate, i.e.

E[θ̄(u; i0, . . . , iT )] = θ∗.
2) It has a bounded second moment

E[‖θ̄(u; i0, . . . , iT )‖2] < ∞.

Under this conditions, we can define E(u, θ̃; i0, i1, . . . , iT ) =
θ̄(u; i0, . . . , iT ) − θ̃, which satisfies Assumption 4, since
E[E(u, θ̃)] = θ∗ − θ̃, and its second moment is bounded.

Example 2: (Maximum Likelihood Estimator) Given a
regenerative cycle {i0, i1, . . . , iT = i0}, a maximum like-
lihood estimator of θ∗ is any solution to the optimization
problem

max
θ̃∈Θ

T∏
i=1

pin−1in
(u, θ̃).

Consider the function

L(u, θ̃) = L(u, θ̃; i0, i1, . . . , iT ) =
1
T

T∑
k=1

∇θ̃pin−1in(u, θ̃)

pin−1in(u, θ̃)
,

which is the gradient with respect to the θ̃ of the logarithm
of the likelihood of the path under θ̃, up to the factor 1

T . As
we will show in the next session, Assumption 2 implies that
the function E(u, θ̃) = L(u, θ̃) is Lipschitz continuous. In
some cases that will be discussed in Section IV-B, function
L(u, θ̃) also satisfies the condition of asymptotic stability of
Assumption 4.

B. Preliminaries

First, we note that functions pij(u, θ) and gi(u, θ) are
Lipschitz continuous, as a consequence of our Assumption
2 (see [30]). Second, we show that our estimator function
L(u, θ̃) is also Lipschitz continuous.

Lemma 1: Under Assumptions 1-3, we have that
L(um, θ̃m) is Lipschitz continuous.
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Proof: Since each term of the sum L(um, θ̃m) is a function
with continuous and bounded derivative, we can rewrite

‖L(um, θ2)− L(um, θ1)‖ ≤ K‖θ2 − θ1‖,

for all θ1,θ2 ∈ Θ. More specifically, we have that the
difference ‖L(um, θ2)− L(um, θ1)‖ =

1
Tm

‖
tm+1∑
n=tm

Lin−1in(um, θ2)− Lin−1in(um, θ1)‖

≤ Tm

Tm
K‖θ2 − θ1‖ = K‖θ2 − θ1‖,

where the inequality follows from the fact that Lij(u, θ) is
differentiable with bounded derivative. �

C. Estimation

Suppose we have access to observations of a system as
described in the previous section. Select a state i∗ ∈ S,
such that i∗ is recurrent for all u ∈ <K , and all θ̃. Let tm
mark the times of regeneration. We observe a regenerative
cycles {itm , itm+1, . . . , itm+1}, realized under the control
parameters um, and consider the stochastic approximation
recursion

θ̃m+1 = ΠΘ

[
θ̃m + γmE(um, θ̃m)

]
, (2)

where E(um, θ̃m) = E(um, θ̃m; itm , itm+1, . . . , itm+1) is a
function satisfying Assumption 4, and γm is a set of stepsizes
satisfying the so-called standard conditions:

Assumption 5: The stepsizes γm are such that∑
m

γm = ∞,
∑
m

γ2
m < ∞.

Corollary 1: Under Assumptions 1-4, and 5, the recursion
of Eqn. 2 is such that

θ̃m → θ∗,

as m →∞, and it does so at a rate of O( 1√
m

).
Proof: Under Assumptions 1-5, and 4, the update direc-
tion function holds the Assumptions on the result by [31]
for Lipschitz functions. With the additional assumption of
uniqueness of the stability of u∗ under, we have the desired
result. �

Another consequence relevant to the use of this estimation
procedure in an optimization context, is the summability of
the errors, which is our following result.

Corollary 2: If Assumptions 1-5 hold, then∑
m

γm‖θ̃m − θ∗‖ < ∞.

Proof: The fact that E[‖θ̃m− θ∗‖] < C√
m

for some constant
C, results in

∑
m E[γm‖θ̃m − θ∗‖] < ∞, which together

with the boundedness of the second moment, i.e.∑
m

γ2
m‖θ̃m − θ∗‖ < ∞,

implies the desired result. �
The following result will be useful in the following.

