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Abstract— In this paper we propose a new approach to
spectral factorization of a class of matrix-valued spectral
densities. Our results are based on a recent necessary and
sufficient uniform log-integrability condition for the canonical
spectral factorization mapping to be sequentially continuous.
In particular, we derive a new set of easily verifiable sufficient
conditions for uniform log-integrability to hold. The proposed
approach does not require the spectral density to be coercive,
and the class to which it is applicable is reasonably large
as to include many spectral densities which are of interest
in applications. We also present a new spectral factorization
algorithm for scalar analytic spectral densities along with a
numerical example.

Index Terms— Spectral factorization, rational covariance ex-
tension, second order stochastic processes, rational approxima-
tion.

I. INTRODUCTION

It is known that a discrete-time second order wide sense
stationary (WSS) stochastic process with a power spectral
density (PSD), or simply a spectral density, satisfying a cer-
tain Szegö or Paley-Wiener condition can be modelled as the
output of a discrete time causal linear time invariant system
(i.e., a “shaping filter”) driven by white noise [18]. If the
spectral density is rational then determining a shaping filter is
possible by spectral factorization of the spectral density, and
there are practical algorithms to do this. In the case where the
spectral density is non-rational, obtaining a spectral factor is
much more difficult and explicit spectral factorization can
only be done in special cases. Apart from deriving shaping
filters to model WSS processes, spectral factorization plays
an important role in the theory of optimal and robust control.
A survey of spectral factorization methods for both rational
and non-rational spectral densities is given in [17].

In this paper, we develop an approach to spectral factoriza-
tion of non-rational spectral densities which is different from
the methods in [17]. The approach is based on construction
of a rational approximation of the spectral density and
obtaining an approximate rational shaping filter by spectral
factorization of the approximation. The question which arises
is whether the approximate canonical spectral factor (i.e., the
unique spectral factor which is positive at the origin) which
is obtained in this way will be a good approximation of the
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true canonical spectral factor. This question is equivalent to
asking whether the operation of taking canonical spectral
factors is continuous. It has recently been shown that such
an operation is sequentially continuous: Given a sequence
of spectral densities which converge to a limiting spectral
density (in the space of functions integrable on the unit
circle) then their canonical spectral factors will also converge
to that of the limiting spectral density if a uniform log-
integrability assumption is satisfied [2] (for a related result,
see also [7]).

Our approach takes advantage of this recent sequential
continuity result of [2] to show that if a sequence of rational
spectral densities converges to a limiting spectral density
then under a set of mild and verifiable conditions we can
guarantee uniform log-integrability and the convergence of
the canonical spectral factors of the sequence to the canonical
spectral factor of the limiting spectral density. Furthermore,
with the new results we propose an algorithm for approxi-
mate spectral factorization of analytic matrix-valued spectral
densities. The main advantage of the present approach, as
we shall see, is that it provides a mechanism for mitigating
the effect of zeros of the spectral density which are close to
or on the unit circle. It is known that numerous algorithms
which are based on the Schur method (see [17]) converge
slowly when the spectral density has zeros close to or on
the unit circle. This is due to slow decay of the so-called
Schur parameters [8]. Consequently, an approximate rational
spectral factor obtained via these algorithms can be of very
high degree.

The paper is organized as follows. In Section II we intro-
duce the main notation used throughout the paper and recall
some definitions and results from the literature. Following
that, in Section III we discuss a recent result on sequential
continuity of the spectral factorization mapping. In Section
IV we derive a new set of easily checkable sufficient condi-
tions for uniform log-integrability of a sequence of spectral
densities. In Sections V and VI we give the theoretical
foundation of a new approach to spectral factorization and
introduce a new algorithm. We also apply the algorithm to
a numerical example. Finally, in Section VII we give the
conclusions of this paper as well as directions for future
research.

II. MATHEMATICAL PRELIMINARIES

In this section we introduce the main notation which is
used throughout the paper, and also recall some definitions
and relevant results from the literature.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeC11.4

0-7803-9568-9/05/$20.00 ©2005 IEEE 5929



• R, C, D and T denote the set of real numbers, complex
numbers, the open unit disc= {z ∈ C : |z| < 1} and
the unit circle (the boundary of D), respectively.

