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Abstract— In a number of application areas there is growing
interest in system identification for systems whose observation
processes consist of both analog and counting process signals.
But so far few system identification techniques exist for these
cases and likelihood functions have so far not been available.
Here we introduce a new hybrid stochastic intensity and use
it to construct, for the first time, an analog-counting process
likelihood.

I. Introduction
Signal estimation and system identification for systems

observed through point processes (or counting processes)

have become extremely important over the years. Initial

interest developed in the late 1960s and early 1970s e.g.

[1],[2]. More recently there has been renewed interest from

the communications networks area and especially from neu-

roscience [3],[4] where hundreds of cortical spike trains can

now be simultaneously recorded in awake animals. Further

in neuroscience now, attention is being drawn to cases

where the observation process is hybrid also involving analog

signals such as EEG recordings and local field potentials

[5],[6].

For system identification to proceed in a principled way

that includes all the information in the signals it is necessary

to be able to construct likelihood functions. Methods based

on second or third moments do not include all the infor-

mation in non-Gaussian settings. But so far this likelihood

construction has not been fully achieved. For a scalar point

process with stochastic intensity depending on the past,

the likelihood was first constructed by [7] and then in [8]

extended, via a martingale framework, to general marked

point processes thus including multivariate point processes

as a special case. The development it must be noted is very

abstract and few examples are given. A more accessible

presentation of the marked point process results is in [9]. In

a state space setting, when a scalar point process serves as

an observation process for an underlying unobserved state

space process so that its stochastic intensity depends on

the state then [7], [10] constructed the likelihood function

(actually Rubin does not require that the underlying state

obey a Markov process law). The multivariate extension

was obtained in [1]. But for the situation of interest here,

where some observation processes may be analog and others

point process and there may or may not be an underlying

unobserved state, the problems of likelihood construction are

open. It is the aim of this paper to sketch solutions to this

class of problems.
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Turning to the literature on joint description of analog

and point process signals there is little to report. There are

firstly two papers of Willie [11],[12]. The first defines a

cross- covariance function between a scalar analog process

and a scalar point process and discusses estimation of it

and asymptotic behaviour. The second discusses “linear”

modelling in which the past of the analog process and the

stochastic intensity may be allowed to depend on the past

of both point process and analog signal. But no likelihood

functions are constructed and as we shall see could not be

constructed from the second-order quantities introduced by

Willie. The other work is by [5]. This work develops cross-

spectral estimation between point process and analog signals.

It deals essentially with the Fourier transform of the statistics

proposed by Willie (although his work is not referenced)

and draws on the framework of [2]. Again likelihood based

methods are not developed, although third order statistics are

discussed.

We make no attempt here to provide a rigorous derivation

of our results. That would require a lot more space and

will be pursued elsewhere. Rather we discretise time to

tiny subintervals and approximate the point process on these

subintervals by a conditional Bernoulli process and thus

proceed to derive results informally. This has two advantages.

Firstly it leads to extremely simple derivations that are

new and informative even for the known results already

cited. Secondly this kind of development makes the results

accessible to a mathematically less sophisticated community.

The conditional Bernoulli heuristic is well known and has

been mentioned briefly in connexion with deriving Rubin’s

likelihood [13],p72 and also used as a computational proce-

dure [14]. But here we push the method far into unchartered

territory, using it to derive new results and give new insights.

The remainder of the paper is organized a follows. In the

first few sections we rederive the known results mentioned

above. This considerably speeds up the development since

subsequent argument will build on these results. Also it

allows calibration against the known results. In section II we

derive the scalar Rubin likelihood and extend this in section

III to the multivariate Jacod likelihood. In section IV we then

derive the Snyder-Rubin scalar partially observed state space

likelihood. Then in section V we begin with the bivariate case

of joint observation of a scalar analog signal and scalar point

process . We introduce the new hybrid stochastic intensity

which is the necessary object for likelihood construction

and proceed to construct the likelihood. Extensions to the

multivariate case easily follow. In section VI we extend this

to the partially observed state space setting. Section VII
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contains conclusions. We conclude this section by describing

some notation and basic definitions.

Notation and Defintions. In the sequel δ denotes a tiny

time interval; t denotes a continuous time and k a discrete

time so that t = kδ. N(t)=# events up to time t and in

discrete time Nk = N(kδ). Next,δN(t) = incremental count

= # events in (t, t+δ]. Also δNk = δN(kδ). Continuing, Nk
0

= history of the counting process up to time k = (δN0 =
δn0, · · · , δNk = δnk).And N0 = (δN0 = δn0). We write

a(δ) = o(δ) to mean a(δ)/δ → 0 as δ → 0. Finally if [0, T ]
is an observation interval we write T = nδ.

