
Abstract— In this paper, multiscale representation of data is 
utilized to reduce the collinearity problem often encountered in 
Finite Impulse Response (FIR) modeling. The idea is to 
decompose the input-output data at multiple scales, use the scaled 
signal approximations of the data to construct a FIR model at 
each scale, and then select among all scales the optimum 
estimated FIR model. The rationale behind this approach is that 
the number of significant cross correlation function (CCF) 
coefficients estimated using the scaled signal approximations of 
the input-output data decreases at coarser scales. This means that 
more parsimonious FIR models, with less collinearity and 
improved estimation accuracy, can be constructed at coarser 
scales. Of course, the estimation accuracy will deteriorate at very 
coarse scales. Therefore, it is very important to select the most 
appropriate scale for modeling purposes, which can be done by 
selecting the scale which results in the maximum prediction 
signal to noise ratio. The developed multiscale FIR modeling 
approach is shown to outperform existing methods, such as 
ordinary least squares (OLS) regression and ridge regression 
(RR).  

I. INTRODUCTION

NE of the most commonly used empirical models in 
control applications is the FIR model because of its 

ability to describe complex dynamical systems in simple 
model structures. However, a disadvantage of FIR models is 
the fact that they require a large number of parameters, 
which increases the collinearity (or redundancy in the model 
variables) which in turn increases the variance of estimated 
model parameters and degrades their accuracy.   

Many estimation techniques have been developed to solve this 
collinearity problem of FIR models, such the reduced-rank 
models and Ridge Regression (RR) model. The reduced-rank 
models include Principal Component Regression (PCR) and 
Partial Least Squares (PLS) regression [1-3], which use 
Singular Value Decomposition (SVD) to decrease the 
dimension of the input variables in order to create a better 
conditioned model and damp the variations of the FIR 
coefficients. RR, on the other hand, reduces the variations of 
FIR coefficients by imposing a penalty on the norm of their 
estimated values [3-5]. This penalty effectively shrinks the 
FIR coefficients towards zero by introducing a bias that makes 
the input covariance matrix full-rank.  
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Another challenge of constructing empirical models in general 
is the presence of measurement noise in the data due to 
malfunctioning sensors or random perturbations in the 
process.  The presence of such noise decreases the signal-to-
noise ratio (SNR) of the data, which can have a drastic effect 
on the accuracy of estimated models [6].  Therefore, 
measurement noise needs to be removed or filtered in order to 
improve the model accuracy. Unfortunately, errors as well as 
important features in the data usually have a multiscale 
character, i.e., span wide ranges in both time and frequency.  
For example, a sudden change in the data spans a wide range 
in the frequency domain and a narrow range in the time 
domain, and in contrary, a slow change spans a wide rang in 
the time domain and a narrow range in the frequency domain.  
However, most filtering techniques classify noise as high 
frequency features, and filter the data by retaining the features 
with frequency lower than a defined frequency cutoff.  Since 
multiscale data violate this basic assumption of conventional 
filters. Noise removal from such data becomes a difficult task. 
Thus, constructing models using multiscale data requires the 
representation of the data at multiple scales to account for 
their multiscale nature. 

Modeling at multiple scales has been previously shown to 
improve the accuracy of estimated models [6-10].  The author 
in [7] developed a multiscale Principle Component Analysis 
(MSPCA) approach that combines the ability of PCA to 
decorrelate measured variables with that of multiscale 
representation to decorrelate autocorrelated measurements.  
The developed MSPCA approach, which possesses improved 
noise-removal ability, is then used in process monitoring.  The 
authors in [6] showed that multiscale representation acts as a 
noise filter which reduces the effect of noise in the data on the 
estimated model accuracy.  Also, the authors in [8,9] used 
multiscale representation to shrink the variations in estimated 
FIR model coefficients. The author in [8] represented the OLS 
estimated FIR coefficients at multiple scales using wavelets 
and then used a recursive approach to select the set of wavelet 
coefficients (and shrink the unnecessary ones) to minimize a 
cross validation mean squares error.  The authors in [9], on the 
other hand, used multiscale representation to shrink 
measurement noise in the input variables before being used in 
modeling. 