• A∗ denotes the hermitian transpose of a matrix A.
• �{A} denotes the real part of a complex matrix A.
• N denotes the set of natural numbers 1, 2, 3, . . ..
• log c denotes the natural logarithm of c.
• A pseudopolynomial is a matrix-valued function f of

the form f(z) =
∑n

i=−m Aiz
i, where 0 ≤ m,n < ∞

and Ai ∈ C
l×l (l ∈ N) for i = −m, . . . , n.

• The ‖ · ‖p norm of a matrix A ∈ C
m×n is defined as

[2]:

‖A‖p =

{ (
tr

{
(A∗A)

p/2}) 1
p

if 1 ≤ p < ∞,

supv∈Cn,‖v‖≤1 ‖Av‖ if p = ∞.

• µ denotes the Lebesque measure on T.
• Lp

m×n, 1 ≤ p ≤ ∞, denotes the space of measurable
functions mapping from T to C

m×n with a finite ‖ · ‖p

norm defined by:

‖f‖p =

{ (
1
2π

∫
T
‖f(z)‖p

pµ(dz)
) 1

p if 1 ≤ p < ∞
ess supz∈T ‖f(z)‖∞ if p = ∞

If n = 1, we write Lp
m×n simply as Lp

m.
• Hp

m×n, 1 ≤ p ≤ ∞, denotes the subspace of functions
in Lp

m×n having an analytic continuation from T to D.
If n = 1, we write Hp

m×n simply as Hp
m.

• H∗ denotes the parahermitian conjugate of H: H∗(z) =
H(z̄−1)∗.

If H is a rational element of Hp
n×n or Lp

n×n then the
degree of H , denoted by deg(H), is defined to be the
McMillan degree of H . Let Pn denote the linear space
of C

n−valued trigonometric polynomials on T. It is well-
known that this space is dense in Lp

n for all p ∈ [1,∞). In
a similar fashion we define the linear space P+

n to be the
set of C

n−valued polynomials on C. We may view P+
n as a

linear subspace of Pn. With P+
n being properly defined we

are in a position to introduce the notion of outer functions
and spectral densities. A function ρ ∈ H2

n×n is said to be
outer if ρP+

n = H2
n, i.e., the set of products ρP+

n is dense
in H2

n [2]. In the special case where n = 1 (the scalar case)
and ρ is a rational function, it is known that ρ is outer if and
only if all its zeros and poles lie in D

c.
A function W mapping from T to C

n×n is a spectral
density if 1) it is in L1

n×n, and 2) there exists an outer
function H ∈ H2

n×n such that W (eiθ) = H(eiθ)∗H(eiθ).
Note that the definition implies that W ∗ = W and W is
non-negative definite a.e. on T. The function H is called a
spectral factor of W . A spectral factor is not unique since
one spectral factor can be obtained from another by (right)
multiplication with an arbitrary constant unitary matrix of
the corresponding dimension. However, a spectral factor can
be made unique if a condition is imposed on its value at the
origin. We call the unique spectral factor which is positive
definite at the origin the canonical spectral factor (CSF).
Furthermore, we say that a spectral density W is rational

if each element Wij is of the form Wij(e
iθ) =

Pij(e
iθ)

Qij(eiθ)
for

some scalar pseudopolynomials Pij and Qij . We have the
following well-known characterization of spectral densities:

Theorem 1: A non-negative definite function W ∈ L1
n×n

is a spectral density if and only if∫
T

|log detW (z)|µ(dz) < ∞. (1)

The above condition is known as the Szegö condition in
the scalar case and the Paley-Wiener condition in the matrix
case [18]. It was also independently derived by Helson and
Lowdenslager [10].

