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Abstract—We provide a generalized version of the nonlinear
small-gain theorem for the case of more than two coupled input-
to-state stable systems. For this result the interconnection gains
are described in a nonlinear gain matrix and the small gain
condition requires bounds on the image of this gain matrix.
The condition may be interpreted as a nonlinear generalization
of the requirement that the spectral radius of the gain matrix
is less than one. We give some interpretations of the condition
in special cases covering linear gains and linear systems.
Index Terms—Interconnected systems, stability, ISS, small-

gain theorem, gain matrix, large-scale systems

I. INTRODUCTION

Stability is one of the fundamental concepts in the analysis

and design of nonlinear dynamical systems. The notions of

input-to-state stability (ISS) and nonlinear gains has proved

to be an efficient tool for the qualitative description of the

stability of nonlinear input systems. In this paper we con-

sider nonlinear systems consisting of several interconnected

subsystems and investigate their stability properties.

There are different equivalent formulations of ISS: In

terms of KL and K∞ functions (see below), via Lyapunov

functions, as an asymptotic stability property combined with

asymptotic gains, and others, see [11]. A more quantitative

but equivalent formulation, which captures the long term

dynamic behavior of the system, is the notion of input-to-

state dynamical stability (ISDS), see [2].

To analyze the stability of two ISS systems in a feedback

interconnection there are known small-gain theorems pro-

viding the restrictions on the gains of two ISS subsystems

to ensure that the feedback interconnection is ISS, cf. [5],

[4], [7], [2]. These results state that if the composition of

the gain functions γ1(·), γ2(·) of ISS subsystems is small
enough, then the whole system is ISS. In case of linear gain

functions this condition reads

γ1 ◦ γ2 < Id, (1)

we discuss the general condition in Section IV.

The papers [5], [4], [2] have different approaches to for-

mulate and prove the sufficiency of the small-gain condition:

In [5] the proof is based on the properties of KL and

K∞ functions (see below for the definition). The result in

that paper also covers practical ISS results, which we do

not treat here. An ISS-Lyapunov function for the feedback

system is constructed in [4] as some combination of the
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corresponding ISS-Lyapunov functions of both subsystems.

The key assumption in the proof of that paper is that the gains

are already provided in terms of the Lyapunov functions. The

proof of the small-gain theorem in [2] is based on the ISDS

property. As a further result on system interconnections we

note that it is well known, that a cascade of two ISS systems

is ISS, see, e.g., [9] or [10]. These results will turn out to be

special cases of the main result of this paper. In this paper,

we choose an approach using estimates involving KL and

K∞-functions to prove an ISS stability result for general

interconnected systems satisfying a generalized small-gain

condition. Although we believe that the approach should be

amenable to the explicit construction of a Lyapunov function

given Lyapunov functions for the subsystems, we have not

yet been able to achieve this goal.

We note, that in [12] small-gain theorems for general

interconnected systems with linear gains can be found, where

the gains are taken with respect to any p-norm, p ∈ [1,∞],
on the interconnections. These results are of the form that

the spectral radius of a gain matrix should be less than one to

conclude stability. The result of this paper may be regarded

as a nonlinear generalization in the same spirit. We quote also

[8] for some other stability results on large-scale systems.

In this paper we consider a system which consists of three

or more ISS subsystems. We wish to provide conditions by

which the stability question of the overall system can be

reduced to the consideration of the stability of the subsys-

tems. While this can be approached by repeated application

of the cascade property and the known small-gain theorem,

in general this can be a cumbersome problem and it is by

no means obvious in which order the subsystems have to be

chosen to proceed in such an iterative manner. Even worse,

this may not always work, see the motivating example below.

Hence an extension of the known small-gain theorem to

larger interconnections is needed. In this paper we obtain

this extension for the general case. Further, we show how to

calculate the gain matrix for linear systems and give some

interpretation of our result.