The objectives of this paper are to present some of the 
advantages of constructing empirical process models at 
multiple scales, and to present a new multiscale method that 
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improves the estimation accuracy of FIR models.  One 
advantage is the ability of multiscale representation of data to 
separate important features from noise, which can improve the 
accuracy of estimated models. Another advantage is that the 
number of significant cross correlation function (CCF) 
coefficients relating the scaled signals of the input-output data 
decreases by half at coarser scales. The implication of this 
advantage is that more parsimonious FIR models can be 
constructed at coarser scales. These advantages are then used 
to develop a multiscale FIR (MSFIR) modeling algorithm, 
which helps improve the accuracy of estimated FIR models by 
reducing the effect of collinearity on their estimation.  

The rest of the paper is organized as follows. In Section II, the 
FIR model representation and some of its estimation 
techniques are described. Then, in Section III, an introduction 
to wavelet-based multiscale representation of data is 
presented, followed by a description of some of the 
advantages of this representation in empirical process 
modeling. Then, in Section IV, the formulation and algorithm 
of MSFIR modeling are presented, followed by an illustrative 
example to show and compare the performance of MSFIR 
modeling to those of existing methods in Section V. Finally, in 
Section VI, the paper is concluded with few remarks.  

II. INTRODUCTION TO FIR MODELING

Consider the process input data, n21k u,...,u,uu ,
which are assumed to be noise-free, and measurements of the 
process output data, n21k y,...,y,yy , which are 
assumed to be contaminated with additive zero mean Gaussian 
noise, i.e., 

,ey~y kkk           (1)                                                                                
where, ky~  and ke  are the noise-free output and the additive 
noise at time step k.  If it is assumed that the linear FIR model 
has the following form, 

m

1i
kikik ,euh~y        (2)                                                                   

it is desired to estimate the noise-free process impulse 

response or FIR model coefficients, m21 h~,...,h~,h~~h .
The FIR model shown in equation (2) can be written in matrix 
notation as follows, 

ehUY ~
           (3) 
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Many techniques have been developed to solve this modeling 
estimation problem, which include OLS (Ljung, 1987), in 
which the output prediction error is minimized, and have the 
following closed form solution, 

.ˆ
OLS YUUUh T-1T       (4) 

However, inverting the input covariance matrix becomes 
problematic in the case of collinearity, which increases the 
variance of the estimated model parameters and increases the 
uncertainty about their estimation. RR, on the other hand, 
improves the estimation accuracy of model parameters by 
imposing a penalty of their magnitude, and has the following 
closed form solution [3-5], 

YUIUUh TT -1
RR

ˆ .    (5) 
RR is very popular, but a Bayesian interpretation of RR [11] 
shows that RR shrinks the estimated FIR coefficients toward 
zero in order to damp their large variations, which is not very 
rigorous because it is known that the mean of the FIR 
coefficients is not zero. 

III. MULTISCALE DATA REPRESENTATION

A proper way of analyzing multiscale data requires their 
representation at multiple scales. A signal can be represented 
at multiple resolutions by decomposing it on a family of 
wavelets and scaling functions. For example, the signals in 
Figures 1-(b, d, and f) are at increasingly coarser scales 
compared to the original signal in Fig. 1(a).  
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Fig. 1. A schematic diagram of data representation at multiple 
scales.

These scaled signals are determined by projecting the original 
signal on a set of orthonormal scaling functions. On the other 
hand, the signals in Figures 1-(c, e, and g), which are called 
the detail signals, capture the details between the scaled signal 
at particular scale and the scaled signal at the finer scale.  
These detail signals are determined by projecting the signal on 
a set of basis functions called wavelets. Therefore, the original 
signal can be represented as the sum of all detail signals and 
the last scaled signal as, 

L jn2

1k

L

1j

n2

1k
kjkjLKLK tdxtxtx    (6)    
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where, j, k, L, and n are the dilation parameter, translation 
parameter, maximum number of scales or decomposition 
depth, and the length of the original signal, respectively. Fast 
wavelet transform algorithms of O(n) complexity for a 
discrete signal of dyadic length have been developed [12]. 

