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Abstract— In distributed diagnosis it may be useful to achieve
local consistency among local estimates. For that purpose the
Computational Procedure for Local Consistency (CPLC) was
proposed to achieve the supremal local support, which represents
one type of local consistency. It has been shown that if CPLC
terminates then the result is in fact the supremal local support.
However, in this paper it is shown that, even if all initial
estimates are regular languages, the termination of CPLC is
undecidable. Moreover, these difficulties are not confined to
this specific procedure: it is undecidable whether the supremal
local support corresponding to an arbitrary collection of regular
initial languages is componentwise empty; consequently, the
supremal local support is effectively uncomputable.

I. INTRODUCTION

In many distributed estimation problems, achieving
consistency is crucial. For instance, belief propagation
problems [7], [1] require consistency among local posterior
probabilities based on newly acquired information; constraint
satisfaction problems [5], [14], [12] require consistency
among assignments to local variables, which can be
categorized as either global consistency or local consistency
(i.e. arc consistency [5]); in distributed fault diagnosis
problems there is also a global consistency issue and a local
consistency issue [8] depending on the priority between
quality of diagnosis and scalability of the algorithm. It
is well known that, in some cases – such as constraint
satisfaction problems featuring a finite number of variables
over finite domains – consistency can always be achieved,
although the computational complexity is NP-complete
[4]; but in others – such as belief propagation [7], [6] –
computational procedures for consistency may not terminate.

In this paper we address the local consistency issue in the
framework of distributed diagnosis of discrete-event systems.
In [8] the authors defined a concept called the supremal
local support, which was used to capture the interaction
between pairs of local components modelled by formal
languages during fault diagnosis. A computational procedure
for local consistency (CPLC) – was proposed to compute
the supremal local support – similar to those of [10], [2].
But CPLC may not always terminate: counterexamples were
given in [11]. This raises the question of decidability of
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termination. If it were possible to determine whether CPLC
would terminate, we could choose approximate solutions
in cases of nontermination, as may be done in loopy
belief propagation problems [6] when an exact solution
is unattainable. In [9] it was proved that the termination
of CPLC is undecidable if initial languages are Turing
recognizable; in this paper we show that the termination of
CPLC is still undecidable even if all initial languages are
restricted to regular ones.

The paper is organized as follows. In Section II we
introduce CPLC, and then provide the undecidability result
in Section III. In section IV the results are summarized and
future work is discussed.

II. BRIEF REVIEW OF CPLC

We assume that readers are familiar with languages and
operations such as natural projection and synchronous prod-
uct; if not, an introduction can be found in [13]. The
motivation for CPLC is described in [11] and [8]; here we
simply review the algorithm. Let I be a finite index set.
Suppose we have a collection of event sets {Σi|i ∈ I}. For
each i, j ∈ I let Pi,j : Σ∗

i → (Σi ∩ Σj)∗ be the natural
projection. Let L := {Li ⊆ Σ∗

i |i ∈ I} be a collection of
languages. Let Gr =< V, E > be a graph, where V := I
and E ⊆ V × V is such that

(∀i, j ∈ V ) (i, j) ∈ E ⇐⇒ i �= j & Σi ∩ Σj �= ∅

Clearly, if (i, j) ∈ E then so is (j, i). Thus Gr is an
undirected graph. A simple path between two different nodes
i, j ∈ V is a sequence of edges (v0, v1), · · · , (vk−1, vk) ∈ E
such that

v0 = i & vk = j & (∀l, r : 0 ≤ l, r ≤ k) l �= r ⇒ vl �= vr

For each i, j ∈ V let Path(i, j) be the set of all simple paths
between i and j. For each w ∈ Path(i, j) we use |w| to
represent the length of the simple path w. For simplicity, we
assume that the graph is connected, meaning that for any
two different nodes there is a simple path connecting them.
If Gr is not connected then, since V is finite, the graph
consists of a finite number of disjoint connected subgraphs,
which in our interpretation represent a finite number of
disjoint subsystems. Thus the following theory will apply to
each connected subgraph.