The paper is organized as follows. In Section II we

introduce notation and necessary concepts. In particular, we

will need some basic properties of the positive orthant Rn
+

interpreted as a lattice. Also we give an example to motivate

the problem, which we state there. In Section III we prove

the main result, which generalizes the known small-gain

theorem, and consider some special cases (linear gains, linear

systems). In Section IV the “small-gain condition” of the

main result is discussed and we show in which way it may

be interpreted as an extension of the linear condition that
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the spectral radius of the gain matrix is less than one. We

conclude with Section V.

II. MOTIVATION AND PROBLEM DESCRIPTION

a) Notation: In the following R+ denotes the interval

[0,∞). By xT we denote the transpose of a vector x.
Definition 1: (i) A function γ : R+ → R+ is said to be

of class K if it is continuous, increasing and γ(0) = 0. It is
of class K∞ if, in addition, it is proper, i.e., unbounded.

(ii) A function β : R+ × R+ → R+ is said to be of class

KL if, for each fixed t, the function β(·, t) is of class K

and, for each fixed s, the function β(s, ·) is non-increasing
and tends to zero at infinity.

Let | · | denote some norm in Rn, ‖ · ‖ refers to the supre-
mum or essential supremum norm for essentially bounded

functions defined on R+.

Definition 2: Consider a system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

such that for all initial values x0 and all essentially bounded

inputs u(·) unique solutions exist for all positive times. The
system is called input to state stable (ISS), if there exist

functions β of class KL and γ of class K, such that for the

solution ξ(t;x0, u) starting at x0 and applying u

|ξ(t;x0, u)| ≤ β(|x0|, t) + γ(||u||)

holds for all t ≥ 0, x0 ∈ Rn, u essentially bounded.
b) Motivating example: Consider a basic network con-

sisting of three coupled subsystems Σ1,Σ2 and Σ3, each

having the ISS property with well defined gains between

individual subsystems.

The system is depicted in Figure 1 which is to be inter-

preted as follows: u is some external input, each state xi of

system Σi is fed into another subsystem Σj with the linear

gain written at the edge connecting them. E.g., for Σ2 the

ISS property reads as follows: There is a bound for the state

x2 of Σ2 of the form

|x2(t)| ≤ β(x2(0), t) + ε‖x1‖[0,t] +
2

3
‖x3‖[0,t] ,

and similarly for the other systems. The weighted adjacency

matrix of this network is

G =

⎡
⎣ 0 2

3 0
ε 0 2

3
2 ε 0

⎤
⎦ (2)
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Fig. 1. Example of a feedback network of three subsystems.

where we forget about external inputs and edges ”leaving”

the network. The (i, j)th entry of G denotes the gain that
station i receives from the station j. This matrix is called
the (linear) gain matrix of the network.
First we consider the case when ε = 0, that is, we have a

ring network. Intuitively clear, this ring is stable, since the

small-gain condition 2 · 2
3 ·

2
3 = 8

9 < 1 is met. Indeed, this is
the exactly the condition of Corollary 7.

Now, if we rigorously apply the known small-gain theorem

and the cascade rule in an iterative manner, then we always

end up at a point, where we cannot simplify the network

using the small-gain theorem and hence we are not able to

deduce input-to-state stability of the overall network.

Second, what happens, if ε > 0? Rigorous application
of the classical results as before, for example utilizing the

small-gain theorem to combine subsystems Σ1 and Σ2 to a

new subsystem Σ̃12 as in Figure 2 (here we assumed that

ε < 3
2 ), leads to the same situation as before.

In this paper we prove an ISS criterion for such networks.

For the above example it reads as follows: The network

is ISS provided that the spectral radius ρ(G) of the gain
matrix G is strictly less than one. In this particular case one
can compute that the network will remain stable at least for

feedback disturbances with a linear gain ε < 1
12 .

c) Additional Preliminaries: For x, y ∈ Rn, we use the

following notation

x ≥ y ⇐⇒ xi ≥ yi, i = 1, . . . , n , (3)

x > y ⇐⇒ xi > yi, i = 1, . . . , n , (4)

and x � y means negation of x ≥ y. By Rn
+ we denote

{x ∈ Rn : x ≥ 0}. The space (Rn
+, sup, inf) is a lattice,

with inf denoting infimum and sup denoting supremum with
respect to the order ≥ we have just defined. The upper limit
for bounded functions s : R+ → Rn

+ can be defined by

lim sup
t→∞

s(t) := inf
t≥0

sup
τ≥t

s(τ).