II. Univariate Likelihood

We suppose the point process obeys the following assump-

tions:

NS No Simultaneity.

P (δNk > 1|Nk−1
0 ) = o(δ)

This means that in a small time interval δ only 1 or 0 events

occur. This property is called orderliness in the point process

literature [9].

SI Stochastic Intensity.

P (δNk = 1|Nk−1
0 ) = λ(kδ)δ + o(δ)

= λkδ + o(δ)

Here λ(t) is called the stochastic (conditional) intensity and is

a non-negative functional of the past history. A more formal

definition of the stochastic intensity can be found in [13],[9].

In view of assumptions NS and SI we have:

CBD Conditional Bernoulli Description.

P (δNk = 0|Nk−1
0 ) = 1 − λ(kδ)δ + o(δ)

= 1 − λkδ + o(δ)

With this setup we can now develop the Rubin likelihood.

Consider a fixed observation interval 0 ≤ t ≤ T = nδ.

The likelihood is just the joint density of the incremental

counting process random variables,

Ln = P (Nn
0 )

= P (δN0 = δn0, δN1 = δn1, · · · , δNn = δnn)
= P (Nn−1

0 , δNn = δnn)
= P (δNn = δnn|Nn−1

0 )P (Nn−1
0 )

= P (δNn = δnn|Nn−1
0 )Ln−1

Iterating this gives

Ln = Πn
0P (δNk = δnk|Nk−1

0 )

Since δNk|Nk−1
0 is Bernoulli (i.e. δnk = 0 or 1) this gives

Ln = Πn
0 (λkδ + o(δ))δnk (1 − λkδ + o(δ))1−δnk

To derive the likelihood formula we would like to let δ → 0.

But the term Πn
0 (δ)δnk will cause a singularity problem. To

resolve this one must work with a likelihood ratio. We can

use any convenient reference model but the most natural

is the unit rate Poisson. The resulting likelihood ratio is

(dropping the o(δ) terms for simplicity)

LRn = Πn
0

(λkδ)δnk

δδnk

(1 − λkδ)1−δnk

(1 − δ)δnk

= Πn
0 λδnk

k (1 − (λk − 1))1−δnk

We see that the singular term has been removed. Continuing

we approximate further (dropping always only terms that are

o(δ)) to get

LRn = Πn
0 eδnklogλk−(λk−1)δ(1−δnk)

In the exponent the first term is a Riemann-Stieltjes sum

Σn
0 (N(kδ+δ) − N(kδ))logλ(kδ) which under some regularity

conditions will converge in probability to the Riemann-

Stieltjes integral
∫ T

0 logλ(t)dN(t). Note that N(t) is of finite

variation so there is no technical problem here: see e.g.[15].

Also λ(t) only depends on history up to t−. The second

term consists of two parts. The first Σn
0 (λk −1)δ which will

converge to
∫ T

0
(λ(t) − 1)dt; the second −δΣn

0 (λk − 1)δnk

will be of order δ
∫ T

0 (λ(t) − 1)dN(t) and so vanish. We thus

obtain the classical Rubin log-likelihood ratio with respect

to a unit rate Poisson as,

Result I : Univariate likelihood ratio

lnLRT =
∫ T

0

lnλ(t)dN(t) −
∫ T

0

(λ(t) − 1)dt

Note that the derivation has made clear the appearance of

a singularity and the consequent necessity for a likelihood

ratio rather than a likelihood.

III. Multivariate Likelihood

To keep the discussion brief we develop the bivariate case.

But in fact it already exhibits all the essential issues so that

the full multivariate result will follow easily. We consider

then two counting processes N(t), M(t) with corresponding

discrete time counts Nk = N(kδ), Mk = M(kδ) and so on as

before. We also denote the joint history as Hk
0 = (Nk

0 , Mk
0 ).

We now introduce the following assumptions.

NS No-simultaneity.

Given any past trajectory only 0 or 1 events (of either type)

can occur in the next small time interval.

P (δNk + dMk > 1|Hk
0) = o(δ)

This of course implies marginal no-simultaneity.

SI Joint Stochastic Intensities.

