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Abstract— For two-dimensional linear time-invariant (LTI)
systems which are not stabilizable via a single static output
feedback, we propose a hybrid stabilization strategy based on a
geometric method. More precisely, we design two static output
feedback gains and a switching law between the feedback gains
so that the entire closed-loop system is asymptotically stable.
The proposed switching law is composed of output-dependent
switching and time-controlled switching. We demonstrate the
design method with various examples, and show that in some
cases the stabilizability depends on the region of the initial
state, while in other cases the system is globally stabilizable.

Index Terms—Two-dimensional LTI system, static output
feedback, hybrid stabilization, asymptotic line, switching line,
output-dependent switching, time-controlled switching.

I. INTRODUCTION

Consider the linear time-invariant (LTI) control system
described by equations of the form{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) ,

(1.1)

where x ∈ �n is the state, u ∈ �m is the control input,
y ∈ �p is the measurement output, and A, B, C are constant
matrices of suitable dimensions. We assume that the triple
(A,B, C) is controllable and observable. The stabilization
problem of the system (1.1) via a single static output
feedback has been studied exhaustively; see the survey
paper [1] and the references cited therein. However, when
the system (1.1) is not stabilizable via a single static output
feedback, it is necessary to consider hybrid stabilization
method, where a family of static output feedbacks should be
included. In the following, we present a motivation example,
which was also discussed in [2], [3], [4].

Motivation Example. Consider the harmonic oscillator
model with position measurement described by⎧⎪⎪⎨

⎪⎪⎩

[
ẋ1

ẋ2

]
=

[
0 1
−1 0

] [
x1

x2

]
+

[
0
1

]
u

y = [1 0]
[

x1

x2

]
.

(1.2)

Although the above system is both controllable and ob-
servable, it cannot be stabilized by a single static output
feedback [2]; however, it is stabilizable by a hybrid static
output feedback [2], [3]. By letting u = −y and u = 1

2y,
we obtain the following two systems, respectively,[

ẋ1

ẋ2

]
=

[
0 1
−2 0

] [
x1

x2

]
(1.3)

[
ẋ1

ẋ2

]
=

[
0 1
− 1

2 0

] [
x1

x2

]
. (1.4)

Define V (x)
�
= x2

1 + x2
2. If the system (1.3) is active in the

first and third quadrants, while the system (1.4) is active
in the second and fourth quadrants, we will have V̇ < 0
whenever x1x2 �= 0, which implies that the entire switched
system is asymptotically (and hence, for linear systems,
exponentially) stable by LaSalle’s Principle (e.g., [5]). �

We observe from the above example that when the system
(1.1) is not stabilizable by a single static output feedback,
it is possible to find a hybrid static output feedback,
which is composed of a family of static output feedback
controllers and a switching strategy determining which
controller should be activated at every instant. There are
several existing results concerning such hybrid static output
feedback stabilization problem. In [6], it has been shown
that if the system (1.1) is controllable and observable, then
it admits a stabilizing hybrid output feedback that uses a
countable number of discrete states. In [2] as well as [3], the
question is proposed whether it is possible to stabilize the
system (1.1) by a hybrid static output feedback with a finite
number of discrete states. Several specific examples that are
included in [2] suggest that the answer to this question may
be affirmative, and a sufficient condition based on multiple
Lyapunov functions is derived in [3].

In [7], the control problem is considered for two-
dimensional LTI systems which are described by the con-
trollable canonical form

A =
[

0 1
b a

]
, B =

[
0
1

]
, C = [1 0] , (1.5)

where a, b ∈ �, and a ≥ 0. It is easy to confirm that
although the system (1.1) with (1.5) is both controllable
and observable, we can not stabilize this system by a
single static output feedback. For this case, a complete
solution is presented in [7] for the hybrid static output
feedback stabilization problem, which is composed of two
important contributions. The first one is to prove that the
hybrid control problem for the system (1.1) with (1.5) is
solvable, and the second one is to design such a hybrid static
output feedback with the number of necessary static output
feedbacks being two. That is, we can always construct a 2-
state static output feedback to asymptotically stabilize the
system (1.1) with (1.5). It is noted that the approach in [7]
is based on the so-called conic switching law [8].