For functions v : R+ → Rm we define its restriction to

the interval [s1, s2] by

v[s1,s2](t) :=

{
v(t) if t ∈ [s1, s2],

0 else.

Σ̃12

Σ3
�

�

�

�

u

x3 = y

2 2
3

Fig. 2. Reduced network if ε <
3

2
.
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For functions x : R+ → RN1+...+Nn and times 0 ≤ t1 ≤ t2
we define

⎪⎪⎪⎪⎪⎪⎪⎪x[t1,t2]

⎪⎪⎪⎪⎪⎪⎪⎪ :=

⎛
⎜⎝
||x1,[t1,t2]||

...

||xn,[t1,t2]||

⎞
⎟⎠ .

We will need the following lemma. The proof is not

difficult and thus omitted for reasons of space.

Lemma 3: Let s : R+ → Rn
+ be continuous and bounded.

Then

lim sup
t→∞

s(t) = lim sup
t→∞

⎪⎪⎪⎪⎪⎪⎪⎪s[t/2,∞)

⎪⎪⎪⎪⎪⎪⎪⎪ .

Before we introduce the ISS condition for interconnected

systems let us briefly discuss an equivalent formulation of

ISS. A system

ẋ = f(x, u), (5)

with f : Rn1+n2 → Rn1 continuous and Lipschitz in x
uniformly with respect to u, is said to have the asymptotic
gain property (AG), if there exists a function γAG ∈ K∞

such that for all initial values x0 ∈ Rn1 and all essentially

bounded control functions u(·)

lim sup
t≥0

|ξ(t;x0, u)| ≤ γAG(||u||). (6)

The asymptotic gain property states, that every trajectory

must ultimately stay not far from zero, depending on the

magnitude of ||u||.
The system (5) is said to be globally asymptotically stable
at zero (0-GAS), if there exists a βGAS ∈ KL, such that for

all initial conditions x0 ∈ Rn1

|ξ(t;x0, 0)| ≤ βGAS(|x0|, t). (7)

Thus 0-GAS holds, if, whenever the input u is set to zero,
the system (5) is globally asymptotically stable at x = 0.
By results in [11] asymptotic gain and global asymptotic

stability at 0 together are equivalent to ISS.

d) Problem description: Consider n interconnected
control systems given by

ẋ1 = f1(x1, . . . , xn, u)
...

ẋn = fn(x1, . . . , xn, u)

(8)

where xi ∈ RNi , u ∈ RL and fi : R
Pn

j=1
Nj+L → RNi is

continuous and Lipschitz in the first n arguments uniformly
with respect to u for i = 1, . . . , n. Here xi is the state of

the ith subsystem, and u is considered as an external control
variable.

We call the ith subsystem of (8) ISS, if for its solution
xi(t) starting at xi(0), there exist functions βi of class KL

and γij , γ of class K, such that

|xi(t)| ≤ βi(|xi(0)|, t) +

n∑
j=1

γij(||xj [0,t]||) + γ(||u||) (9)

for all t ≥ 0 and all solutions. Note, that for notational
simplicity we allow the case γij ≡ 0 and require γii ≡ 0 for

all i. The functions γij and γ are called (nonlinear) gains.
We write Γ := (γij) and define Γ : Rn

+ → Rn
+ by

Γ(s1, . . . , sn)T :=

⎛
⎝ n∑

j=1

γ1j(sj), . . . ,
n∑

j=1

γnj(sj)

⎞
⎠

T

(10)

for s = (s1, . . . , sn)T ∈ Rn
+. We refer to Γ as the gain

matrix, although it might not be a linear mapping. Note that
by the properties of γij for s1, s2 ∈ Rn

+ we have that Γ
defines a monotone mapping, i.e.,

s1 ≥ s2 ⇒ Γ(s1) ≥ Γ(s2) . (11)

Assuming the subsystems to be ISS, we now like to ask,

whether the whole system defined by

x = (xT
1 , . . . , xT

n )T , f = (fT
1 , . . . , fT

n )T

and

ẋ = f(x, u) (12)

is ISS (from u to x).