Let d : Ver × Ver → N with

(i, j) 
→ d(i, j) :=
{

minw∈Path(i,j) |w| if i �= j

0 if i = j
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be a distance map. We (arbitrarily) pick one node as the root
node of Gr, say node 1. Let φ : Ver → {1, · · · , |V |} be a
one-to-one map such that

(∀i, j ∈ V ) (i, j) ∈ E ⇒ [d(1, i) < d(1, j) ⇒ φ(i) < φ(j)]

In general there may exist more than one choice for φ. Fix
one choice of φ and define the following binary relation
among vertices,

(∀i, j ∈ V ) i ↓ j ⇐⇒ (i, j) ∈ E & φ(i) < φ(j)

We call i a father node of j and the binary relation ↓ the
father-son relation. It is easy to see that (Gr, ↓) is acyclic.
Therefore all nodes can be partitioned into several special
pairwise disjoint sets such that a recursive computational
procedure can be designed. The following proposition
describes these special sets.

Proposition 2.1: Let Gr = (V, E) be a graph as described
above, where V = I . Suppose a father-son relation ↓
among nodes in V is given. Then there exists a partition
{V0, V1, · · · , Vk} on V such that for the sets Vi (0 ≤ i ≤ k)
the following two conditions hold,

1) (∀j ∈ Vi) {r ∈ I|r ↓ j} ⊆ ∪i−1
m=0Vm where

∪−1
m=0Vm := ∅

2) (∀j ∈ Vi) {r ∈ I|j ↓ r} ⊆ ∪k
m=i+1Vm where

∪k
m=k+1Vm := ∅

Proof: The proof is given in Proposition 2.9 of [11]. �

The first condition in Proposition 2.1 says that no node in
V0 has a father node, and for any other set V i (1 ≤ i ≤ k),
the father nodes of any node j ∈ Vi are contained in
∪i−1

m=0Vm. The second condition says that no node in Vk has
a son node, and for any other set Vi (0 ≤ i ≤ k − 1), the
son nodes of any node j ∈ Vi are contained in ∪k

m=i+1Vm.

We now present the algorithm CPLC.

Computational Procedure for Local Consistency:
1) Initialization: (∀i ∈ I) M0

i := Li

2) At odd rounds n ∈ 2N+1, starting from Vk and ending
at V1, for each i ∈ Vj (k ≥ j ≥ 1) compute

Mn
i :=

{
Mn−1

i if (�r ∈ I) i ↓ r

Mn−1
i

∣∣∣∣∣∣(||r:i↓rPr,i(Mn
r )) otherwise

3) At even rounds n ∈ 2N+, starting from V1 and ending
at Vk, for each i ∈ Vj (1 ≤ j ≤ k) compute

Mn
i :=

{
Mn−1

i if (�r ∈ I) r ↓ i

Mn−1
i

∣∣∣∣∣∣(||r:r↓iPr,i(Mn
r )) otherwise

4) Termination: (∃n ∈ N+)(∀i ∈ I) Mn
i = Mn+1

i �

Proposition 2.1 guarantees that in step 2 before we
compute Mn

i all those Mn
r with i ↓ r have been computed.

Similarly in step 3 before we compute Mn
i all those Mn

r

with r ↓ i have been computed. Therefore CPLC is well

defined. The main feature of CPLC is its scalability, in the
sense that when we add a new node to the graph or remove
one from the graph, only a few adjacent nodes need to
update their local communication protocol, which is usually
done by simply changing their lists of father and son nodes.

Figure 1 depicts how CPLC procedure works in a simple
example, where the father-son relation is illustrated by the

Fig. 1. 2-Round CPLC

arrow-headed edges:

1 ↓ 2 and 2 ↓ 3 and 2 ↓ 4

So the partition is {V0 = {1}, V1 = {2}, V2 = {3, 4}}.
We can see that during the computational process, in
odd-numbered rounds computation starts from nodes in V 2,
then passes to the node in V1 and finally to the node in V0.
In even-numbered rounds computation goes in the opposite
direction, namely starting from the node in V0, and then
passing to the node in V1 and finally to the nodes in V2. So
the computational process is well organized. ♦

In the next section we will show that the termination
of CPLC is undecidable, even when all initial languages
{M0

i |i ∈ I} are regular.