Just as an example to introduce some terminology, if a discrete 
signal, oY , of length “n” in the time domain (i.e., 0j ) is 
defined as, 

T
ooooo ny.(k)y.(2)y(1)yY ,    (7) 

then, the scaled signal approximation of oY  at scale (j), 

which will be denoted by jY   will be written as, 
Tj

jjjjj )]n/2(y.(k)y.(2)y(1)y[Y .  (8)  

This decomposition algorithm is batch, i.e., requires the 
availability of the entire data set beforehand.  An on-line 
wavelet decomposition algorithm has also been developed 
and used in data filtering [13]. 

IV. MULTISCALE MODELING

A. Advantages of Modeling at Multiple Scales 
One advantage of modeling at multiple scales is that smaller 
model structures (fewer number of FIR coefficients) are 
needed at coarser scales. This is because the cross correlation 
function (CCF) relating the scaled signal approximations of 
the input and output data shrinks (defined at less number of 
time lags) at coarser scales.  To illustrate this phenomenon of 
CCF shrinkage at multiple scales, the CCF is compared at 
different scales (using the Haar filters) as shown in Figure 2 
for a simulated data representing the following Moving 
Average MA(4) model, 

4i3i2i1iii u0.3u0.5u0.7u0.8u0.9y   (9)
where the input is a pseudo-random binary sequence (PRBS) 
changing between -1 and 1. Figure 2 clearly shows that the 
number of important CCF coefficients decreases by half at 
every subsequent coarser scale. This observation, which is 
attributed to down-sampling, will be helpful to improve the 
parsimony and thus reduce the collinearity of FIR models at 
coarser scales. 
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Fig. 2. The behavior of the CCF of the scaled input-output 
signals at multiple scales using Haar. 

Another advantage of multiscale representation of data is its 
ability to reduce the noise content in measured data through 
the application of low-pass and high pass filters derived from 
the scaling and wavelet basis functions.   
The noise reduction can be verified by comparing the SNR 
of the scaled signals at different scales.  Theoretically, the 
SNR at any scales can be computed as follows, 

jj

j

yy

y
jSNR ~var

~var
,         (10) 

where jy~ , is the noise free scaled signal representation of 

the data at scale j . It can be easily shown through 
empirical simulation that the SNR of the scaled signals 
peaks at some intermediate scale, which can be explained as 
follows.  At very fine scales, high frequency noise gets 
filtered out, which decreases the noise content and increases 
the SNR. However, at very coarse scales, important features 
start getting removed, which decreases the signal content 
and decreases the SNR.  Therefore, there is an intermediate 
scale at which the SNR peaks. This observation is very 
useful in selecting the optimum modeling scale. 

B. Multiscale FIR Modeling 
In this section, the observation of CCF shrinkage is exploited 
to construct more parsimonious FIR models. The idea is that 
since the number of significant CCF coefficients decreases by 
half at every subsequent coarser scale, smaller and smaller 
FIR models with less collinearity can be constructed at coarser 
scales. However, there will be an intermediate scale at which 
the quality of FIR model is best because at very coarse scales, 
the FIR model size becomes too small.  Therefore, it is 
important to select the optimum scale for model estimation, 
which can be done by picking the scale at which the SNR of 
the model prediction is a maximum.   