III. MAIN RESULTS

In the following we present a nonlinear version of the

small-gain theorem for networks and also a version for the

case when the gains are linear functions.

1) Nonlinear gains: We need the following notation. For
αi ∈ K∞, i = 1, . . . , n define D : Rn

+ → Rn
+ by

D(s1, . . . , sn)T :=

⎛
⎜⎝

(Id+ α1)(s1)
...

(Id+ αn)(sn)

⎞
⎟⎠ . (13)

Theorem 4 (small-gain theorem for networks): Consider
system (8) and suppose that each subsystem is ISS, i.e.,

condition (9) holds for all i = 1, . . . , n. Let Γ be given by
(10). If there exists a mapping D as in (13), such that

(Γ ◦ D)(s) �≥ s, ∀s ∈ Rn
+ \ {0} , (14)

then the system (12) is ISS from u to x.
Remark 5: Although looking very complicated to handle
at first glance, condition (14) is a straightforward extension

of the ISS small gain theorem of [5]. It has many interesting

interpretations, as we will discuss in Section IV.

The following lemma provides an essential argument in

the proof of Theorem 4, see [1] for details.

Lemma 6: Let D be as in (13) and suppose (14) holds.
Then there exists a ϕ ∈ K∞ such that for all u, v ∈ Rn

+,

(Id− Γ)(u) ≤ v (15)

implies |u| ≤ ϕ(|v|).
We give an outline of the proof of Theorem 4.

Proof: For finite times t ≥ 0 and for s ∈ Rn
+ we

introduce the abbreviating notation⎪⎪⎪⎪⎪⎪⎪⎪x(t)
⎪⎪⎪⎪⎪⎪⎪⎪ := (|x1(t)|, . . . , |xn(t)|)T

, (16)

β(s, t) := (β1(s1, t), . . . , βn(sn, t))
T

, (17)
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and

γn(||u||) := (γ(||u||), . . . , γ(||u||))T
. (18)

The existence of a solution for (12) for all times can be easily

checked using Lemma 6. Let

s∞ := ϕ
(∣∣β(
⎪⎪⎪⎪⎪⎪⎪⎪x(0)

⎪⎪⎪⎪⎪⎪⎪⎪ , 0) + γn(‖u‖)
∣∣) ,

where ϕ is given by Lemma 6. This is a ultimate bound on
the state x(t).
To establish the ISS we utilize the same idea as in [5]:

Instead of estimating |xi(t)| with respect to |xi(0)| in (9),
we can also have the point of view that our trajectory started

in xi(τ) at time 0 ≤ τ ≤ t and we followed it for some time
t − τ and reach xi(t) at time t. For τ = t/2 this reads

|xi(t)| ≤ βi(|xi(t/2)|, t/2) +
∑
j �=i

γij(||xi,[t/2,t]||) + γ(u)

≤ βi(s∞, t/2) +
∑
j �=i

γij(||xi,[t/2,∞)||) + γ(u)(19)

= β̃i(s∞, t) +
∑
j �=i

γij(||xi,[t/2,∞)||) + γ(u) (20)

where we again applied (11) to obtain (19) and defined

β̃i(si, t) := βi(si, t/2),

which is of classKL. To write inequality (20) in vector form,

we define

β̃(s, t) :=
(
β̃1(s1, t), . . . , β̃n(sn, t)

)T

(21)

for all s ∈ Rn
+. Denoting by sn

∞ := (s∞, . . . , s∞)T we

obtain the vector formulation of (20) as⎪⎪⎪⎪⎪⎪⎪⎪x(t)
⎪⎪⎪⎪⎪⎪⎪⎪ ≤ β̃(sn

∞, t) + Γ ◦
⎪⎪⎪⎪⎪⎪⎪⎪x[t/2,∞)

⎪⎪⎪⎪⎪⎪⎪⎪+ γn(||u||). (22)