III. UNDECIDABILITY OF TERMINATION OF CPLC

To prove the undecidability of termination of CPLC, we
first define a Chaotic Distributed Communication Procedure
(CDCP), which is similar to the one used in [2]. We will
first show that CDCP has the same termination properties
as CPLC. Then we show that the termination of CDCP is
undecidable, which establishes the undecidability result for
termination of CPLC. In practical applications, CPLC usually
converges faster than CDCP, if termination is achievable.
There is another major difference between CPLC and CDCP
when the network Gr is a tree: if the initial languages in L are
not regular, e.g. context-free, then checking the termination
condition for CDCP may not be feasible because language
identity may be undecidable [3]; but CPLC does not need
to check the termination condition at all because in [11] it
has been shown that the termination condition of CPLC is
guaranteed to hold no later than round 2. The following proof
serves to establish undecidability results for both CPLC and
CDCP.
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A. Chaotic Distributed Communication Procedure (CDCP)

As before, let I be a finite index set and {Σi|i ∈ I} a
collection of alphabets not necessarily pairwise disjoint. For
each i, j ∈ I let Pi,j : Σ∗

i → (Σi ∩ Σj)∗ be the natural
projection. Let Gr = (V, E) be the graph induced from
{Σi|i ∈ I} as described in Section II. For each v ∈ V we
define NB(v) := {v′ ∈ V |(v, v′) ∈ E} as the neighbor set
of v. Let L := {Li ⊆ Σ∗

i |i ∈ I} be the initial set.

Chaotic Distributed Communication Procedure (CDCP):

1. Initialization: (∀i ∈ I)L0
i := Li

2. Iteration:

(∀k ∈ N+)(∀i ∈ I)Lk
i := Lk−1

i

∥∥∥[||j∈NB(i)Pj,i(Lk−1
j )]

3. Termination: (∃n ∈ N)(∀i ∈ I)Ln
i = Ln+1

i

Proposition 3.1: Given L := {Li ⊆ Σ∗|i ∈ I}, CDCP
terminates if and only if CPLC terminates.
Proof: By the description of CDCP and CPLC, both have
the same undirected graph Gr. In CPLC Gr is equipped
with the binary relation ↓ so that (Gr, ↓) is equivalent to an
acyclic directed graph. By Proposition 2.1 the set V can be
partitioned into {V1, · · · , Vm} such that the two conditions
of Proposition 1 hold. The number m ∈ N+ can be regarded
as the height of the graph from the leaf nodes (each of which
has no son nodes) to the root node. We use Lk

i to denote the
language associated with node i ∈ I at round k in CDCP,
and Mr

i for the language related to node i ∈ I at round r in
CPLC. Then we have the following claim:

(a) (∀k ∈ N)(∀i ∈ I) M2k
i ⊆ Lk

i

(b) (∀r ∈ N)(∀i ∈ I)Lmr
i ⊆ Mr

i

The proof of the claim is given in a full version of this
paper. We now continue the proof of Proposition 3.1.

(1) (IF): Suppose CDCP terminates. Then

(∃n ∈ N+)(∀i ∈ I)Ln
i = Ln+1

i

Clearly, for each i ∈ I we have Ln
i = L

m(2n+1)
i . Since

(∀i ∈ I)L
m(2n+1)
i

(b)

⊆ M2n+1
i ⊆ M2n

i

(a)

⊆ Ln
i

we have M2n
i = M2n+1

i for each i ∈ I , which means the
termination condition of CPLC holds.