Lemma 2: Under Assumptions 1, we have that

E[L(u, θ̃)] =
∑
i∈S

πi(u)
∑
j∈S

pij(u, θ∗)
∇θ̃pij(u, θ̃)
pij(u, θ̃)

, (3)

where π(u) = (π1(u), · · · , πN (u)) is the steady state distri-
bution of the chain under control u.
Proof: We can make use of the uniform irreducibility of
the Markov chain by defining K different Markov control
process with the same states and transition probabilities, but
the expected cost per stage for the k-th is denoted

g̃k
i (u, θ̃) =

∑
j∈S

pij(u, θ∗)
pij(u, θ̃)

∂pij(u, θ̃)
∂θ̃k

.

The average reward attained by such reward processes is
given by

E[L(u, θ̃)]k =
∑
i∈S

πi(u)g̃k
i (u, θ̃), ∀u ∈ <K , θ̃ ∈ Θ,

from which the result follows �
Later in Section IV we show an example where Assump-

tion 4 can be verified with the help of this result on a relevant
application.

III. ADAPTIVE OPTIMIZATION

We introduce a simple modification to the “batch” algo-
rithm of [1]. The modified algorithm achieves the purpose
of optimizing the average reward of the system, while
discovering the value θ∗ of the unknown parameters. The
procedure starts with an initial estimate θ̃0 of the unknown
parameter θ∗, an initial guess of the control parameters u0,
and an estimate λ̃0 of λ(u, θ). Starting at state i∗ ∈ S, a
special state recurrent under all u, simulate the process under
parameter vector u0 until we return to state i∗, known as a
regenerative cycle. Let tm be the time of the m-th return to
the special state i∗. At those times, new values for um, λ̃m,
and θ̃m are calculated with the recursive formula

um+1 = um + γmF (um, λ̃m, θ̃m), (4)

λ̃m+1 = λ̃m + ηγm

tm+1−1∑
n=tm

(gin(um, θ̃m)− λ̃m), (5)

θ̃m+1 = ΠΘ[θ̃m + µγmE(um, θ̃m)], (6)

where η > 0, and µ > 0 are stepsize factors, the function

F (um, λ̃m, θ̃m) =
tm+1−1∑
n=tm

[ṽin
(um, θ̃m)Lin−1in

(um, θ̃m)

+∇gin
(um, θ̃m)],

and ṽin
(um, θ̃m) is an approximation to the cost-to-go

function to return to state i∗, under parameter values um.
Specifically

ṽin(um, θ̃m) =
tm+1−1∑

k=n

(gik
(um, θ̃m)− λ̃m).

Even though the chain is different to the one being simulated
(under the correct values θ∗), it will be shown that the
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difference is asymptotically negligible under Assumptions 1-
3, in the sense that the stability of the algorithm is not
compromised.

This recursive procedure coincides with the algorithm
introduced by Marbach and Tsitsiklis in [1], differing only in
our use of estimates θ̃m of the unknown values θ∗ (instead
of assuming perfect knowledge of θ∗ as in theirs), and the
introduction of the estimation recursion of Eqn. 6.

A. Convergence of the Algorithm

In this section, it will be shown that under Assumptions
1-3 the average behavior of the procedure converges asymp-
totically to the one with full knowledge of the parameters,
and the error obtained in such process is asymptotically
negligible. To set the stage for the discussion, let rm =
(um, λ̃m, θ̃m), and let

H(rm) =

 F (um, λ̃m, θ̃m)
η

∑tm+1−1
n=tm

(gin(um, θ̃m)− λ̃m)
µE(um, θ̃m)

 , (7)

with which the algorithm can be rewritten as:

rm+1 = rm + γmH(rm),

without consideration of the projection. Furthermore, let
h(rm) = E[H(um, λ̃m, θ∗) | Fm] with respect to the
filtration Fm = σ(u0, λ̃0, θ̃0, i0, i1, . . . , itm