We observe that although A and B in (1.5) are general
in controllable canonical form, C is not in general form. In
fact, we can find other cases of C where the system is not
stabilizable by a single static output feedback (for example,
the case of C = [0 1]). Based on this observation, in
this paper, we extend our attention to the general case of
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the output matrix C by considering the coefficient matrices
described as

A =
[

0 1
b a

]
, B =

[
0
1

]
, C = [c d] , (1.6)

where a, b, c, d ∈ �. To ensure that the hybrid static output
feedback stabilization problem is meaningful, we need to
impose some conditions on the values of these scalars. This
will be done precisely in the next section.

For the system (1.1) with (1.6), we propose a hybrid
stabilization strategy which is different from the conic
switching law based one in [7]. We first characterize the
divergence patterns of the closed-loop system when a single
static output feedback gain is used, by dividing them into
three patterns. If the initial state is in the fourth (or second)
quadrant, we design two feedback gains so that two asymp-
totic lines are obtained in the fourth (or second) quadrant,
choose two switching lines inside the area surrounded by the
asymptotic lines, and then switch between the two feedback
gains using the switching lines. If the initial state is not
in the fourth (or second) quadrant, we design one of the
two feedback gains so that the system state will enter the
fourth (or second) quadrant when activating the feedback
gain. As can be seen precisely later, the proposed switching
law is composed of output-dependent switching and time-
controlled switching. Since the initial state is not available
in static output feedback stabilization problem, we use the
output information to measure the time instant when the
system state reaches the line y = 0. After that, we use
a time-controlled switching. i.e., activate the two feedback
gains alternately with specified time intervals.

The rest of this paper is organized as follows. In Section
II, we describe and categorize the control system (1.1) with
(1.6), so that the hybrid stabilization problem is meaningful.
In Section III, we give precise descriptions on the hybrid
stabilization method with necessary proof. The main idea
is to characterize the divergence patterns of the closed-loop
system when a single static output feedback gain is used.
Section IV gives various simulation examples to illustrate
the hybrid stabilization method. Finally, we make some
concluding remarks in Section V.

II. PROBLEM DESCRIPTION

Since we deal with hybrid stabilization of the systems
which are not stabilizable by a single static output feedback,
we need to impose some conditions on the values of a, b, c, d
in (1.6). First, the closed-loop system composed of the
system (1.1) with (1.6) and any static output feedback
u = ky is

ẋ = (A + kBC)x =
[

0 1
b + kc a + kd

]
x . (2.1)

In the sequel, we categorize the system under consideration
precisely.

1) Case of cd = 0: In this case, we further consider the
following three subcases.
1–1) c = d = 0: It is a trivial case since C = 0.
1–2) c = 0, d �= 0: Without loss of generality, assume
c = 0, d = 1. The characteristic equation of the

closed-loop system (2.1) is s2 − (a + k)s − b = 0 ,
and thus the system is stable if and only if

a + k < 0, b < 0 . (2.2)

Since k is the feedback gain we can choose, we
assume b ≥ 0 so that the condition (2.2) can not be
satisfied with any k.
1–3) c �= 0, d = 0: Without loss of generality,
assume c = 1, d = 0. Although this case has been
considered in [7], we do not exclude it for integrity.
The characteristic equation of the closed-loop system
(2.1) is s2 − as − (b + k) = 0 , and thus the system
is stable if and only if

a < 0, b + k < 0 . (2.3)

Then, we assume a ≥ 0 so that the condition (2.3)
can not be satisfied with any k.