By the boundedness of the solution we can take the upper

limit on both sides of (22). By Lemma 3 we have

lim sup
t→∞

⎪⎪⎪⎪⎪⎪⎪⎪x(t)
⎪⎪⎪⎪⎪⎪⎪⎪ = lim sup

t→∞

⎪⎪⎪⎪⎪⎪⎪⎪x[t/2,∞)

⎪⎪⎪⎪⎪⎪⎪⎪ =: l(x) ,

and it follows that

(Id− Γ) ◦ l(x) ≤ γn(||u||)

since limt→∞ β̃(sn
∞, t) = 0. Finally, by Lemma 6 we have

|l(x)| ≤ ϕ(|γn(||u||)|) (23)

for some ϕ of class K∞. But (23) is the asymptotic gain

property (6). Together with 0-GAS (the proof is omitted for
brevity) this implies the ISS for (12) cf. [11, Theorem 1].

2) Linear gains: Suppose the gain functions γij are all

linear, hence Γ is a linear mapping and (10) is just matrix-
vector multiplication. Then we have the following

Corollary 7: Consider n interconnected ISS systems as in
the previous section on the problem description with a linear

gain matrix Γ, such that for the spectral radius ρ we have

ρ(Γ) < 1. (24)

Then the system defined by (12) is ISS.

Remark 8: For the case of large-scale interconnected
input-output systems a similar result exists, which can be

found in a monograph by Vidyasagar, cf. [12, p. 110]. It

also covers Corollary 7 as a special case. The condition

on the spectral radius is quite the same, although it is

applied to a test matrix, whose entries are finite gains of
products of interconnection operators and corresponding
subsystem operators. These gains are non-negative numbers
and, roughly speaking, defined as the minimal possible slope

of affine bounds on |G(x)|L∞
with respect to |x|L∞

for

operators G : L∞ → L∞ and states x ∈ L∞.

Proof: The proof is essentially the same as for Theo-
rem 4, but note that instead of Lemma 6 we now directly

have existence of

(Id− Γ)−1 = Id+ Γ + Γ2 + . . .

since ρ(Γ) < 1 and from the power sum expansion it is
obvious that (Id−Γ)−1 is a non-decreasing mapping, i.e., for

d1, d2 ≥ 0 we have (Id−Γ)−1(d1+d2)−(Id−Γ)−1(d1) ≥ 0.
Thus at the two places where Lemma 6 has been used we

can simply apply (Id−Γ)−1 to get the desired estimates.

A. Application to linear systems

An important special case is, when the underlying systems

are linear themselves. Consider the following setup, where

in the sequel we omit the external input, formerly denoted

by u, for notational simplicity. Let

ẋj = Ajxj , xj ∈ RNj , j = 1, . . . , n (25)

describe n globally asymptotically stable linear systems,
which are interconnected by the formula

ẋj = Ajxj +
n∑

k=1

∆jkxk j = 1, . . . , n, (26)

which can be rewritten as

ẋ = (A + ∆)x, (27)

where A is block diagonal, A = diag(Aj , j = 1, . . . , n),
each Aj is Hurwitz (i.e., the spectrum of Aj is contained in

the open left half plane) and the matrix ∆ = (∆jk) is also
in block form and encodes the connections between the n
subsystems. We suppose that ∆jj = 0 for all j. Define the
matrix R = (rjk), R ∈ Rn×n

+ by rjk := ||∆jk||. For each
subsystem, there exist non-negative numbers Mj , λj , such

that eAjt ≤ Mje
−λjt for all t ≥ 0.

Define a matrix D ∈ Rn×n
+ by D := diag(

Mj

λj
, j =

1, . . . , n).
From the last subsection we obtain

Corollary 9: If ρ(D · R) < 1 then (27) is globally
asymptotically stable.

Note that this is a special case of the theorem, which can

be found in Vidyasagar [12, p. 110], see Remark 8.

Proof: Denote the initial value by x0. Then by elemen-

tary ODE theory we have

xj(t) = eAjtx0
j +
∑
k �=j

∫ t

0

eAj(t−s)∆jkxk(s)ds (28)

5636



and by standard estimates

|xj(t)| ≤ Mje
−λjt +

∑
k �=j

rjk
Mk

λk
||xk,[0,t]||. (29)

As one can see from (29), in this case the gain matrix

happens to be Γ = D · R.
It is noteworthy, that this particular corollary is also a

consequence of a recent paper [6] by Hinrichsen, Karow

and Pritchard. For the convenience of the reader we state

a simplified version of one of their results here.