(2) (ONLY IF): Suppose CPLC terminates. Then

(∃n ∈ N+)(∀i ∈ I) Mn
i = Mn+1

i

Clearly, for each i ∈ I we have Mn
i = M2(mn+1)

i . Since

(∀i ∈ I) M2(mn+1)
i

(a)

⊆ Lmn+1
i ⊆ Lmn

i

(b)

⊆ Mn
i

we have Lmn
i = Lmn+1

i for each i ∈ I , which means the
termination condition of CDCP also holds. By (1) and (2),
the proposition is true. �

If we can show that the termination of CDCP is unde-
cidable when all initial languages in L are regular, then by
Proposition 3.1, so is the termination of CPLC. We shall now
establish the undecidability of the termination of CDCP..

B. Undecidability of Termination of CDCP and CPLC

We shall reduce the halting problem for an arbitrary
deterministic Turing Machine (TM) M to that of checking
termination of a three-node, regular-language instance of
CDCP. The idea of the proof is that one of the three regular
initial languages will essentially encode the structure of
the transition relation on Turing machine quintuples. This
language will be based on two disjoint alphabets – one for
the encoding of predecessor quintuples, and the other for
the encoding of their successors. In fact, the language can
be thought of as specifying the input-output relation of a
finite state machine that, when presented at its input with
the successive symbols of an encoding of a predecessor TM
configuration over the first alphabet, successively outputs
the symbols of the corresponding successor configuration,
encoded over the second alphabet. The other two regular
languages are chosen so that, under CDCP, they implement
a ‘feedback loop’ that returns the successor configuration
from the output of the finite-state machine to the input,
where it is treated as a new predecessor configuration: to
do so, one node transliterates, symbol by symbol, successor
configurations into a third, intermediate alphabet, disjoint
from the other two; the remaining node transliterates from
this intermediate alphabet into the input alphabet of the
finite-state machine. The result is that as the execution of
CDCP proceeds, the network simulates the action of the
Turing machine on the empty input, and the computation
terminates if and only if the Turing machine halts.

The key to making the construction with regular languages
is that pairs of encodings of configurations, whether of a
predecessor and a successor configuration, or of the same
configuration over two disjoint alphabets, are interleaved.
In machine-theoretic terms, this means that strings can be
processed a bounded number of symbols at a time, without
the need to store arbitrarily large encodings of configurations.

Given a deterministic Turing machine M let Σ be the
input alphabet, Σ ∪ {�} with � /∈ Σ the tape alphabet,
where � denotes the blank symbol, and Q the state set. To
represent the transitions of M we have a finite set of Turing
quintuples T ⊆ Q×(Σ∪{�})×(Σ∪{�})×{R, L, ∗, }×Q.
Each element (qi, a, b, m, qj) means that the current state
is qi, the tape head is on a cell containing the symbol a
and the next state is qj ; as part of the transition, the cell
contents a are replaced by b; if m = R then the tape head
moves to the adjacent cell to the right after the transition;
if m = L then the tape head moves towards the left; and if
m = ∗ then the tape head doesn’t move. No two different
quintuples share the same first two elements, which means
that the next state qj is uniquely determined by the current
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state qi and the current tape cell content a.

Each input of M is a finite string w ∈ Σ∗ not containing
the blank symbol. A configuration of M is an three-tuple
(u, q, av), meaning that the current tape contents are uav,
the tape head is pointing to a and the current state is q. We
only consider a left-bounded tape. So u ∈ (Σ ∪ {�})∗ left
of the tape head is finite, but av ∈ (Σ ∪ {�})ω is infinite
because the part of the tape to the right of the tape head is
infinite. It is convenient to arrange for the blank symbol to
act as a delimiter of the tape contents, in the sense that any
symbol to the right of a blank symbol is itself the blank
symbol. To this end, we modify M as follows: (1) Add a
new event µ to Σ to get a new alphabet Σ ′ := Σ ∪ {µ}; (2)
Replace each quintuple (q, a,�, m, q ′) with (q, a, µ, m, q′);
(3) For each quintuple (q,�, b, m, q ′) add a new one,
(q, µ, b, m, q′), without replacing (q,�, b, m, q ′).