2) Case of cd > 0: The characteristic equation of the
closed-loop system (2.1) is s2−(a+kd)s−(b+kc) =
0 , and thus the system is stable if and only if

a + kd < 0, b + kc < 0 . (2.4)

It is easy to confirm that since cd > 0, we can
always find a scalar k such that (2.4) is satisfied.
More precisely, when c > 0, d > 0 choose k = −M ;
when c < 0, d < 0 choose k = M , where M is a
sufficiently large scalar. Therefore, the system (1.1)
with (1.6) can be stabilized by a single static output
feedback, and thus this case is not considered in this
paper.

3) Case of cd < 0: Without loss of generality, assume
cd = −1. In this case, we further consider the fol-
lowing two subcases (other subcases can be reduced
to these ones).
3–1) c = 1, d = −1: The characteristic equation of
the closed-loop system (2.1) is

s2 − (a − k)s − (b + k) = 0 , (2.5)

and thus the system is stable if and only if

a < k < −b . (2.6)

For the same reason as before, we assume a ≥ −b .
3–2) c = −1, d = 1: The characteristic equation of
the closed-loop system (2.1) is

s2 − (a + k)s − (b − k) = 0 , (2.7)

and thus the system is stable if and only if

b < k < −a . (2.8)

For the same reason as before, we assume b ≥ −a.
However, the above two subcases can be dealt with
in the same setting by replacing k with −k in the
conditions. Thus, we only consider the first subcase.

To summarize, we deal with the following three cases in
this paper.

Case A c = 0 , d = 1 , b ≥ 0 ;
Case B c = 1 , d = 0 , a ≥ 0 ;
Case C c = 1 , d = −1 , a ≥ −b .
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III. HYBRID STABILIZATION METHOD

In this section, we present a geometric method for hybrid
static output feedback stabilization of the system (1.1)
with (1.6) in the cases we summarized in the previous
section. We first analyze the divergence patterns of the state
trajectory when a single feedback gain is used, and then
describe our hybrid stabilization method precisely with part
of stability proof.

A. Divergence patterns of state trajectory with single gain

We fix the feedback gain k in the closed-loop system
(2.1) to investigate how the state trajectory diverges.

(i) When the characteristic equation of the closed-loop
system has complex solutions λ ± µi (λ > 0, µ > 0), the
state is computed as{

x1(t) = C1e
λt sin(µt + C2)

x2(t) = C3e
λt sin(µt + C4)

(3.1)

where C1, C2, C3, C4 are real constants, and the state
trajectory diverges in the clockwise direction around the
origin. Fig. 1 shows this case where the closed-loop system

matrix is

[
0 1
−2 1

]
and the initial state is [10 10]T .

x1

x
2

Fig. 1. Divergence pattern (i)

(ii) When the characteristic equation of the closed-loop
system has real solutions −α, β (α > 0, β > 0), the state
is computed as{

x1(t) = C1e
−αt + C2e

βt

x2(t) = −αC1e
−αt + βC2e

βt
(3.2)

where C1, C2 are constants, and the state trajectory diverges
in the counterclockwise direction. Further, we obtain

lim
t→−∞

dx2

dx1
= −α, lim

t→∞
dx2

dx1
= β (3.3)

which imply that two asymptotic lines x2 = −αx1 and
x2 = βx1 exist. Fig. 2 shows the divergence in this case

with the closed-loop system matrix

[
0 1
2 1

]
and various

initial states.
(iii) When the characteristic equation of the closed-loop

system has real solutions α, β (0 < α < β), the state is
computed as{

x1(t) = C1e
αt + C2e

βt

x2(t) = αC1e
αt + βC2e

βt
(3.4)

x
2

x1

Fig. 2. Divergence pattern (ii)

where C1, C2 are constants, and the state trajectory diverges
in the counterclockwise direction. Similarly, we obtain

lim
t→−∞

dx2

dx1
= α , lim

t→∞
dx2

dx1
= β (3.5)

which define two asymptotic lines. Fig. 3 shows the di-
vergence in this case with the closed-loop system matrix[

0 1
−2 3

]
and various initial states.

x1

x
2

Fig. 3. Divergence pattern (iii)

B. Reachable divergence patterns in Cases A, B and C

Since the main idea in this paper is to connect the
divergent state trajectories, obtained in different patterns, so
as to get an entirely convergent trajectory, we here discuss
which divergence pattern can be reached in the cases we
summarized in the end of Section II.

