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Abstract— In this paper, we use a large-scale dynamical
systems perspective to provide a system-theoretic foundation for
thermodynamics. Specifically, using a state space formulation,
we develop a nonlinear compartmental dynamical system model
characterized by energy conservation laws that is consistent
with basic thermodynamic principles. In addition, we establish
the existence of a unique, continuously differentiable global
entropy function for our large-scale dynamical system, and
using Lyapunov stability theory we show that the proposed
thermodynamic model has convergent trajectories to Lyapunov
stable equilibria determined by the system initial energies.
Finally, using the system entropy, we establish the absence of
Poincaré recurrence for our thermodynamic model and develop
a clear connection between irreversibility, the second law of
thermodynamics, and the entropic arrow of time.

I. INTRODUCTION

As discussed in the recent monograph [1], there have been
many different presentations of classical thermodynamics
with varying hypotheses and conclusions. To exacerbate
matters, the careless and considerable differences in the
definitions of two of the key notions of thermodynamics—
namely, the notions of reversibility and irreversibility—have
contributed to the widespread confusion and lack of clarity
of the exposition of classical thermodynamics over the past
one and a half centuries. For example, the concept of
reversible processes as defined by Clausius, Kelvin, Planck,
and Carathéodory have very different meanings. In particular,
Clausius defines a reversible (umkehrbar) process as a slowly
varying process wherein successive states of this process
differ by infinitesimals from the equilibrium system states.
Such system transformations are commonly referred to as
quasistatic transformations in the thermodynamic literature.
Alternatively, Kelvin’s notions of reversibility involve the
ability of a system to completely recover its initial state
from the final system state. Planck introduced several notions
of reversibility. His main notion of reversibility is one
of complete reversibility and involves recoverability of the
original state of the dynamical system while at the same
time restoring the environment to its original condition. Un-
like Clausius’ notion of reversibility, Kelvin’s and Planck’s
notions of reversibility do not require the system to exactly
retrace its original trajectory in reverse order. Carathéodory’s
notion of reversibility involves recoverability of the system
state in an adiabatic process resulting in yet another definition
of thermodynamic reversibility. These subtle distinctions of
(ir)reversibility are often unrecognized in the thermodynamic
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literature. Notable exceptions to this fact include [2], [3],
with [3] providing an excellent exposition of the relation
between irreversibility, the second law of thermodynamics,
and the arrow of time.

In this paper, we place thermodynamics on a system-
theoretic foundation so as to harmonize it with classical
mechanics. In particular, we develop a novel formulation
of thermodynamics that can be viewed as a moderate-sized
system theory as compared to statistical thermodynamics.
This middle-ground theory involves deterministic large-scale
dynamical system models that bridge the gap between clas-
sical and statistical thermodynamics. Specifically, since ther-
modynamic models are concerned with energy flow among
subsystems, we use a state space formulation to develop
a nonlinear compartmental dynamical system model that is
characterized by energy conservation laws capturing the ex-
change of energy between coupled macroscopic subsystems.
Furthermore, using graph-theoretic notions, we state two
thermodynamic axioms consistent with the zeroth and second
laws of thermodynamics, which ensure that our large-scale
dynamical system model gives rise to a thermodynamically
consistent energy flow model. Specifically, using a large-
scale dynamical systems theory perspective for thermody-
namics, we show that our compartmental dynamical system
model leads to a precise formulation of the equivalence
between work energy and heat in a large-scale dynamical
system.

Next, we give a deterministic definition of entropy for
a large-scale dynamical system that is consistent with the
classical thermodynamic definition of entropy, and we show
that it satisfies a Clausius-type inequality leading to the
law of entropy nonconservation. However, unlike classical
thermodynamics, wherein entropy is not defined for arbi-
trary states out of equilibrium, our definition of entropy
holds for nonequilibrium dynamical systems. Then, using
Lyapunov stability theory, we show that in the absence of
heat exchange with the environment our thermodynamically
consistent large-scale nonlinear dynamical system model
possesses a continuum of equilibria and is semistable, that
is, it has convergent subsystem energies to Lyapunov stable
energy equilibria determined by the large-scale system initial
subsystem energies.