P (δNk = 1|Hk−1
0 ) = λNJ

(kδ)δ + o(δ)

= λNJ
k δ + o(δ)

P (δMk = 1|Hk−1
0 ) = λMJ

(kδ)δ + o(δ)

= λMJ
k δ + o(δ)

It is important to keep note of the fact that these two

stochastic intensities depend on the joint history and so

will differ from the marginal stochastic intensity previously

introduced.
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As before assumptions NS ,SI yield:

CBD Conditional Multi-Bernoulli Description.

Firstly we have the semi-marginal relations,

P (δNk = 0|Hk−1
0 ) = 1 − λNJ

k δ + o(δ)
P (δMk = 0|Hk−1

0 ) = 1 − λMJ
k δ + o(δ)

But we need to consider bivariate conditional probabilities

and this is most usefully pursued in the context of construct-

ing the likelihood. Proceeding much as before we find

Ln = P (Hn
0 )

= Πn
0P (δNk = δnk, δMk = δmk|Hk−1

0 )

Because of the NS condition we have only to calculate four

probabilities,

P (δNk = 1, δMk = 1|Hk−1
0 )

P (δNk = 0, δMk = 0|Hk−1
0 )

P (δNk = 1, δMk = 0|Hk−1
0 )

P (δNk = 0, δMk = 1|Hk−1
0 )

Now the joint no-simultaneity ensures the first probability

is o(δ). So we need only specify the other three. And

now remarkably this can be done in terms of semi-marginal

quantities. We have

P (δNk = 1|Hk−1
0 ) = P (δNk = 1, δMk = 0|Hk−1

0 )
+ P (δNk = 1, δMk = 1|Hk−1

0 )
⇒ P (δNk = 1, δMk = 0|Hk−1

0 ) = λNJ
k δ + o(δ)

Similarly

P (δNk = 0, δMk = 1|Hk−1
0 ) = λMJ

k δ + o(δ)

Finally by subtraction we can conclude

P (δNk = 0, δMk = 0|Hk−1
0 ) = 1 − λNJ

k δ − λMJ
k δ + o(δ)

But now we are are able to conclude the following remark-

able result:

Result II :CI Conditional Independence.

δMk, δNk are conditionally independent given the history

Hk−1
0 i.e.

P (δNk = δnk, δMk = δmk|Hk−1
0 )

= (P (δNk = δnk|Hk−1
0 ) + o(δ))

× (P (δMk = δmk|Hk−1
0 ) + o(δ))

Proof.
We just have to treat the four cases. Firstly joint no-

simultaneity ensures P (δNk = 1, δMk = 1|Hk−1
0 ) = o(δ).

While the product on the right side is

P (δNk = 1|Hk−1
0 )P (δMk = 1|Hk−1

0 )
= (λNJ

k δ + o(δ))(λMJ
k δ + o(δ)) = o(δ)

as required. Secondly

P (δNk = 1, δMk = 0|Hk−1
0 ) = λNJ

k δ + o(δ)

While

P (δNk = 1|Hk−1
0 )P (δMk = 0|Hk−1

0 )
= (λNJ

k δ + o(δ))(1 − λMJ
k δ + o(δ))

= λNJ
k δ + o(δ)

and the result follows. The result follows similarly for the

third case δnk, δmk = 0, 1. Finally

P (δNk = 0, δMk = 0|Hk−1
0 )

= 1 − λNJ
k δ − λMJ

k δ + o(δ)

While

P (δNk = 0|Hk−1
0 )P (δMk = 0|Hk−1

0 )
= (1 − λNJ

k δ + o(δ))(1 − λMJ
k δ + o(δ))

= 1 − (λNJ
k δ + λNJ

k δ) + o(δ)

and the result follows again.

With conditional independence established we can return

to the likelihood to find,

Ln = Πn
0P (δNk = δnk|Hk−1

0 )
× Πn

0P (δMk = δmk|Hk−1
0 )

which is a product of ’univariate’ likelihoods. Normalizing

with a product of independent unit rate Poissons and taking

limits as before we find:

Result III : Bivariate Likelihood Ratio,

lnLRT =
∫ T

0

lnλNJ
(t) δN(t) −

∫ T

0

(λNJ
(t) − 1)dt

+
∫ T

0

lnλMJ
(t) δM(t) −

∫ T

0

(λMJ
(t) − 1)dt

which can be also deduced from Jacod’s results.