III. SEQUENTIAL CONTINUITY OF THE SPECTRAL

FACTORIZATION MAPPING

Let W be a spectral density and let Φ(W ) denote its
unique CSF. Then the mapping Φ : W �→ Φ(W ) is called
the spectral factorization mapping. It was recently shown in
[2] that the mapping Φ is sequentially continuous, that is

Theorem 2: Let W be a spectral density, and let {Wr}r∈N

be a sequence of spectral densities such that Wr → W in
L1

n×n as r → ∞. Then the following are equivalent:
1) The sequence {log detWr}r∈N is uniformly integrable.
2) Φ(Wr) → Φ(W ) as r → ∞.
Recall that a family of scalar random variables

{Xγ | γ ∈ Γ} parametrized by a non-empty set Γ on a
measurable space (Ω,F) with measure M is said to be
uniformly integrable if:

lim
α→∞

sup
γ∈Γ

∫
{ω∈Ω||Xγ(ω)|>α}

|Xγ(ω)|M(dω) = 0.

Remark 3: We shall refer to the condition in Point 1 of
Theorem 2 as uniform log-integrability.

The last theorem is important since it provides a justi-
fication for the altenative two-step procedure discussed in
the introduction of constructing a good approximant of a
given spectral density and taking the CSF of the approximant
as an approximation of the true CSF, if the uniform log-
integrability condition is satisfied. Several conditions which
are equivalent to uniform log-integrability are given in [2,
Proposition 4.2]. However, these conditions are general and
do not indicate how one may construct a uniformly log-
integrable sequence {Wr}r∈N which converges to W in
L1

n×n. For this reason, we shall shortly develop some explicit
sufficient conditions for uniform log-integrability.

IV. A SUFFICIENT AND VERIFIABLE SET OF CONDITIONS

FOR UNIFORM LOG-INTEGRABILITY

In this section we shall derive a new set of conditions
on the sequence of convergent spectral densities and the
limiting spectral density which ensures that the uniform log-
integrability condition of Theorem 2 is satisfied. First, we
assume the following:
A1. sup

z∈T

‖W (z)‖1 < ∞.

A2. sup
z∈T

‖Wr(z)‖1 < ∞ for all r ∈ N large enough.

A3. The sequence {Wr}r∈N
converges in L1

n×n to W as
r → ∞.
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Note that from a practical point of view, Assumption A1 is
not too restrictive. A majority of, if not all, spectral densities
that are encountered in applications are of the bounded type.
For α ≥ 0, define:

Ar(α) = {z ∈ T | |log detWr(z)| > α} ,

Ar+(α) = {z ∈ T | det Wr(z) > eα} ,

Ar−(α) =
{
z ∈ T | det Wr(z) < e−α

}
,

and note that Ar+(α)∩Ar−(α) = φ and Ar(α) = Ar+(α)∪
Ar−(α). Then we have the following inequality:

sup
r∈N

∫
Ar(α)

| log detWr(z)|µ(dz)

≤ sup
r∈N

∫
Ar+(α)

log det Wr(z)µ(dz)

+ sup
r∈N

∫
Ar−(α)

− log detWr(z)µ(dz). (2)

Before proceeding further, note the following matrix inequal-
ity:

Lemma 4: For any non-negative definite matrix A ∈
C

n×n, log detA ≤ ‖A‖1

Proof: Note that the result is trivial if A is singular,
since in this case we have log detA = −∞. Therefore we
assume that A is positive definite. Let σ1, σ2, . . . , σn be the
singular values of A, with σ1 ≥ σ2 ≥ . . . > 0. Since A is
positive definite, we have that det(A∗) = det(A) and

log detA=
1

2
log det(AA∗)=

1

2
log

(
n∏

k=1

σ2
k

)
=

n∑
k=1

log σk.

On the other hand, we also have that ‖A‖1 = tr((AA∗)
1
2 ) =∑n

k=1σk and the result follows since log σk ≤ σk for k =
1, . . . , n.

Now we can show the following result:
Lemma 5: Under Assumptions A1, A2, and A3:

lim
α→∞

sup
r∈N

∫
Ar+(α)

log detWr(z)µ(dz) = 0.

Proof: See See [12], [13].
Let us impose three further assumptions on the sequence

{Wr}r∈N:
A4. Wr(e

iθ) is a piecewise continuous function of θ for
each r ∈ N.