Suppose the new Turing machine is M ′. Then M halts
on w ∈ Σ∗ if and only if M′ halts on w. Since halting
of M on w is undecidable, halting of M ′ on w is also
undecidable. The set of configurations of M ′ can be encoded
as a regular language Σ′∗QΣ′∗�, where the encoding of each
configuration ends with �. A string uqav� is interpreted as
meaning that the current state is q, the tape head is pointed to
a and the tape contents are uav�; if av is the empty string,
uq� means the tape head sits on the first cell containing
�. Henceforth, we use M to mean the corresponding M ′

(therefore Σ means Σ′ which contains the special event µ).
The new set of configurations is encoded as C := Σ∗QΣ∗�.
Two configurations u1a1q1b1v1, u2a2q2b2v2 are consecutive
if u2a2q2b2v2 is any one of the following strings:

1) u2a2q2b2v2 = u1q2a1b
′v1 if (q1, b1, b

′, L, q2) ∈ T
2) u2a2q2b2v2 = u1a1b

′q2v1 if (q1, b1, b
′, R, q2) ∈ T

3) u2a2q2b2v2 = u1a1q2b
′v1 if (q1, b1, b

′, ∗, q2) ∈ T
uaqbcv ∈ C is called a halting configuration if there is
no quintuple (qi, x, y, m, qj) ∈ T such that qi = q and x = b.

Proposition 3.2: Termination of CPLC is undecidable.
Proof: Consider an arbitrary deterministic Turing machine M
of the form described above. We first construct a language
encoding all pairs of consecutive configurations. Let Σ̂ be a
new alphabet such that there is a bijection

f : Σ ∪ {�} → Σ̂ ∪ {�̂} : σ 
→ f(σ) := σ̂

Let Q̂ be a new state set such that there is a bijection

g : Q → Q̂ : q 
→ g(q) := q̂

In a configuration uaqbv the critical information is the state
q, the contents of the cell pointed to by the tape head and
the position of the tape head. Two consecutive configurations
are different from each other only on the critical information.
Let

Ts := {qbq̂′b̂′|(q, b, f−1(b̂′), ∗, g−1(q̂′)) ∈ T }
T�

s := {q � q̂′b̂′�̂|(q,�, f−1(b̂′), ∗, g−1(q̂′)) ∈ T }

Ts encodes all possible changes of critical information after
a transition when the tape head does not sit on the leftmost
blank cell and remains stationary. For example, qb q̂′b̂′ de-
notes that the Turing machine makes a transition from state
q to state q′, meanwhile replacing b with b′ without moving
the tape head. We use q̂′ and b̂′ instead of q′ and b′ only for
the transliteration purpose. T �

s encodes changes of critical
information when the tape head sits on the leftmost blank
cell and remains stationary after a transition. Similarly, we
can encode changes of critical information when the tape
head moves left or right; or the Turing machine halts:

Tl := {aqbq̂′âb̂′|(q, b, f−1(b̂′), L, g−1(q̂′)) ∈ T }
T�

l := {aq � q̂′âb̂′|(q,�, f−1(b̂′), L, g−1(q̂′)) ∈ T }
Tr := {qbb̂′q̂′|(q, b, f−1(b̂′), R, g−1(q̂′)) ∈ T }
T�

r := {q � b̂′q̂′�̂|(q,�, f−1(b̂′), R, g−1(q̂′)) ∈ T }
Th := {qb|(�(qi, x, y, m, qj) ∈ T ) qi = q & x = b}
T�

h := {q � |(�(qi, x, y, m, qj) ∈ T ) qi = q & x = �}

Let

A := {σσ̂ ∈ ΣΣ̂|σ ∈ Σ & σ̂ = f(σ)}

Define the regular template language

LTM := A∗(Ts + Tl + Tr)A
∗ � �̂ + A∗(T�

s + T�
l + T�

r )

+Σ∗ThΣ∗ � +Σ∗T�
h

where LT stands for the Language of Transitions.