We now see something not evident from previous deriva-

tions. The simple additive structure is a consequence of

conditional independence which itself is induced by the joint

no-simultaneity condition.

It is important not to be misled by the additivity/ condi-

tional independence. Each ’univariate’ likelihood does de-

pend on the joint history through the stochastic intensities.

So one is most emphatically not just adding up the marginal

log-likelihood ratios.

It is also immediately apparent that under the joint no-

simultaneity condition the results extend to the general mul-

tivariate case. For m point processes there are 2m required

conditional probabilities to form the iterated likelihood (since

there are 2m strings of 0s and 1s). But the joint no-

simultaneity ensures all but m+1 of these strings has prob-

ability o(δ). And these m + 1 joint conditional probabilities

can be determined from m semi-marginal probabilities plus

the fact that they must sum to 1. This will induce conditional

independence again and so lead to the additive log likelihood

ratio.
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IV. State Space Likelihood
Here we suppose the stochastic intensity depends on an

underlying unobserved state (Snyder) as well as the past of

the counting process (Rubin). We take the state to be an

analog stochastic process x(t) for simplicity but the point

process case can easily be treated. The sampled signal is

xk = x(kδ). Since δNk looks ahead we match the history

Xk
1 = (X1 = x1, · · · , Xk = xk) with Nk−1

0 .

Additional Notation and Definitions. We use the notation

Xk ∼ x to mean x ≤ Xk ≤ x + h with 0 < h << 1. And

then X̃k
1 = (X1 ∼ x1, · · · , Xk ∼ xk). Finally by P (A|Xk

1 )
we mean

lim

h→0
P (A|X̃k

1 ) = lim

h→0

P (A, X̃k
1 ) 1

hk+1

P (X̃k
1 ) 1

hk+1

The assumptions now become:

NS No simultaneity.

P (δNk > 1|Nk−1
0 , Xk

1 ) = o(δ)

SDSI State Dependent Stochastic Intensity.

P (δNk = 1|Nk−1
0 , Xk

1 ) = P (δNk = 1|Nk−1
0 , Xk = xk)

= λ(kδ,x(kδ))δ + o(δ)
= λk,xk

δ + o(δ)

This leads as usual to the:

CBD Conditional Binomial Description.

P (δNk = 0|Nk−1
0 , Xk

1 ) = P (δNk = 0|Nk−1
0 , Xk = xk)

= 1 − λ(kδ,x(kδ))δ + o(δ)
= 1 − λk,xk

δ + o(δ)

As before the likelihood ratio (with respect to a unit rate

Poisson) will be

LRn = Πn
0

P (δNk = δnk|Nk−1
0 )

δδnk(1 − δ)1−δnk

To evaluate this we write

P (δNk = δnk|Nk−1
0 )

δδnk(1 − δ)1−δnk

=
∫

P (δNk = δnk|Nk−1
0 , Xk = xk)

δδnk(1 − δ)1−δnk
p(xk|Nk−1

0 )dxk

And appealing to the CBD property we get (on dropping

o(δ) terms)∫ (
λk,xk

δ

δ

)δnk
(

1 − λk,xk
δ

1 − δ

)1−δnk

p(xk|Nk−1
0 )dxk

We evaluate this as follows.

When δnk = 1 we get∫
λ(kδ,x(kδ))p(xk|Nk−1

0 )dxk = λ̂k = λ̂(kδ)

which defines λ̂(t). When δnk = 0 we get∫ (
1 − λk,xk

δ

1 − δ

)
p(xk|Nk−1

0 )dxk =
1 − λ̂kδ

1 − δ

Putting these together gives

P (δNk = δnk|Nk−1
0 )

δδnk(1 − δ)1−δnk
= λ̂δnk

k

(
1 − λ̂kδ

1 − δ

)1−δnk

Now iterating and taking limits as before we get:

Result IV : Point Process-State Space log-likelihood ratio,

lnLRT =
∫ T

0

lnλ̂(t)dN(t) −
∫ T

0

(λ̂(t) − 1)dt

which is the Rubin/Snyder formula.

This new argument shows clearly the origin of λ̂(t); how it

is that the formula has the same structure as previously and

why the stochastic intensity can be allowed to depend on the

past as well as on the latest value of the state. Generation of

λ̂(t) requires a conditional density which could be generated

by modern particle filtering methods. Details will be pursued

elsewhere.