Let || · ||R denote the weighted maximum norm given
by ||∆||R := max

(j,k):rjk �=0
r−1
jk ||∆jk||. Let BR := {B =

(Bjk) such that rjk = 0 implies Bjk = 0}.
The stability radius r(A,R) of the matrix A with respect
to the norm || · ||R is defined by

r(A,R) := inf
{
||B||R

∣∣B ∈ BR :

ẋ = Ax + Bx is unstable}
(30)

The stability radius is characterized by the fact, that

block perturbations below it cannot destabilize the system,

whereas there is a block perturbation of size equal to r(A,R)
destabilizing the nominal system A. The matrix R encodes
which block entries may be non-zero at all.

This means, that whenever a block matrix B = (Bjk) with
the property

rjk = 0 implies Bjk = 0

fulfills ||B||R < r(A,R) then the system given by ẋ =
Ax + Bx is stable (i.e., A+B is Hurwitz).
Lemma 10: Let A1, . . . , An be Hurwitz, i.e., σ(Aj) ⊂

C− := {z ∈ C : Re z < 0}. Then the stability radius
r(A,R) of matrix A with respect to the norm weighted by
R is given by

r(A,R)=

(
sup
is∈R

ρ
(
R·diag

(
||(sI − Aj)

−1||, j=1,...,n

)))−1

.

Note that this is a stripped down version of Corollary 4.3(b)

of [6].

An alternative proof for Corollary 9 using Lemma 10 is
sketched in the following: Using the notation from [6], we
get a weighted norm by the matrix R. We apply Lemma 10
to show that the stability radius with respect to the weighted

norm given by R of the system given by ẋ = Ax is greater
than one.

By Lemma 5.5.2.2 of [3] we obtain ||(sI−Aj)
−1|| ≤ Mj

λj

for is ∈ R. Hence ρ(D · R) < 1 implies

sup
is∈R

ρ(R · diag(||sI − Aj)
−1||, j = 1, . . . , n) < 1,

hence r(A,R) > 1, whereas ||∆||R = 1, which proves the
corollary.

IV. INTERPRETATION OF THE PREREQUISITES

In this section we wish to provide insight into the small

gain condition of Theorem 4. We first show, that the result

covers the known interconnection results for cascades and

feedback interconnections. We then compare the condition

with the linear case.

It is an easy consequence of Theorem 4, that an arbitrarily

long feed forward cascade of ISS subsystems is ISS again.

If the subsystems are enumerated consecutively and the gain

function from subsystem i to subsystem j > i is denoted by
γij , then the resulting gain matrix has non-zero entries only

below the diagonal. For arbitrary α ∈ K∞ the gain matrix

with entries γij ◦(IdR+
+α) for j > i and 0 for j ≤ i clearly

satisfies (14). Therefore the feed forward cascade itself is

ISS.

Consider n = 2 in equation (8), i.e., two subsystems with
linear gains. Then in Corollary 7 we have

Γ =

[
0 γ12

γ21 0

]
, γij ∈ R+

and ρ(Γ) < 1 ⇔ γ12γ21 < 1. Hence we obtain the known
linear small-gain theorem, which is also a special case of [4]

and [2].

For nonlinear gains and n = 2 the condition (14) in
Theorem 4 reads as follows(

γ12 ◦ (Id+ α2)(s2)
γ21 ◦ (Id+ α1)(s1)

)
�

(
s1

s2

)
,

for all (s1, s2) ∈ R2
+. This is easily seen to be equivalent to

γ12 ◦ (Id+ α2) ◦ γ21 ◦ (Id+ α1)(s) < s , ∀s > 0.

(Just check what happens for (γ12 ◦ (Id+ α2)(s2), s2), etc.)
The latter is equivalent to the condition in the small-gain

theorem of [5], which is

(Id+ α̃1) ◦ γ21 ◦ (Id+ α̃2) ◦ γ12(s) ≤ s , ∀s > 0 (31)

for some other α̃1, α̃2 ∈ K∞ and all s ∈ R+, hence our

theorem contains this result as a particular case.