A5. Let Za denote the set of all points z ∈ T for
which there exist a sequence of increasing integers
r1, r2, . . . and a corresponding convergent sequence
{z1, z2, . . .} ⊂ T such that lim

l→∞
det Wrl

(zl) = 0 and

lim
l→∞

zl = z. Then the cardinality of Za is finite.

A6. Let Zr denote the set of all zeros of Wr on T. There
exist positive constants M1, M2, ∆1 and ∆2 such that
for any r ∈ N and any θ0,r ∈ (−π, π] such that eiθ0,r ∈
Zr ∪ Za, the inequality:

det Wr(e
iθ) ≥ M1 |θ − θ0,r|M2 , (3)

holds for all θ ∈ [θ0,r − ∆1, θ0,r + ∆2] ∩ (−π, π].

Remark 6: Assumption A6 implies that the cardinality of
Zr is uniformly bounded for all r.

We have the following result:
Lemma 7: Under Assumptions A4, A5, and A6:

lim
α→∞

sup
r∈N

∫
Ar−(α)

− log detWr(z)µ(dz) = 0.

Proof: See [12], [13].
A direct consequence of Lemma 5 and Lemma 7 is the

following theorem, which can be considered to be the central
result of this paper:

Theorem 8: Under Assumptions A1 through to A6:

lim
α→∞

sup
r∈N

∫
Ar(α)

| log detWr(z)|µ(dz) = 0.

In other words, under Assumptions A1 through to A6, the
sequence {log detWr}r∈N

is uniformly integrable.
Proof: Follows directly from Lemma 5 and Lemma 7

by taking the limit α→∞ on both sides of inequality (2).

Remark 9: Assumptions A1 to A6 do not require W to
be non-coercive.

The following result is then immediate:
Corollary 10: Let W be a spectral density satisfying As-

sumption A1 and suppose det W has a finite number of zeros
on T. If {Wr}r≥1 is a sequence of piecewise continuous
spectral densities such that lim

r→∞
sup
z∈T

‖W (z) − Wr(z)‖1=0

then lim
r→∞

‖Φ(W ) − Φ(Wr)‖2 = 0.
The corollary is a simple, but useful result which allows

for W to be non-coercive. We shall exploit this result in a
later section.

V. CONSTRUCTION OF CONVERGENT RATIONAL

SPECTRAL DENSITIES WITH CONVERGING CANONICAL

SPECTRAL FACTORS

In this section we give the main ideas for the construction
of a sequence of rational spectral densities with CSF’s
converging to the true CSF. Let W satisfy Assumption A1
and let {Wr}r∈N be a sequence of rational spectral densities
(see the definition in Section 2) having no poles on T. Let
us define

ck =
1

2π

∫
T

W (z)z−kµ(dz) k = 0, 1, . . . (4)

ck,r =
1

2π

∫
T

Wr(z)z−kµ(dz) k = 0, 1, . . . . (5)

The sequences {ck}k∈N and {ck,r}k∈N is the unique covari-
ance sequence associated with W and Wr, respectively. By
the Riemann-Lebesque Lemma, ck → 0 as k → ∞. The
rationality and non-negativeness of Wr imply that ck,r has
the form:

ck,r = CrA
k
rBr +

mr∑
m=0

Dm,r∆(k − m), (6)

where Ar, Br, Cr, and D0,r,D1,r, . . . , Dmr,r are n × n
matrices with Ar having eigenvalues in D, (Ar, Br, Cr) is

a minimal realization, and ∆(m)=

{
1 if m=0
0 otherwise

. The
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central idea of our construction is to require the sequence
{Wr}r∈N to satisfy

deg Φ(Wr) ≤ ndr, (7a)

ck,r = ck for k = 0, 1, . . . , dr, (7b)

where {dr}r∈N
is an increasing sequence of positive integers.