). Notice that the
expectation is taken assuming knowledge of θ∗. Using the
standard ODE approach, rewrite

rm+1 = rm + γmh(rm) + εm, (8)

where εm = γm(H(rm)− h(rm)).
Lemma 3: H(u, λ̃, θ̃) is differentiable with respect to

θ,∀θ ∈ Θ, and there exists a constant C such that
E[‖∇H(u, λ̃, θ̃)‖] ≤ C for all u, λ̃, and θ̃.
Proof: The first component of H(u, λ̃, θ̃), F (u, λ̃, θ̃), is a
sum of differentiable functions g, ∇g, and Lij(u, θ). For
the latter, Assumption 3 guarantees that the function will be
differentiable, since is the quotient of differentiable function,
while the function in the denominator is always different than
zero. Therefore, F (u, λ̃, λ̃) is differentiable.

Notice that the derivative of Lij(u, θ) is also bounded as
a consequence that pij(u, θ) > ε. A consequence of positive
recurrence, is that E[T ] < ∞. Therefore the expected value
of the gradient of F (u, λ̃, θ̃) is a finite sum of bounded terms,
which guarantees is bounded. Similar arguments can be made
for the other components of H(um, λ̃, θ̃). �

Since function H is differentiable, we can rewrite

H(rm) = H(um, λ̃m, θ∗) +∇θ∗H(um, λ̃, θ′) · (θ̃m − θ∗),

for some θ′ ∈ Θ, by the Mean Value Theorem. This leads
to the following result.

Lemma 4: Under Assumptions 4-5,∑
m

‖εm‖ < ∞,

with probability one.

Proof: By Lemma 3, an

E[‖εm‖] = E[‖γm(H(um, λ̃m, θ∗)

+∇θH(um, λ̃, θ′) · (θ̃m − θ∗)− h(rm))‖]
= E[‖γ∇θH(um, λ̃, θ′) · (θ̃m − θ∗)‖]
≤ γmC‖θ̃m − θ∗‖.

Therefore, by Corollary 2, we have that
∑

m E[‖εm‖] < ∞,
which along with the summability of the second moment,
implies the desired result. �

Proposition 1: The recursive procedure described in 4-
6 converges with probability one to (u, λ̃, θ∗), where
∇uλ(u) = 0, and λ̃ = λ(u), under Assumptions 1-5.
Proof: Notice that by rewriting the recursive procedure as
8, the driving direction of the process is the same as if the
parameter was known. Therefore, the stability analysis of [1]
holds. To see this clearly, it is possible to rewrite 8 as

rm+1 = rm + γmh(rm) + ε′m + ε′′m,

where ε′m = γm(H(rm) − H(um, λ̃m, θ̃m), and ε′′m =
γm(H(um, λ̃m, θ̃m) − h(rm)), and notice that by omitting
ε′m the recursion

rm+1 = rm + γmh(rm) + ε′′m,

which is equal to the one in [1]. In other terms, the systems
being analyzed is a perturbed version of the algorithm
where all parameters are known, but this perturbation is
asymptotically negligible �

IV. PRICING OF MULTI-CLASS LOSS NETWORKS: AN
ILLUSTRATION

As an application, we study a problem of optimal pricing
services in a multi-class loss network. Consider a multi-class
loss system with a set N of resources with capacity Cn, n =
1, 2, . . . , N shared by users of K classes of calls or services.
Each service class k ∈ {1, 2, . . . ,K} can be described by a
Poisson arrival rate function αk(uk, θ∗), which we assume to
be a function of a price uk ∈ (0, ūk) 1, and a set of unknown
but fixed parameters θ∗ that belongs to Θ, a compact convex
set. We assume αk(uk, θ) is a bounded function of both uk

and θ, with bounded first and second derivatives with respect
to both uk, and θ, for all θ ∈ Θ. We assume that requests for
calls constitute a Poisson arrival process with rate α(uk, θ∗)
whenever price uk is used.