1) Case A: In this case, c = 0 , d = 1 , b ≥ 0. To study
the solution of the characteristic equation s2−(a+k)s−b =
0, we consider the function f(x) = x2−(a+k)x−b. Since
f(0) = −b ≤ 0, we see that the characteristic equation has
a positive solution and a negative one (when b = 0, the
solutions are s = 0, a+k). Thus, no matter how we choose
the feedback gain, we can only reach the divergence pattern
(ii).

2) Case B: In this case (c = 1 , d = 0 , a ≥ 0),
we consider the function f(x) = x2 − ax − (b + k). The
necessary and sufficient condition for f(x) = 0 to have
complex solutions is

(−a)2 + 4(b + k) < 0 ⇐⇒ k < −a2

4
− b . (3.6)

Thus, if we choose k such that (3.6) is satisfied, the
divergence pattern (i) is obtained. If we choose k > −b,
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then the divergence pattern (ii) is obtained, and if we choose
−a2

4 − b ≤ k < −b (when a > 0), the divergence pattern
(iii) is obtained. Thus, in Case B, it is possible to reach all
the three divergence patterns.

3) Case C: In this case (c = 1 , d = −1 , a ≥ −b),
we consider the function f(x) = x2 − (a − k)x − (b + k).
The necessary and sufficient condition for f(x) = 0 to have
complex solutions is

(a − k)2 + 4(b + k) < 0 (3.7)

or equivalently,

(k − (a − 2))2 + 4(a + b − 1) < 0 . (3.8)

Thus, when 0 ≤ a+ b < 1, we can choose k such that (3.8)
is satisfied and thus obtain the divergence pattern (i). Using
similar discussion as in Case B, it is not difficult to show
that whether a + b < 1 is satisfied or not, the divergence
patterns (ii) and (iii) can always be reached.

To summarize, the reachable divergence patterns in Cases
A, B and C are:

Case A: c = 0 , d = 1 , b ≥ 0
=⇒ Divergence pattern (ii);

Case B: c = 1 , d = 0 , a ≥ 0
=⇒ Divergence patterns (i), (ii) and (iii);

Case C(1): c = 1 , d = −1 , 0 ≤ a + b < 1
=⇒ Divergence patterns (i), (ii) and (iii);

Case C(2): c = 1 , d = −1 , 1 ≤ a + b
=⇒ Divergence patterns (ii) and (iii).

C. Hybrid stabilization method

The hybrid stabilization method in this paper is motivated
by two important observations. The first one is that no
matter which pattern of (i), (ii) and (iii) is chosen, if starting
in the fourth (or second) quadrant, the value of x1 decreases
and moves towards the origin. The second observation is
that in the divergence patterns (ii) and (iii), there are two
asymptotic lines and the state diverges to +∞ or −∞ along
the asymptotic lines.

Based on these observations, we propose the following
hybrid stabilizing method (Fig. 4 gives the illustration) :

• Design two asymptotic lines in the fourth (or second)
quadrant by choosing two approapriate gains.

• Set two switching lines inside the conic area which the
two asymptotic lines surround in the fourth (or second)
quadrant.

• Activate the appropriate feedback gain to drive the ini-
tial state into the area surrounded by the two switching
lines in the fourth (or second) quadrant.

• Switch to another gain if the system state intersects
one of the switching lines, and repeat the procedure.