Notation: Given two sets X and Y with a bijection φ : X 
→
Y , we use X →φ Y to mean that each element x ∈ X is
replaced by φ(x) ∈ Y . Therefore, given a string s we use
s(X →φ Y ) to mean a new string s′ created by replacing
each symbol x in s with φ(x). For a set of strings W we
use W (X →φ Y ) to mean a new set of strings created by
performing the replacement operation on each string s ∈ W .
We use ĉ to mean c(Σ ∪ {�} →f Σ̂ ∪ {�̂}; Q →g Q̂). Let
ψ : C ∪ {ε} → C ∪ {ε} with

x 
→ ψ(x) :=
{

next configuration if x not halts
ε if x = ε or x halts

Then for each c ∈ C and k ∈ N+, ψk(c) is interpreted
as the kth consecutive configuration of c if no halting
configuration appears. Given two alphabets Σ, Σ ′ let
PΣ,Σ′ : Σ → (Σ ∩ Σ′)∗ be the natural projection.

Let Γ := Σ ∪ {�} ∪ Q and Γ̂ := Σ̂ ∪ {�̂} ∪ Q̂. We first
make some claims about LTM:

Claim 1: “LTM encodes all configurations of C”, i.e.

PΓ∪Γ̂,Γ(LTM) = Σ∗QΣ∗�

Claim 2: “LTM encodes all pairs of consecutive configura-
tions”, i.e.

(∀c ∈ C)(∃s ∈ LTM) PΓ∪Γ̂,Γ(s) = c & PΓ∪Γ̂,Γ̂(s) = ψ̂(c)
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Claim 3: “the next configuration is uniquely determined by
the current configuration”, i.e.

(∀s, s′ ∈ LTM) s = s′ ⇐⇒ PΓ∪Γ̂,Γ(s) = PΓ∪Γ̂,Γ(s′)

Let Σ̃ be a third alphabet such that there is a bijection

h : Σ ∪ {�} → Σ̃ ∪ {�̃} : σ 
→ h(σ) := σ̃

and Q̃ a third state set such that there is a bijection

p : Q → Q̃ : q 
→ p(q) := q̃

Let

B := {σσ̃|σ ∈ Σ & σ̃ = h(σ)}
D := {qbq̃b̃|b ∈ Σ & q ∈ Q & b̃ = h(b)& q̃ = p(q)}
F := {q � q̃�̃|q ∈ Q & q̃ = p(q)}

We construct another regular template language as follows:

LLM := B∗DB∗ � �̃ + B∗F

where LL stands for the Language of transLiteration. Let
Γ̃ := Σ̃ ∪ {�̃} ∪ Q̃. Then it is not difficult to show that

PΓ∪Γ̃,Γ(LLM) = C

In other words, LLM simply attaches to each encoding
c ∈ C of a configuration of M a copy c̃ which is obtained by
replacement operation c(Σ ∪ {�} →h Σ̃ ∪ {�̃}; Q →p Q̃).
Now we are ready to build a finite network of regular
languages to simulate the run of M on a given input w ∈ Σ∗.

We construct three nodes L1, L2 and L3 based on the
given (M, Σ∪{�}, w ∈ Σ∗). Let Σ1 := Γ∪Γ̂ be the alphabet
for L1, Σ2 := Γ∪Γ̃ for L2 and Σ3 := Γ̂∪Γ̃ for L3. The initial
configuration is q0w�, which means that the initial state is
q0, the tape content is w� and the tape head is located at the
left-hand cell (i.e. the first left symbol of w). For the given
initial configuration q0w� ∈ C, by Claims 1,3 there exists a
unique string s0 ∈ LTM ⊆ Σ∗

1 such that PΣ1,Γ(s0) = q0w�.
Let

N1 := LTM ⊆ Σ∗
1

N2 := LLM ⊆ Σ∗
2

W3 := LLM(Σ ∪ {�} →f Σ̂ ∪ {�̂}; Q →g Q̂)
∩P−1

Σ3,Σ1
(PΣ1,Σ3(N1)) ⊆ Σ∗

3

N3 := W3 ∪ (PΣ2,Σ3(N2) − PΣ3,Σ2(W3)) ⊆ Σ∗
3

For each configuration c ∈ C we use c̃ to denote
c(Σ ∪ {�} →h Σ̃ ∪ {�̃}; Q →p Q̃); By Claim 2 we have
that, for each string s ∈ N1, if we let c := PΣ1,Γ(s) then
PΣ1,Γ̂(s) = ψ̂(c). Furthermore, by Claim 3, s is uniquely
determined by c.