We assume that αk(ūk, θ∗) > 0 for all k = {1, 2, . . . ,K}.
Let U =

∏K
k=1(0, ūk) denote the set of all feasible

price combinations. The duration of a call of class k
is assumed to be exponentially distributed with mean
1/βk(θ∗), during which the network reserves mk =
(mk,1,mk,2, . . . ,mk,N ) out of the capacity of the corre-
sponding resources C1, C2, . . . , CN . Let M be the matrix
of resources used by each type of call, i.e. a matrix whose
column k is vector mk. We assume that β(θ) is bounded,
with bounded first and second derivatives with respect to

1Note that an open interval can be continuously mapped to the real line
without sacrificing convergence.
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θ ∈ Θ. At a time t, the state of the system can be described as
i(t) = (i1(t), i2(t), . . . , iK(t)), a vector that represents the
number of ongoing calls of class k present in the system.
We use I to denote the set of all feasible usage profiles
(i!, i2, . . . , iK).

Finally, we assume that the system implements a strict
admission control rule. Suppose that at time t a request
for a call of type k is received. The call will be admitted
if M · i(t) + mk ≤ C, where matrix M and vector mk

are defined as above. To simplify notation, define A(i) =
{k|M · i + mk ≤ C} to be the set of calls that satisfy the
admission control rule when the system is in state i ∈ I .
We also define ak(i) = 1k∈A(i), to indicate if class k is
admissible at state i.

A. Formulation as a Markov Control Process

We focus on the so-called static pricing policies, which
have recently been shown to be asymptotically optimal
for scaled versions of this system (see [32]–[34]). In the
static pricing formulation, the same class-dependent price
uk always applies regardless of the state of the process. The
revenue maximization problem then can be expressed as

max
u∈U

λ(u) = lim
t→∞

1
T

E

∫ T

0

∑
k∈A(i(t))

αk(uk, θ∗)ukdt

 .

(9)
In order to apply the algorithms of Section III we trans-

form the continuous-time process into a discrete one through
the process of uniformization, which is described in [35].
At a particular state i = (i1, i2, . . . , iK) and under prices
u = (u1, u2, . . . , uK) and θ∗, the transition rate out of state
i is given by

νi(u, θ∗) =
∑

k∈A(i)

αk(uk, θ∗) +
K∑

k=1

ikβk(θ∗).

In order to apply the process of uniformization, we need the
following assumption.

Assumption 6: The functions αk(·, ·) and β(·) are such
that there exists a constant ν∗ such that

ν∗ ≥ νi(u, θ̃), ∀i ∈ S, θ̃ ∈ Θ, u ∈ <K .

Through uniformization, we obtain the transition probabili-
ties

pij(u) =


ikβk(θ∗)

ν∗ if j = i− ek, k = 1, ..., n,
αk(uk,θ∗)

ν∗ if j = i + ek, k = 1, ..., n,
1− νi(u,θ∗)

ν∗ if j = i,
0 otherwise.

Also, the expected reward per stage under parameter u when
visiting state i is

gi(u, θ∗) =
1
ν∗

∑
k∈A(i)

αk(uk, θ∗)uk.

Assumption 7: Suppose

θ∗ = (α∗1, β
∗
1 , α∗2, β

∗
2 , . . . , α∗K , β∗K).

Furthermore, suppose that the arrival rate functions
αk(uk, θ∗) = αk(uk, α∗k), service rates βk(β∗k) for class
k are monotonic and concave functions of α∗k, and β∗k ,
respectively.

Proposition 2: Under Assumptions 6 and 7 the iterative
procedure described in Eqns. 4-6 converges to the true values
θ∗ and to a local maximizer of λ(u).

Proof: First, notice that when the system is at a state i, the
only possible events are arrivals of all classes k ∈ A(i),
and departures of users currently in the system. According
to Eqn. 3, we have that E[L(u, θ̃)] =

=
∑
i∈S

πi(u)
∑
j∈S

pij(u, θ∗)
∇θ̃pij(u, θ̃)

pij(u,
∑̃

)

=
∑
i∈S

πi(u)×

×



a1(i)
∂α1(u1,α̃1)

∂α̃1

(
α1(u1,α∗1)
α1(u1,α̃1)

− ν∗−νi(u,θ∗)

ν∗−νi(u,θ̃)