In the above procedure, we used the system state to
describe the switching method. However, since static output
feedback stabilization is considered in this paper, state
information is not available directly. The initial state is not
known either. For this reason, we here propose an output-
dependent switching together with a time-controlled switch-
ing method. From any starting point, we first activate one
static output feedback so that the state trajectory intersects

0

x1
xm

x2
k2

k1

xs

x0

x
2

x1

Asymptotic Line

Switching Line

Fig. 4. Illustration of the switching method

y = Cx = 0. This is possible since y is measurable. Then,
we continue the same feedback gain until the trajectory hits
the first switching line. The switching at this stage is output-
dependent. Hereafter, we use the procedure in the previous
paragragh to proceed. The switching then is indeed time-
controlled since we can compute exactly the activation time
between the two switching lines using their slopes for the
corresponding feedback gains.

Let us use Fig. 4 again to describe the idea more
precisely. We choose two asymptotic lines (the hyphenated
lines) x2 = −α1x1, x2 = −α2x1 (α1 > α2 > 0),
and then choose two switching lines (the dotted lines)
x2 = −α′

1x1, x2 = −α′
2x1 inside the area surrounded by

the two asymptotic lines, where α1 > α′
1 > α′

2 > α2 > 0.
Suppose that we have used the output-dependent switching
method to drive the initial state to hit the first switching line
on xs. Now, we activate the first feedback gain k1 (suppose
the corresponding closed-loop system matrix is Ak1 ) until
it reaches another switching line on xm. Note that the time
interval from xs to xm is determined by the slopes of the
switching lines, not dependent on xs or xm. From then on,
we activate the feedback gain k2 to drive xm to x0, and
then activate the feedback gain k1 to drive x0 to x1, and
so on. As can be seen later, the time interval for the system
trajectory to go from one switching line to another can be
computed exactly. Thus, we use the time intervals (NOT
the system state) to determine when to switch to another
feedback gain. To summarize, the switching method before
the system state reaches y = Cx = 0 is output-dependent,
and the switching method after that is time-controlled.

Now, we discuss the convergence of the system state.
Assume that the points’ coordinates in Fig. 4 are
x0(x10,−α′

1x10), x1(x11,−α′
2x11) and x2(x12,−α′

1x12).
If we can show |x2| < |x0|, then repeating the procedure
leads to exponential convergence of the system state.

First, let us see the trajectory x0(x10,−α′
1x10) →

x1(x11,−α′
2x11). Without loss of generality, we set the

time instant at x0 as t = 0. Since it corresponds to the
asymptotic line x2 = −α1x1, we obtain{

x1(t) = C1e
−α1t + C2e

β1t

x2(t) = −α1C1e
−α1t + β1C2e

β1t .
(3.9)
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Since the initial state is x0(x10,−α′
1x10),{

x1(0) = C1 + C2 = x10

x2(0) = −α1C1 + β1C2 = −α′
1x10

(3.10)

is true. Therefore,

C1 =
α′

1 + β1

α1 + β1
x10, C2 =

α1 − α′
1

α1 + β1
x10 . (3.11)

Denote by t1 the time interval for the system trajectory to
go from x0 to x1, which requires x2(t1) = −α′

2x1(t1).
Substituting these equations into (3.9) leads to

−α1C1e
−α1t1 + β1C2e

β1t1 = −α′
2C1e

−α1t − α′
2C2e

β1t

=⇒ e(α1+β1)t1 =
α1 − α′

2

α′
2 + β1

C1

C2
=

α1 − α′
2

α′
2 + β1

α′
1 + β1

α1 − α′
1

=⇒ t1 =
1

α1 + β1
ln

(
α1 − α′

2

α′
2 + β1

α′
1 + β1

α1 − α′
1

)
. (3.12)

Then, using the obtained t1, x11 is computed as

x11 = x1(t1) = C1e
−α1t1 + C2e

β1t1

= (C1 + C2e
(α1+β1)t1)e−α1t1

=
(

α′
1 + β1

α′
2 + β1

) β1
α1+β1

(
α1 − α′

2

α1 − α′
1

) −α1
α1+β1

x10 . (3.13)