That a sequence {Wr}r∈N satisfying (7) always exists and
can be computed is the content of the theory of rational
covariance extension with degree constraint [8], [5], [4], [9],
[14], [15]. By plugging in the infinite series expansion of Wr

in the definition of ‖W − Wr‖1, we obtain:∫
T

‖W (z) − Wr(z)‖1µ(dz),

=

∫
T

∥∥∥∥W (z) −
∞∑

k=0

�{ck,rz
k}

∥∥∥∥
1

µ(dz),

≤
∫

T

∥∥∥∥W (z) −
dr∑

k=0

�{ckzk}
∥∥∥∥

1

µ(dz)

+

∥∥∥∥
∫

T

�{
CrA

dr+1
r (I − Arz)−1Br

+ I{dr≤mr−1}(dr)

mr∑
m=dr+1

Dm,rz
m

}
µ(dz)

∥∥∥∥
1

,

≤
∫

T

∥∥∥∥W (z) −
dr∑

k=0

�{ckzk}
∥∥∥∥

1

µ(dz) + R(Wr, dr) (8)

where IA(x) is the indicator function for the set A and

R(Wr, dr) =

∥∥∥∥ �{
CrA

dr+1
r

∫
T

(I − Arz)−1µ(dz)Br

} ∥∥∥∥
1

.

Since W satisfies Assumption A1, the Fourier series of W
converges to W in L2

n×n, hence also in L1
n×n. Therefore,

the first term on the right hand side of (8) goes to 0 as r
tends to ∞ . It now follows that the left hand side will go
to zero if lim

r→∞
R(Wr, dr) = 0. Thus:

Theorem 11: Let the spectral density W satisfy Assump-
tion A1. Let {Wr}r∈N be a sequence of rational spectral
densities satisfying Assumptions A2, A4, A5, A6 and the
interpolation constraints of (7). If limr→∞ R(Wr, dr) = 0
then Assumption A3 holds and lim

r→∞
‖Φ(W )−Φ(Wr)‖2 = 0.

Naturally, the requirement on R(Wr, dr) may not be
satisfied by an arbitrary sequence {Wr}r≥1 satisfying the
constraints (7). However, it is reasonable to expect, at least
at an intuitive level, that there could be “many” sequences
which satisfy it if the spectral density W is not too “irregu-
lar” (indeed, we see later in Corollary 13 a particular instance
where this is true). However, for applications and other
practical purposes, we would like to be able to explicitly
construct Wr such that Φ(Wr)≈Φ(W ). Fortunately, when
W is continuous we can do more. In fact, it is possible to
explicitly construct the approximating sequence W1,W2, . . ..
To this end, we say that a matrix-valued function f defined
on T is Lipschitz if ‖f(eiθ)− f(eiψ)‖1 ≤ K|θ−ψ| ∀θ, ψ ∈
(−π, π] for some positive constant K. Note that a Lipschitz

function is continuous, but the converse is false. We start
with the scalar results by observing that a scalar spectral
density W which is continuous on T can be represented as
W = U

V where U = WV , and V is any positive definite
scalar Lipschitz spectral density. We may then show:

Theorem 12: Let W = U
V be a continuous scalar spectral

density with U continuous, and V Lipschitz and positive
definite. If {Ur}r≥1 is a sequence of non-negative definite
pseudopolynomials converging uniformly to U then there ex-
ists a unique sequence {Vr}r≥1 of non-negative pseudopoly-
nomials such that 1) {Vr}r≥1 and {Wr}r≥1 (with Wr =
Ur(Vr)

−1) converge uniformly to V and W , respectively,
and 2) 1

2π

∫ π

−π
e−ikθWr(e

iθ)dθ=ck for k=0, 1, . . . , dr.
For a proof of the above theorem, see [12]. An important

consequence of the theorem and Corollary 10 is the follow-
ing:

Corollary 13: Suppose that W is a continuous scalar
spectral density with a finite number of zeros on T. If
{Wr}r≥1 is a sequence of rational scalar spectral densities
as defined in Theorem 12 then lim

r→∞
‖Φ(Wr)−Φ(W )‖2 = 0.

Remark 14: Note that the corollary gives us an instance
where the hypotheses of Theorem 11 are satisfied.