Assume that the cross correlation function of the time domain 
input and output data has "p" significant coefficients.  Then, 
the time-domain FIR model should also have "p" coefficients 
i.e.,

p

1i
iko,io,ko, uhy ,       (11)                          

where, the subscripts "k", "o", and "i" denote the kth data 
sample (where, n...,,2,1k ), scale zero (time domain 
scale), and the ith FIR model parameter (where, 

p...,,2,1i ). Since the number of significant CCF 
coefficients decreases by half at every coarser scale, a FIR 
model of length (p/2) parameters is needed at the first scale, 
i.e.,

p/2

1i
ik1,i1,k1, uhy .       (12) 
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Similarly, the FIR model relating the scaled signal data at the 
second scale will have half the number of FIR model 
parameters at the first scale (i.e., p/4), and therefore, the 
second scale model cab be written as, 

p/4

1i
ik2,i2,k2, uhy .      (13) 

Generalizing the above models to any scale (j), the FIR model 
at scale (j) will need only (p/2j), and thus the jth scale FIR 
model can be written as, 

jp/2

1i
ikj,ij,kj, uhy .      (14) 

Note the estimated multiscale FIR model at any scale can not 
be directly used in the time domain because it relates the 
scaled signal approximations of the input-output data, and not 
the time domain data.  To get an equivalent time-domain FIR 
model to that estimated at any scale (j), the following can be 
done. First, compute the scaled signal of an impulse function 
at scale j. Then, apply the decomposed impulse function as an 
input to the estimated MSFIR model at scale (j). The resulting 
output is the scaled signal approximation of the process 
impulse response at scale (j). Finally, reconstruct the model 
output obtained earlier to the time domain to get the time-
domain equivalent of the FIR model parameters estimated at 
scale (j). 

C. Multiscale FIR (MSFIR) Modeling Algorithm 
Based on the above formulation, the following MSFIR 
modeling algorithm is proposed: 

1. Compute the cross correlation function for the 
available input-output data set, and determine its 
settling length, (p). 

2. Using the time domain data, estimate an FIR model of 
length "p", and compute the SNR of its prediction as 
follows, 

yyySNR ˆvar/ˆvar
3. Compute the scaled signals for the input and output 

data at multiple scales, and at each scale (j) construct a 
FIR model of length jp/2  using OLS regression and 
compute the predicted output SNR as above. 

4. Choose the multiscale FIR model with highest SNR as 
the optimum MSFIR model. 

5. Compute the time-domain equivalent of the estimated 
MSFIR as described earlier at the end of subsection B. 

V. ILLUSTRATIVE EXAMPLE

In this section, the performance of the MSFIR approach 
described in Section III is illustrated and compared to those of 
some of the existing methods, such as OLS and RR.  In this 
example, the various techniques are compared by computing 
the mean squared errors of the estimated FIR model 
parameters with respect to their true noise-free values, i.e., 

2m

1i
ii h~ĥ

m
1MSE         (15)                          

where ĥ  and h~  are the estimated and noise-free FIR model 
parameter vectors, respectively, and the estimated process 
gain, i.e.,

          .ˆ
1

m

i
ihG              (16)                          

The process used in this simulation has the following second 
order plus dead time (SOPDT) model [14]: 

,
1s31s5

e5
sU
sY 4s

        (17)                          
which when discretized using a sampling interval of 0.2 min, 
has an impulse response with a settling time of around 250 
sampling intervals as shown in Figure 3. The discretized 
process model is used to generate data by applying a 2000-
sample PRBS input signal to the process model to give noise-
free output, which is then contaminated with additive zero 
mean Gaussian noise. Different levels of noise contents 
(standard deviations of 0.1, 0.5, and 1) have been used to test 
the robustness of the MSFIR algorithms. Fig. 4 shows a 
portion of the input and output data in which the standard 
deviation of the output noise is 0.5. 
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Fig. 3. The impulse response of the SOPDT process 
used in the illustrative example. 
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To statistically compare the performances of MSFIR with 
those of OLS and RR, a Monte Carlo simulation of 100 
realizations is performed for each noise level, and the results 
are summarized in Tables I, II, and III. Table I, which lists the 
MSE of estimated model parameters for the various methods, 
shows that for each noise level, there is a scale at which the 
estimated FIR model parameters have a smaller MSE than 
both OLS and RR. Also, the magnitude of improvement over 
OLS and RR is very clear for all noise contents.   