Similarly, the time interval t2 for the trajectory to go from
x1(x11,−α′

2x11) to x2(x12,−α′
1x12) is computed as

t2 =
1

α2 + β2
ln

(
α2 − α′

1

α′
1 + β2

α′
2 + β2

α2 − α′
2

)
(3.14)

and x12 is

x12 =
(

α′
2 + β2

α′
1 + β2

) β2
α2+β2

(
α2 − α′

1

α2 − α′
2

) −α2
α2+β2

x11 . (3.15)

Note that t1 and t2 are computed by using the system data
and the slopes of the switching lines. This implies that
the time interval for the system trajectory to go from one
switching line to another is constant, and that the proposed
hybrid stabilization method is practical.

To proceed, we need the following result.
Lemma. The following two inequalities hold.(

α′
1 + β1

α′
2 + β1

) β1
α1+β1

(
α1 − α′

2

α1 − α′
1

) −α1
α1+β1

< 1 (3.16)

(
α′

2 + β2

α′
1 + β2

) β2
α2+β2

(
α2 − α′

1

α2 − α′
2

) −α2
α2+β2

< 1 (3.17)

Proof. See Appendix. �

According to this lemma and the above discussions, we
obtain the following theorem.

Theorem. Under the proposed hybrid stabilization
method, |x2| < |x0|, and thus the system is exponentially
stable. �

IV. SIMULATION EXAMPLES

In this section, we present two simulation examples to
demonstrate the hybrid stabilization method proposed in the
previous section. Due to space limitation, we give examples
for Cases B and C.

A. Example for Case B: C = [1 0]
Although this case has been studied in [7], the approach

proposed in this paper is different from that used in [7]. For
comparison and integrity, we give an illustrative example.

We assume that a = 4, b = −13 in the system (1.1) with
(1.6) and the initial state is [x1 x2]T = [−10 10]T . In this
case, we can reach all the three divergence patterns. Since
it is preferrable to reach the divergence pattern (i) so as to
obtain global stabilizability, we choose one feedback gain
k such that the characteristic equation of the closed-loop
system has complex solutions. According to the previous
section, we should choose k satisfying (3.6). Substituting
a and b into (3.6) leads to k < 9. Here, we choose one
feedback gain k2 = −2. No matter where the initial state
is, we can always drive the system trajectory into the fourth
quadrant by activating this feedback gain.

Next, we design another feedback gain by reaching the
divergence pattern (ii). Analyzing the characteristic equation

s2 − as − (b + k) = (s + α)(s − β) = 0 , (4.1)

we obtain −a = α − β, b + k = αβ and thus

k = α2 + aα − b . (4.2)

Choose α = 4 to obtain the feedback gain k1 = 45. As
before, we further choose x2 = −2x1 and x2 = −0.5x1

as the switching lines. Fig. 5 depicts the convergence of
the system state in this case. Note that in this case the
available information for switching is y = [1 0]x = x1,
we have to drive the system’s initial state to x2-axis, where
x1 = 0 can be measured, and then use time-controlled
switching method. The precise switching time intervals can
be computed as described in the previous section, and are
thus omitted. �

x1

x
2

Fig. 5. Example for Case B

B. Example for Case C: C = [1 − 1]
Although there are two subcases in this case, for brevity

we give the example for the subcase where C = [1 − 1]
and 0 ≤ a + b < 1.

We assume that a = −2.7, b = 3.5, and the initial state is
[x1 x2]T = [10 15]T . As explained in the previous section,
we can choose one feedback gain so that the divergence
pattern (i) is reached and then design another feedback gain
to reach the divergence pattern (ii). For the former step, we
choose the gain k so as to satisfy (3.8), which turns out to