For a matrix-valued spectral density W , the situation is
slightly more complicated. If W is a matrix-valued Lips-
chitz spectral density then we write W = (W−1)−1 =
det(W )adj(W )−1, where adj(W ) denotes the adjoint of
W . Define U = P det W and V = Padj(W ) for any
arbitrary scalar spectral density P which is Lipschitz and
positive definite. Then U is a scalar Lipschitz spectral density
while V is a matrix-valued Lipschitz spectral density. The
representation W = UV −1 can be viewed as the matricial
counterpart of the scalar fractional representation, but with
the important difference that V (z) can be non-invertible for
some z ∈ T. If W is positive definite then so is V and the
analysis used in deriving Theorem 12 for the scalar case can
be adapted to the matrix case with the theory developed in
[3]. In particular, we obtain:

Theorem 15: Let W = UV −1 be a matrix-valued Lips-
chitz spectral density which is positive definite on T, with
U = P det W and V = Padj(W ) for some positive definite
scalar Lipschitz spectral density P . If {Ur}r≥1 is a sequence
of non-negative definite pseudopolynomials converging uni-
formly to U then there exists a unique sequence {Vr}r≥1 of
positive definite pseudopolynomials such that: 1) {Vr}r≥1

and {Wr}r≥1 (with Wr = Ur(Vr)
−1) converge uniformly to

V and W , respectively, and 2) 1
2π

∫ π

−π
e−ikθWr(e

iθ)dθ=ck

for k=0, 1, . . . , dr.
From which it follows:
Corollary 16: Let W and {Wr}r∈N be as defined in

Theorem 15. Then lim
r→∞

‖Φ(Wr) − Φ(W )‖2 = 0.
It seems likely that Theorem 15 and Corollary 16 can be

extended to the case where U has zeros on T. However, to
do this, we must allow some “spectral zeros” (see [3]) of
Wr to be on T while the current theory precludes this case.
Work on an extension of the theory is currently in progress.

Corollary 10 and the development of this section provide
us with a general strategy for computing an approximate
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spectral factor for W satisfying the hypotheses of Theorem
12 or Theorem 15: We may use some approximation scheme,
such as the Fejér sum (see [11] for details) or the innovative
technique described in [16], to construct Ur, Vr or Wr

(resp., Φ(Ur), Φ(Vr), or Φ(Wr)) as approximations of U ,
V or W (resp., Φ(U), Φ(V ) or Φ(W )). Notice that if some
approximant Ur of U has been obtained, it is possible to
directly compute Φ(Vr) by the method of [6] by imposing
the interpolation constraints (7) on Ur(Vr)

−1 (this is, in fact,
the main idea of the proof of Theorem 12). Thus, we see
that, in particular, we may reduce the approximate spectral
factorization problem to that of spectral factorization of at
most two non-negative definite pseudopolynomials.

VI. A SPECTRAL FACTORIZATION ALGORITHM

At the end of the last section we have seen that the
approximate spectral factorization problem can be reduced
to spectral factorization of non-negative pseudopolynomials.
However, it is known that spectral factorization is difficult
when the given pseudopolynomial has zeros close to or on
T. To partially alleviate this problem, we propose a new
spectral factorization algorithm for scalar spectral densities
which are analytic on the unit circle (thus, it includes all
non-negative pseudopolynomials and rational functions). It is
based on Corollary 13 and a simple heuristic for sequentially
estimating spectral zeros of the given spectral density. We
state this algorithm below followed by a discussion of the
intuition and steps involved.

Spectral factorization algorithm

Given: A scalar spectral density W ∈ L1
n×n analytic on

T (i.e.,
∑∞

k=0 ‖ck‖1 < ∞), desired accuracy ε > 0 and
maximum iteration rmax.