Table II, on the other hand, which lists the process gains 
estimated by the various methods, shows that the gains 
estimated by MSFIR and OLS are very close to the true 
process gain, and that RR is much worse even when its 
prediction is comparable to that of MSFIR, as in the case 
where noise standard deviation is unity. Also, Table III shows 
that the in most cases, the correct optimum scales (which also 
matched the minimum parameter MSE) were selected by 
maximizing the SNR of the model prediction. 

The improvement achieved by MSFIR can also be seen from 
Figure 5, which compares the estimated FIR model 
coefficients using RR and MSFIR at the optimum scale (scale 
3) for a noise standard deviation of 0.5. 
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Fig. 5. Comparison of the estimated MSFIR model at optimum scale (scale 3) 
with that obtained using RR, for the case where the noise standard deviation is 
0.5. 

Also, to show the advantage of constructing MSFIR models, 
the time-domain equivalents of the MSFIR models at the first 
five scales are compared in Figure 6, which shows that the 
accuracy of estimated models improves at coarser scales until 
an optimum scale (scale three in this case), after which it 
deteriorates. Here, scale three was selected as the optimum 
scale bases on the maximum SNR criterion, and as Figure 7 
shows, this scale also matches with the least parameter MSE. 
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Fig.  6. Comparison the estimated FIR coefficients at different  
scales for the case where the noise standard deviation is 0.5. 

TABLE I
COMPARISON OF THE PREDICTION MEAN SQUARE
ERRORS FOR THE VARIOUS MODELING METHODS 

( 410 )

Modeling 
Method 

1.0e 5.0e 1e

RR 0.41 1.8 2.2 
OLS 11 290 1200 

MSFIR (j=1) 1.30 39 160 
MSFIR (j=2) 0.150 1.3 20 
MSFIR (j=3) 0.45 0.54 1.54 
MSFIR (j=4) 1.70 1.8 1.89 
MSFIR (j=5) 4.50 4.6 4.4 

TABLE II
COMPARISON OF THE PROCESS GAINS ESTIMATED

BY THE VARIOUS MODELING METHODS
(TRUE VALUE = -5)

Modeling 
Method 

1.0e 5.0e 1e

RR -4.834 -4.328 -4.760 
OLS -5.001 -5.050 -4.981 

MSFIR (j=1) -4.999 -5.055 -4.981 
MSFIR (j=2) -5.005 -5.070 -4.981 
MSFIR (j=3) -5.0674 -5.129 -4.958 
MSFIR (j=4) -5.055 -5.086 -5.065 
MSFIR (j=5) -4.921 -5.017 -5.385

TABLE III
PERCENTAGES EACH SCALE SELECTED AS OPTIMUM

USING THE SNR CRITERION

Scale 1.0e 5.0e 1e

j=0 0 0 0 
j=1 0 0 0 
j=2 40 0 0 
j=3 60 80 0 
j=4 0 20 100 
j=5 0 0 0 

8166



0 1 2 3 4 5
0

50

100

150

scale
0 1 2 3 4 5

0

0.02

0.04

0.06
output SNR
FIR coeff. MSE

Fig. 7. Estimating the optimum scale as the maximum output  
SNR for the case where the noise standard deviation is 0.5. 

VI. CONCLUSIONS
The objective of this paper was twofold: it discussed some of 
the advantages of constructing empirical process models at 
multiple scales, and presented a new multiscale approach for 
estimating FIR models. One advantage of multiscale 
representation is that it helps separate measurement noise from 
important features in the data. This advantage reduces the 
effect of measurement errors on the accuracy of estimated 
models.  Another advantage of multiscale representation is the 
fact that the number of significant CCF coefficients relating 
the scaled signal approximations of the input-output data 
decreases by half at every subsequent coarser scale. These 
advantages are exploited to develop a multiscale FIR (MSFIR) 
modeling algorithm.  The developed algorithm estimates 
smaller (and thus less collinear) FIR models at multiple scales 
using the scaled signals of the input and output data. Then, 
from all scales, the model which results in the maximum 
prediction signal to noise ratio is selected as the optimum 
model. The performance of the developed MSFIR modeling 
algorithm is shown to outperform existing FIR model 
estimation methods, such as OLS and RR, through a simulated 
example. 
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