6915



be (k + 4.7)2 < 0.8. Thus, we choose k2 = −4.4 so that
no matter where the initial state is, we can always drive the
trajectory into the fourth quadrant. For the latter step, we
use the characteristic equation

s2 − (a − k)s − (b + k) = (s + α)(s − β) = 0 (4.3)

to obtain k = α2+aα−b
1+α . As before, we choose α = 4,

which requires the feedback gain be k1 = 0.34, and choose
x2 = −2x1 and x2 = −0.5x1 as the switching lines. Fig. 6
depicts the convergence of the system state in this case.
Note that in this case the available information for switching
is y = [1 − 1]x = x1 − x2, we have to drive the system’s
initial state to the line y = x1 −x2 = 0, and then use time-
controlled switching method. The precise switching time
intervals after that can be computed as described before. �

x
2

x1

Fig. 6. Example for Case C

V. CONCLUDING REMARKS

As an extension to the existing work [7], we have
considered a hybrid static output feedback stabilization
problem for general two-dimensional LTI systems. The
proposed hybrid stabilizing method is composed of two
static output feedback gains and a switching law. The main
idea is to characterize the divergence patterns of the closed-
loop system when a single static output feedback gain is
used, and then to design two feedback gains so that two
asymptotic lines are obtained in the fourth (or second)
quadrant. For benefit of robustness two switching lines are
designed inside the area surrounded by the two asymptotic
lines. We have used various examples to demonstrate the
hybrid stabilization method, and have shown that in some
cases the stabilizability depends on the region of the initial
state, while in other cases the system is globally stabilizable.
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APPENDIX

Proof of Lemma. First prove (3.16). Use α1β1 = b to
rewrite (3.16) as(

α1α
′
1 + b

α1α′
2 + b

) b

α2
1
+b

(
α1 − α′

2

α1 − α′
1

) −α2
1

α2
1
+b

< 1 . (A.1)

Furthermore, set α′
1 = pα1, α′

2 = qα1(0 < q < p < 1)
and α2

1 = z to rewrite the above inequality as(
pz + b

qz + b

) b
z+b

(
1 − q

1 − p

) −z
z+b

< 1 (A.2)

and equivalently,

b

z + b
ln

(
pz + b

qz + b

)
− z

z + b
ln

1 − q

1 − p
< 0 . (A.3)

If we introduce the function

f(z) = b ln
(

pz + b

qz + b

)
− z ln

1 − q

1 − p
(A.4)

and can show f(z) < 0, then (3.16) is true.
Differentiating f(z) with respect to z results in

f ′(z) =
b2(p − q)

(pz + b)(qz + b)
− ln

1 − q

1 − p
(A.5)

and

f ′′(z) = −b2(p − q)(pqz2 + b(p + q)z + b2)
(pz + b)2(qz + b)2

. (A.6)

Since b > 0, 0 < q < p < 1, we obtain f ′′(z) < 0 and that
f ′(z) is monotone decreasing.

Next, since

f ′(0) = p − q − ln
1 − q

1 − p

= (p + ln(1 − p)) − (q + ln(1 − q)) , (A.7)

we consider the function g(x) = x + ln(1 − x) on the
interval 0 ≤ x < 1. Due to g′(x) = − x

1−x ≤ 0, we obtain
that g(x) is also monotone decreasing, and g(x) ≤ 0 since
g(0) = 0. Thus, f ′(0) = g(p) − g(q) < 0 and f(z) is
monotone decreasing. Since f(0) = 0, we conclude that
f(z) ≤ 0. This completes the proof of (3.16).

The proof of (3.17) is easier. It is equivalent to(
α′

2 + β2

α′
1 + β2

) β2
α2+β2

(
α2 − α′

2

α2 − α′
1

) α2
α2+β2

< 1 . (A.8)

Using the fact of α1 > α′
1 > α′

2 > α2 > 0, β1 > 0, β2 >
0, we obtain easily that⎧⎪⎪⎨

⎪⎪⎩
0 <

α′
2 + β2

α′
1 + β2

< 1, 0 <
β2

α2 + β2
< 1,

0 <
α2 − α′

2

α2 − α′
1

< 1, 0 <
α2

α2 + β2
< 1 .

(A.9)

Then, according to the above inequalities, (A.8) can be
easily shown. �
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