)
i1

∂β1(β̃1)

∂β̃1

(
β1(β

∗
1 )

β1(β̃1)
− ν∗−νi(u,θ∗)

ν∗−νi(u,θ̃)

)
...

aK(i)∂αK(uK ,α̃K)
∂α̃K

(
αK(uK ,α∗K)
αK(uK ,α̃K) −

ν∗−νi(u,θ∗)

ν∗−νi(u,θ̃)

)
iK

∂βK(β̃K)

∂β̃K

(
βK(β∗K)

βK(β̃K)
− ν∗−νi(u,θ∗)

ν∗−νi(u,θ̃)

)



By defining ∆νi(u, θ̃) = νi(u, θ∗) − νi(u, θ̃), we can
rewrite E[L(u, θ̃)] =

=
∑
i∈S

πi(u)×

×



a1(i)
∂α1(u1,α̃1)

∂α̃1

(
α1(u1,α∗1)
α1(u1,α̃1)

− 1 + ∆νi(u,θ̃)

ν∗−νi(u,θ̃)

)
i1

∂β1(β̃1)

∂β̃1

(
β1(β

∗
1 )

β1(β̃1)
− 1 + ∆νi(u,θ̃)

ν∗−νi(u,θ̃)

)
...

aK(i)∂αK(uK ,α̃K)
∂α̃K

(
αK(uK ,α∗K)
αK(uK ,α̃K) − 1 + ∆νi(u,θ̃)

ν∗−νi(u,θ̃)

)
iK

∂βK(β̃K)

∂β̃K

(
βK(β∗K)

βK(β̃K)
− 1 + ∆νi(u,θ̃)

θ∗−νi(u,θ̃)

)


Noting that as a consequence of Assumption 7, we have that
for any θ̃ ∈ Θ, and k = 1, 2, . . . ,K

∂αk(uk, α̃k)
∂α̃k

(
αk(uk, α∗k)
αk(uk, α̃k)

− 1
)

(α∗k − α̃k) ≥ 0,

∂βk(β̃k)
∂β̃k

(
βk(β∗k)
βk(β̃k)

− 1
)

(β∗k − β̃k) ≥ 0.
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Therefore E[L(u, θ̃)] · (θ∗ − θ̃) =∑
i∈S

πi(u)[
∑

k∈A(i)

∂αk(uk, α̃k)
∂α̃k

(
αk(uk, α∗k)
αk(uk, α̃k)

− 1
)

(α∗k − α̃k)

+
K∑

k=1

ik
∂βk(β̃k)

∂β̃k

(
βk(β∗k)
βk(β̃k)

− 1
)

(β∗k − β̃k)

+
∆νi(u, θ̃)

ν∗ − νi(u, θ̃)
{

∑
k∈A(i)

∂αk(uk, α̃k)
∂α̃k

(α∗k − α̃k)

+
K∑

k=1

ik
∂βk(β̃k)

∂β̃k

(β∗k − β̃k)}]

By concavity we have that

∂αk(uk, α̃k)
∂α̃k

(α∗k − α̃k) ≥ ∂αk(uk, α′k)
∂α̃k

(α∗k − α̃k),∀α′k

∂βk(β̃k)
∂β̃k

(β∗k − β̃k) ≥ ∂βk(β′k)
∂β̃k

(β∗k − β̃k),∀β′k.

In particular by the mean value theorem, there are α′′k , and
β′′k such that

∂αk(uk, α′′k)
∂α̃k

(α∗k − α̃k) = αk(uk, α∗k)− αk(uk, α̃k)

∂βk(β′′k )
∂β̃k

(β∗k − β̃k) = βk(β∗k)− β(β̃k)

Therefore E[L(u, θ̃)] · (θ∗ − θ̃) ≥∑
i∈S

πi(u)[
∑

k∈A(i)

∂αk(uk, α̃k)
∂α̃k

(
αk(uk, α∗k)
αk(uk, α̃k)

− 1
)

(α∗k − α̃k)

+
K∑

k=1

ik
∂βk(β̃k)

∂β̃k

(
βk(β∗k)
βk(β̃k)