V. Analog and Point Process: Hybrid Likelihood

Now finally we are ready to treat the hybrid case. We begin

for simplicity with the bivariate case of a jointly observed

scalar analog signal y(t) and a point process N(t). We

extend previous notation in the natural way to cover y(t). In

particular we introduce the joint history Hk
N,Y = (Nk

0 , Y k
1 ).

It is not immediately clear how to define a stochastic intensity

to cover this case and the utility of our definition will become

clear below. We assume:

NS No simultaneity

P (δNk > 1|Hk−1
N,Y , Yk = y) = o(δ)

HSI Hybrid Stochastic Intensity

P (δNk = 1|Hk−1
N,Y , Yk = y)

= λ(kδ,y)δ + o(δ)
= λk,yδ + o(δ)

As usual NS,HSI deliver:

CBD Conditional Bernoulli Description.

P (δNk = 0|Hk−1
N,Y , Yk = y) = 1 − λk,yδ + o(δ)

There are two associated quantities of importance.

Conditional Density

q(kδ, y) = lim

h→0

1
h

P (Yk ∼ y|Hk−1
N,Y )

Induced Stochastic Intensity

P (δNk = 1|Hk−1
N,Y )

=
∫

P (δNk = 1|Hk−1
N,Y , Yk = y)q(kδ, y)dy

= λ(kδ)δ + o(δ)

λ(t) =
∫

λ(t,y)q(t,y)dy
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We are now ready to develop the new hybrid likelihood

expression. We have

Ln = lim

h→0
P (Nn

0 , Ỹ n
0 )/hn+1

= lim

h→0

Ln−1

h
P (δNn = δnn, Yn ∼ yn|Nn−1

0 , Ỹ n−1
0 )

= lim

h→0
P (δNn = δnn|Yn ∼ yn,Hn−1

N,Y )

× 1
h

P (Yn ∼ yn|Hn−1
N,Y )Ln−1

= P (δNn = δnn|Yn ∼ yn,Hn−1
N,Y )q(nδ,y(nδ))Ln−1

We see now how our definition of the HSI fits with this

factorization of the likelihood. Iterating yields a product of

an analog and a point process (discrete valued) component.

Ln = La
nLd

n

La
n = Πn

0 q(nδ,y(nδ))

Ld
n = Πn

0 P (δNk = δnk|Yk = yk,Hk−1
N,Y )

The digital likelihood can be treated exactly as before and

after normalization by the usual unit rate Poisson we are led

to the digital component of the new log-likelihood formula

we have sought,

Result Va : Digital Component of Hybrid Likelihood Ratio

lnLRd
T =

∫ T

0

lnλ(t,y(t))dN(t) −
∫ T

0

(λ(t,y(t)) − 1)dt

Turning to the analog component we are more or less on

familiar ground since there is much literature on these types

of likelihood. Except that is for the fact that we need to

allow dependence on the past of the point process. Rather

than attempt a general specification we give a simple, but

useful example to indicate the kind of result possible. We

assume conditional distributions are Gaussian so we need

only specify conditional first and second moments, thus,

E(yk+1 − yk|Yk = y,Hk−1
N,Y ) = −µ(kδ,y(kδ))δ + o(δ)

= −µk,yk
δ + o(δ)

var(yk+1 − yk|Yk = y,Hk−1
N,Y ) = σ2δ + o(δ)

So µ(t,y(t)) is a functional of the joint past and is the analog

analogue(!) of the HSI. The condtional density is then

q(kδ,y(kδ)) = −1
2

(yk+1 − yk − µk,yk
δ)2

σ2δ
− 1

2
lnσ2δ

As a reference (q0
(kδ,y(kδ))

) we take the same model

but with µk,yk
= 0. The associated likelihood ratio is

Πn
0 q(kδ,y(kδ))/q0

(kδ,y(kδ))
and taking logs, cancelling out com-

mon terms and taking limits leads to

lnLRa
T =

1
σ2

∫ T

0

µ(t,y(t))dt − 1
2σ2

∫ T

0

µ2
(t,y(t))

dt

This type of analog likelihood ratio is well known. Putting

these together we have:

Result Vb : Hybrid Likelihood Ratio,

lnLRT = lnLRd
T + lnLRa

T

The multivariate version of these results will follow much as

before due to the conditional independence property. Thus

lnLRd
T will be given by an additive formula.

VI. State Space Hybrid Likelihood with Analog and
Point Process Observations

As usual we assemble an expanded set of definitions and

assumptions.