Initialize: Normalize W so that c0=1. Let λ1, . . . , λL ∈
(−π, π] be the local minima of W (ei·) satisfying
0≤W (eiλl)≤0.2 (this includes all zeros of W (ei·)). Define
ml= min{k∈N | Dk

θW (eiλl) �= 0} (note: Dm
x = dm

dxm ) and

set zl= max{0, rl}eiλl with rl=1 −
(

W (eiλl )

D
ml
θ

W (eiλl )

) 1
ml for

l=1, . . . , L. Set r=1, d0=L, and η0=
L∏

l=1

(z − zl)
ml
2 . Com-

pute the outer polynomial R0 such that W0=R−1
0∗ |η0|2R−1

0

satisfies (7).
Step 1: Select θr such that
θr= arg max

θ∈(−π,π]

(
Wr−1(e

iθ) − W (eiθ)
)
, and:

1) If W is symmetric (i.e., W (e−iθ)=W (eiθ)) or

θr /∈ {0, π}, set R=1 −
(

W (eiθr )
Wr−1(eiθr )

) 1
2n

, zr=Reiθr ,

dr=dr−1 +2, and ηr=ηr−1(z−zr)(z−z∗r ), otherwise
2) Set R to be the smallest positive solution of the quartic

equation: |1−R|2|1−Re−i2θr |2−
(

W (eiθr )
W (eiθr )

) 1
n

=0, and

set zr=Reiθ, dr=dr−1 + 1, and ηr=ηr−1(z − zr).
Step 2: Compute the outer polynomial Rr such that Wr =

R−1
r∗ |ηr|2R−1

r satisfies (7).
Step 3 Compute e= 1

2‖W −Wr‖1 + 1
2‖Φ(W )−Φ(Wr)‖2.

If e>ε and r≤rmax, set r=r + 1 and return to Step 1.

End
√

c0 ηr∗(Rr)
−1 is the approximate CSF.

Computation of the polynomial Rr, r = 0, 1, 2, . . ., is
given in [6]. The analysis in [14], [15] implies that when
Rr is positive definite then the continuation method of [6]
is applicable to the case where ηr has zeros on T. The main
idea of the algorithm is to find a sequence z1, z2, . . . ∈ D

such that Wr = UrV
−1
r satisfies (7) and Wr → W in

L∞, where Ur(z) = Πdr

k=1(z − zk)(z − zk)∗. By Theorem
12, it then follows that Φ(Wr) → Φ(W ) in H2. This
idea works as follows. Since W (eiθ) is analytic it has a
continuation W (z) to an open annulus of the complex plane
containing T. Moreover, if Dm

θ W (eiλ) = 0 for m=1, . . . , l
then also W (m)(eiλ) = W (m)(z)

∣∣
z=eiλ = 0 for the same

values of m, and W (l+1)(eiλ) = (−ie−iλ)l+1Dl+1
θ W (eiλ)

(where W (m) denotes the mth derivative of the analytic
continuation of W ). Since λl is a local minimum, we have
that Dml

θ W (eiλl) > 0. We first take care of points θ ∈
(−π, π] for which W (eiθ) ≈ 0. They are characterized
as points λl, l = 1, . . . , L, which are local minima of
W (ei·) satisfying 0≤W (eiλl)≤0.2 (the value 0.2 has been
chosen subjectively based on the consideration that it is
not “too small” and not “too large”). The Taylor series
expansion of W (z) about eiλl gives W (z) ≈ W (eiλl) +
(−ie−iθ)mlDml

θ W (eiλl)(z− eiλl)ml for z sufficiently close
to eiλl . To estimate a zero of W (z) about eiλl , we set

W (z)=0 to get |z − eiλl | ≈
(

W (eiλl )

D
ml
θ

W (eiλl )

) 1
ml . Assuming

the form zl = rle
iθ with 0 ≤ rl ≤ 1 for our zero estimate,

we obtain |1 − rl| =
(

W (eiλl )

D
ml
θ

W (eiλl )

) 1
ml . Thus we choose

rl = 1 −
(

W (eiλl )

D
ml
θ

W (eiλl )

) 1
ml and set zl = max{0, rl}eiλl

(hence automatically zl = eiλl if W (eiλl) = 0). Points
z ∈ T for which W (z) ≈ 0 are critical since, as argued
in [8], in the case of Schur and other interpolation based
spectral factorization methods, the presence of such points
slows convergence down significantly due to slow decay
of the Schur parameters. In our algorithm, we reduce the
influence of these points by suitably placing a zero of η0 in
their vicinity. Continuing on to Step 1, for each r (including
r = 0) we have that