− 1
)

(β∗k − β̃k)

+
∆νi(u, θ̃)2

ν∗ − νi(u, θ̃)
] ≥ 0

Notice that the equality will only hold when θ̃ = θ∗. There-
fore, the function L(u, θ̃) is asymptotically stable around θ∗,
since for the Lyapunov function V (θ̃) = ‖θ∗− θ̃‖2, we have
that

E[L(u, θ̃)] · ∇θ̃V (θ̃) = E[L(u, θ̃)] · 2(θ̃ − θ∗) < 0,

for all θ̃ ∈ Θ, θ̃ 6= Θ, and V (θ̃) = 0 if θ̃ = θ∗ �
The result shows that the estimator L(u, θ̃) is indeed

asymptotically stable around θ∗, and hence the results of
Proposition 1 apply.

B. Example: Adapting to Unknown Service Rates

Suppose that the unknown parameters in this case are
the service rates β1, . . . , βK . In this case, we define θ∗ =
β∗ = (β∗1 , β∗2 , . . . , β∗K), and βk(θ∗) = β∗k , for all k =
1, 2, . . . ,K. In this case, we will use the estimates θ̃ = β̃ =
(β̃1, β̃2, . . . , β̃K), and there is no dependence of the arrival
rates functions on θ̃k, and the functions satisfy Assumption
7.

To illustrate the procedure numerically, the Algorithm of
Eqns. 4-6 is applied to estimate class services rates, using

C1

C
3

C
2

α1(u1)
α2(u2)

α3(u3)

Fig. 1. Topology for the numerical example: three classes with identical
arrival rate function αk(uk) and service parameters βk(θ∗) = β∗k , for
k = 1, 2, 3.

the estimation function L(u, θ̃). In the example, three classes
of traffic share a small network of three links with equal
capacities Cn = 10, for n = 1, 2, 3. The three classes of
traffic have identical arrival rate functions and service time
parameters, and differ only in the routes they use. Each class
uses a unique two link path from the network and requires
1 unit of the capacity of the link. The route parameters are
described at the bottom of Table I. The service rates are
β1 = β2 = β3 = 5 calls per second, and the arrival functions
are defined by αk(uk) = ᾱk(1−uk/ŭk)+. The value of these
parameters are defined in Table I and are time-invariant.

TABLE I
PARAMETERS FOR EXAMPLE IV-B. (C1 = C2 = C3 = 10).

Parameter Class 1 Class 2 Class 3
ᾱk 50.0 50.0 50.0
ŭk 1.0 1.0 1.0
ūk .95 .95 .95
Requirements
Link 1 1 1 0
Link 2 1 0 1
Link 3 0 1 1
βk 5 5 5
θ̃ = (β̃1, β̃2, β̃3) 7.5 5 2.5

Given the symmetry of the traffic classes in Example IV-
B, it is clear that any optimal solution has to be of the form
u1 = u2 = u3, since any solution where the equality does
not hold will lead to lower utilization of some of the links.
For example, if u1 > u2, u3 then on average link 3 will
be saturated, while the other two will be under utilized. As
Figures 2 and 3 show, the prices for the three classes achieve
a similar value (approximately u1 = u2 = u3 = .59. Notice
that the estimation process converges quickly to the correct
values, as shown by Figure 4. The values of βi are restricted
to the ranges [1, 10].

V. CONCLUSIONS

We have presented an algorithm for selecting optimal
parameters for controllable Markov chains. The algorithm
is robust to parametric uncertainty, in the sense that 1)
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Fig. 4. Evolution of the estimates θ̃ = (β̃1, β̃2, β̃3) for Example IV-B.

computes estimates of unknown but fixed parameters, and
2) maximizes the average reward by moving the tunable
parameters in the approximate direction of the gradient of
the objective function. We provide sufficient conditions for
the convergence of such an algorithm. As was shown through
numerical examples in [36], the algorithm can be used
with constant stepsizes to track slow changing parameters,
although we lose asymptotic stability, i.e. when the fixed but
unknown parameters θ∗ are replaced with a slowly changing
set of parameters θ∗(t).
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