Now we define L2 := N∗
2 , L3 := N∗

3 , and let

L1 := PΣ1,Γ̂(s0)N∗
1

Figure 2 depicts the network structure of {L1, L2, L3}.
After applying CDCP on {L1, L2, L3}, we can show that

Fig. 2. Graph Gr of {L1, L2, L3}

the Turing machine M halts on the initial input w if and
only if CDCP terminates on the initial set {L1, L2, L3}.
Since the (revised) Turing machine halting problem is
undecidable, the termination of CDCP is also undecidable,
as required. �

Corollary 3.1: The termination of CPLC is undecidable.
Proof: Follows directly from Propositions 3.1 and 3.2. �

Corollary 3.2: It is undecidable whether the supremal
local support corresponding to an arbitrary collection of
regular initial languages is componentwise empty.
Proof: Let L1, L2 and L3 be constructed as in Proposition
3.2. If Turing machine M halts on the given input w, then
CDCP terminates at a finite round k such that (by Proposition
3.2) Lk

1 �= ∅, Lk
2 �= ∅, Lk

3 �= ∅. By Proposition 2.10 in [11],
{Lk

1 , L
k
2 , L

k
3} is the supremal local support of {L1, L2, L3}.

If M does not halt then there is a monotonically decreasing
sequence of regular languages for every local component.
Therefore, the set-theoretic limit for each sequence exists.
Fix i ∈ I . If the Turing machine does not halt, then by the
proof of Proposition 3.2, the minimum length of strings in
Lk

i is a strictly increasing function of k. But the languages
Lk

i contain only finite-length strings, so the intersection of
the infinite sequence of Lk

i must be empty. Thus the limit
language is empty. Let {Ei ⊆ Li|i = 1, 2, 3} be the supremal
local support. Then by the proof of Lemma 2.3 in [11] we
have

(∀k ∈ N)(∀i = 1, 2, 3)Ei ⊆ Lk
i

Therefore, when M does not terminate, the collection
of empty limit sets is the supremal local support. Thus,
M terminates if and only if the supremal local support
is not componentwise empty. Since the halting of M is
undecidable, the corollary is true. �

Any computational procedure must employ some form
of finite representation of the supremal local support;
for example, each element in the local support may be
represented by a formal grammar, a Petri net, or a finite-state
automaton. Not every representation allows effective testing
of language emptiness in every instance; for example
the Turing machine emptiness problem is undecidable. A
representation of the supremal local support is effective
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if it admits a procedure for checking the emptiness of
component languages that terminates for any component
languages that are regular.

Corollary 3.3: There exists no algorithm that computes,
for every finite collection of regular initial languages, an
effective representation of the corresponding supremal local
support.
Proof: Notice that in the proof of Proposition 3.2, no matter
whether M halts or not, the supremal local support of L =
{L1, L2, L3} is componentwise regular. If the corollary does
not hold, then there exists an algorithm that computes an
effective representation of L which permits the testing of its
componentwise emptiness. By the proof of Corollary 3.2, we
can then decide whether M halts, contradicting the fact that
the halting of M is undecidable. Therefore the corollary must
be true. �

IV. CONCLUSION

In this paper we showed that the termination of CPLC
is undecidable even if initial languages L are required to
be regular (and, by extension, if they are merely required
to belong to some larger language class). Consequently, in
practical applications we must either focus on a restricted
class of systems, whose structure guarantees the termination
of CPLC [11], or achieve an approximate result by stopping
CPLC without convergence. For the latter case, the quan-
tification of the tradeoff between computational effort and
accuracy is an interesting and challenging problem. Future
reports will address the former problem by providing new
sufficient conditions for termination. Finally, we also showed
that there is no algorithm that computes, for every finite
collection of regular initial languages, a representation of
the supremal local support that allows effective emptiness-
checking of any regular component languages.
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