NS No simultaneity

P (δNk > 1|Hk−1
N,Y , Xk

1 , Yk = y) = o(δ)

SDHSI State Dependent Hybrid Stochastic Intensity

P (δNk = 1|Hk−1
N,Y , Xk

1 , Yk = y)

= P (δNk = 1|Hk−1
N,Y , Xk = xk, Yk = y)

= λ(kδ,x(kδ),y)δ + o(δ)
= λk,xk,yδ + o(δ)

As usual NS,SDHSI deliver:

CBD Conditional Bernoulli Description.

P (δNk = 0|Hk−1
N,Y , Xk

1 , Yk = y)

P (δNk = 0|Hk−1
N,Y , Xk = xk, Yk = y)

= 1 − λk,xk,yδ + o(δ)

There are two associated quantities of importance.

Conditional Density

q(kδ, y) = lim

h→0

1
h

P (Yk ∼ y|Hk−1
N,Y )

SDCD State dependent conditional density

lim

h→0
P (Yk ∼ y|Hk−1

N,Y , Xk = xk)

= P (Yk ∼ y|Xk = xk) = p(y|xk) = qkδ,xkδ,y

Now we continue by repeating the argument of the last

section to get Ln = La
nLd

n with La
n, Ld

n given as before.

We proceed to evaluate Ld
n first normalising by a unit rate

Poisson. We have (along the lines of the state space section

earlier)

P (δNk = δnk|Yk = yk,Hk−1
N,Y )

δδnk(1 − δ)1−δnk

=
∫

P (δNk = δnk|Hk−1
N,Y , Yk = yk, Xk = xk)

δδnk(1 − δ)1−δnk

× p(xk|Hk−1
N,Y , Yk = yk)dxk

And appealing to SDCD and the CBD property we get (on

dropping o(δ) terms)∫ (
λk,xk,yk

δ

δ

)δnk
(

1 − λk,xk,yk
δ

1 − δ

)1−δnk

× p(yk|Xk = xk,Hk−1
N,Y )p(xk|Hk−1

N,Y )

p(yk|Hk−1
N,Y )

dxk

=
∫

(λk,xk,yk
)δnk

(
1 − λk,xk,yk

δ

1 − δ

)1−δnk

× p(yk|xk)p(xk|Hk−1
N,Y )

q(kδ,y(kδ))
dxk
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We evaluate this, much as before, as follows.

When δnk = 1 we get∫
λk,xk,yk

p(yk|xk)p(xk|Hk−1
N,Y )

dxk

q(kδ,y(kδ))
= λ̂k,yk

which defines λ̂(t,y(t)). When δnk = 0 we get

∫ (
1 − λk,xk,yk

δ

1 − δ

)
p(yk|xk)p(xk|Hk−1

N,Y )
dxk

q(kδ,y(kδ))

=
1 − λ̂k,yk

δ

(1 − δ)

where we have used

q(kδ,y(kδ)) =
∫

p(yk|xk)p(xk|Hk−1
N,Y )dxk

Putting these together gives

P (δNk = δnk|Yk = yk,Hk−1
N,Y )

δδnk(1 − δ)1−δnk

= λ̂δnk

k,yk

(
1 − λ̂k,yk

δ

1 − δ

)1−δnk

Now iterating we find

Ld
n = Πn

0 λ̂δnk

k,yk

(
1 − λ̂k,yk

δ

1 − δ

)1−δnk

and taking limits as usual we get:

Result VI : Point Process-State Space log-likelihood ratio,

lnLRd
T =

∫ T

0

lnλ̂(t,y(t))dN(t) −
∫ T

0

(λ̂(t,y(t)) − 1)dt

We can obtain an expression for lnLRa
T but it will be

model dependent and lack of space precludes details. Again

implementation of these expressions will require particle

filtering.

VII. Conclusions

In this paper we have sketched a derivation of a number

of old and new point process likelihood ratio formulae by a

very simple argument. Though our derivations lack rigour the

rigorous derivation of the old results requires considerable

martingale machinery whereas we have done it in a few lines

in a self-contained way. Further our derivation throws new

light on why the formulae have the structure they do. Thus

additivity in multivariate point process formulae is a direct

consequence of a conditional independence property induced

by the no-simultaneity assumption. Also the origin of the

simple structure of state space likelihood ratios emerges

clearly in the derivation. Most important however are our

new results for likelihood ratios relating to systems observed

with both analog and counting process observations (results

Va,VI).
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