We discuss some consequences from (14). Recall that for

a non-negative matrix Γ the following are equivalent:

(i) ρ(Γ) < 1,
(ii) ∀s ∈ Rn

+ \ {0} : Γs �≥ s,
(iii) Γk → 0, for k → ∞,
(iv) there exist a1, . . . , an > 0 such that ∀s ∈ Rn

+ \ {0} :
Γ[I + diag(a1, . . . , an)]s �≥ s.

Note that (iv) is the linear version of (14). As condition (i)

is not useful in the nonlinear setting, we have turned to (ii).

We found for the present approach that we need to relax (ii)

to (iv) in the nonlinear case. In the nonlinear case (iv) implies

(ii) but not vice versa. This may be seen by considering the

case of two nonlinear subsystems for which we have to check

(31). Let γ12 = IdR+
and γ21(r) = r(1 − e−r). Since

already limr→∞(γ12 ◦ γ21 − Id)(r) = 0 there certainly are
no class K∞ functions α̃i, i = 1, 2 such that (31) holds.
For the following statement let us define the open domains

Ωi =

⎧⎨
⎩x ∈ Rn : |xi| >

∑
j �=i

γij(|xj |)

⎫⎬
⎭ .

Proposition 11: It follows from (14) that

Γ(s) � s for any s ∈ Rn
+ \ {0} . (32)
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Fig. 3. Overlapping of Ωi domains in R
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Property (32) also follows from the asymptotic stability of

the system

s(k + 1) = Γ(s(k)) , k ∈ N (33)

in s∗ = 0 (with state space Rn
+).

Finally, (32) is equivalent to

n⋃
i=1

Ωi = Rn \ {0} and

n⋂
i=1

Ωi �= ∅. (34)

For linear Γ any of (14), (32), (33), (34) is equivalent to

ρ(Γ) < 1.
For a proof of the proposition we refer to [1], where also

the following stronger statement is proved: If the system

is irreducible (that is, the graph associated with the gain

network is irreducible), then properties (32) and (33) are in

fact equivalent. There the authors also state an example that

the implication from (32) to (33) fails for non-irreducible

systems.

Note that while in the linear case ρ(Γ) < 1 is equivalent
to the existence of an s > 0 such that Γ(s) < s (which is to
say
⋂n

i=1 Ωi �= ∅), this is not the case for nonlinear Γ.
Let us briefly explain, why the overlapping condition (34)

is interesting: From the theory of ISS-Lyapunov function it

is known, that a system of the form (5) is ISS if and only if

there exists a smooth Lyapunov function V with the property

|x| ≥ γ(|u|) ⇒ ∇V (x)f(x, u) < −W (|x|) ,

for some W ∈ K. In the case of our interconnected system
this condition translates to the existence of Lyapunov func-

tions Vi for the subsystems i = 1, . . . , n with the property

|xi| ≥
∑

γij(|xj |) + γ(|u|)

⇒ ∇Vi(xi)fi(x, u) < −Wi(|xi|) ,
(35)

Now for u = 0 the condition of (35) is simply, that x ∈ Ωi.

Thus the overlapping condition states that in each point

of the state space one of the Lyapunov functions of the

subsystems is decreasing. It is an interesting problem if

via this a Lyapunov function for the whole system may be

constructed.

A typical situation in case of three one dimensional

systems (R3) is presented in Figure 3 on a plane crossing

the positive semi axis. The three sectors are the intersections

of the Ωi with this plane.

V. CONCLUSIONS

We considered a composite system consisting of an ar-

bitrary number of nonlinear arbitrarily interconnected sub-

systems, as they naturally arise as dynamical systems on

networks.

For this general case we derived a large scale system

version of the nonlinear small-gain theorem. For the special
case of linear interconnection gains this is a special case of a

known theorem, cf. [12, page 110]. Applications of the result

to linear systems has been discussed. Many interesting ques-

tions remain open, for instance concerning the construction

of Lyapunov functions.
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