∫ π

−π

(
Wr(e

iθ) − W (eiθ)
)
dθ=0. If

Wr − W is not identically zero (for which the algorithm
then terminates), it can be shown, using the mean value
theorem of calculus, that ∃θ such that Wr(e

iθ)−W (eiθ)>0.
Since a zero of Wr can decrease the magnitude of Wr

in certain regions of T, the main idea now is to try to
reduce the excess (or overshoot) of Wr over W at a point
θr for which the excess is largest or almost largest. If W
is not symmetric or θr ∈ {0, π} then we place a zero at
zr = Reiθr (with 0 < R < 1 so that zr ∈ D) such that
Wr−1(z)|z−zr|

2

W (z)

∣∣
z=eiθr

=Wr−1(e
iθr )

W (eiθr )
(1−R)2=1. From the last

equality we obtain the required value of R for Step 1. In case
W is symmetric and θr /∈ {0, π}, we must place two zeros
at zr and z∗r to ensure Wr is also symmetric. By a procedure
similar to the symmetric case, we find that a quartic equation
|1 − R|2|1 − Re−i2θr |2 −

(
Wr−1(e

iθr )
W (eiθr )

)
=0 must be solved

for R and a real solution satisfying 0 < R < 1 is chosen. It
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is easy to see, since Wr−1(e
iθr )

W (eiθr )
< 1, that the quartic solution

always has such a solution.
Although the algorithm is intuitively appealing, at this

stage we do not have a theoretical guarantee of its conver-
gence; this will be studied in the future. A practical applica-
tion of the algorithm is given in the following example.

Example 17: Consider the non-coercive spectral density
W (eiθ)= 2+cos θ−2 cos 2θ

24.1−18.9 cos θ+2 cos 2θ which has a zero at z= −
1. The exact CSF of W is given by Φ(W )(z)= −√

10 (z−2)(z+1)
(z−4)(z−5) . Applying the algorithm by setting ε = 10−4

gives η0 = z+1 and results in convergence curves as shown
in Fig. 1. The algorithm returns a real approximate CSF of
degree 10 and the final value of e is 4.1266 × 10−5. In this
case, the algorithm terminates after a few iterations.
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Fig. 1. Convergence curves

In case W has thin and sharp “spectral line”-like peaks
then the algorithm will perform poorly. This is because
such a peak indicates a (non-cancelling) pole and zero close
to each other and to the unit circle, while the zero is
not included in η0. However, it is possible to remedy the
situation. Let H be a scalar notch filter with narrow stop
bands around frequencies corresponding to the peaks. Letting
P = H∗H , we apply the algorithm to W ′ = WP to obtain
an approximate CSF, say A. Then Φ(W ) ≈ 1

Φ(P )A.

VII. CONCLUSIONS AND FURTHER RESEARCH

In this paper we have made three primary contributions.
First and foremost, we have derived a set of sufficient, easy to
verify conditions for uniform log-integrability of a sequence
of matrix-valued spectral densities and the convergence of the
canonical spectral factors of the sequence to the canonical
spectral factor of the limiting spectral density. Secondly, we
state some theoretical results on the existence of approxi-
mating sequences of rational spectral densities. Finally, we
proposed a new algorithm for spectral factorization of scalar
analytic matrix-valued spectral densities based on a heuristic
estimation of spectral zeros. The performance of the new
algorithm is illustrated in a numerical example. An important
subject for future research is convergence analysis of the
algorithm. It would also be interesting to investigate how

to relax the assumption of continuity of W and uniform
convergence of Wr to W in some of the results of Section
VI. Development of improved heuristics for estimating the
spectral zeros could also be another theme of future research.

The results and algorithm of this paper may find applica-
tion in areas of science and engineering in which spectral
factorization plays a prominent role, or in which signals
with non-rational power spectra is a central theme (such
as control of aircraft subject to windgust, adaptive optics,
and laser scintillation [1] to name a few), or for computing
approximate solutions of algebraic Riccati equations (AREs)
in optimal control of linear, distributed parameter systems.
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