For our thermodynamically consistent dynamical system
model, we further establish the existence of a unique
continuously differentiable global entropy function for all
equilibrium and nonequilibrium states. Using this global
entropy function, we go on to establish a clear connection
between thermodynamics and the arrow of time. Specifically,
we rigorously show a state irrecoverability and hence a
state irreversibility nature of thermodynamics. In particular,
we show that for every nonequilibrium system state and
corresponding system trajectory of our thermodynamically
consistent large-scale nonlinear dynamical system, there does
not exist a state such that the corresponding system trajectory
completely recovers the initial system state of the dynamical
system and at the same time restores the energy supplied by
the environment back to its original condition. This, along
with the existence of a global strictly increasing entropy
function on every nontrivial system trajectory, gives a clear
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time-reversal asymmetry characterization of thermodynam-
ics, establishing an emergence of the direction of time flow.

II. MATHEMATICAL PRELIMINARIES

In this section we establish notation and provide a general
axiomatic definition of a dynamical system. The notation
used in this paper is fairly standard. Specifically, for z ∈ R

q

we write z ≥≥ 0 (respectively, z >> 0) to indicate that every
component of z is nonnegative (respectively, positive). In this
case we say that z is nonnegative or positive, respectively.
Let R

q

+ and R
q
+ denote the nonnegative and positive orthants

of R
q, that is, if z ∈ R

q, then z ∈ R
q

+ and z ∈ R
q
+ are

equivalent, respectively, to z ≥≥ 0 and z >> 0.
Next, we define a dynamical system as a precise mathe-

matical object satisfying a set of axioms. For this definition,
let U denote an input space that consists of bounded con-
tinuous U -valued functions on [0,∞). The set U ⊆ R

m

contains the set of input values, that is, at any time t ≥ t0,
u(t) ∈ U . The space U is assumed to be closed under the
shift operator. Furthermore, we let Y denote an output space
that consists of continuous Y -valued functions on [0,∞).
The set Y ⊆ R

l contains the set of output values, that is,
each value of y(t) ∈ Y , t ≥ t0. The space Y is assumed to
be closed under the shift operator.

Definition 2.1: Let D be a Euclidian space with norm
given by ‖ · ‖. A dynamical system on D is the octuple
(D,U , U,Y, Y, [0,∞), s, h), where s : [0,∞)×D×U → B
and h : D×U → Y are such that the following axioms hold:

i) (Continuity): s(·, ·, u) is jointly continuous for all u ∈
U .

ii) (Consistency): s(t0, z0, u) = z0 for all t0 ∈ R, z0 ∈ D,
and u ∈ U .

iii) (Determinism): s(t, z0, u1) = s(t, z0, u2) for all t ∈
[t0,∞), z0 ∈ D, and u1, u2 ∈ U satisfying u1(τ) =
u2(τ), τ ≤ t.

iv) (Semi-group property): s(τ, s(t, z0, u), u) = s(t +
τ, z0, u) for all z0 ∈ D, u ∈ U , and τ , t ∈ [t0,∞).

v) (Read-out map): There exists y ∈ Y such that y(t) =
h(s(t, z0, u), u(t)) for all z0 ∈ D, u ∈ U , and t ≥ t0.

We denote the dynamical system (D,U , U,Y, Y,
[0,∞), s, h) by G. Furthermore, we refer to the map s(·, ·, ·)
as the flow or trajectory of G corresponding to z0 ∈ D, and
for a given s(t, z0, u), t ≥ t0, u ∈ U , we refer to z0 ∈ D
as an initial condition of G. Given t ∈ R we denote the
map s(t, ·, ·) : D × U → D by st(z0, u). Hence, for a fixed
t ∈ R the set of mappings defined by st(z0, u) = s(t, z0, u)
for every z0 ∈ D and u ∈ U gives the flow of G. In
particular, if D0 is a collection of initial conditions such
that D0 ⊂ B, then the flow st : D0 × U → B is the
motion of all points z0 ∈ D0 or, equivalently, the image of
D0 ⊂ D under the flow st, that is, st(D0,U) ⊂ D, where
st(D0,U) � {y : y = st(z0, u) for all z0 ∈ D and u ∈ U}.
Alternatively, if the initial condition z0 ∈ D is fixed
and we let [t0, t1] ⊂ R and u ∈ U , then the mapping
s(·, z0, u) : [t0, t1] → D defines the solution curve or
trajectory of the dynamical system G. Given z ∈ D and
u ∈ U , we denote the map s(·, z, u) : R → D by sz(t, u).

The dynamical system G is isolated if u(t) ≡ 0. Further-
more, an equilibrium point of the isolated dynamical system
G is a point x ∈ D satisfying s(t, x, 0) = x, t ≥ t0. An
equilibrium point x ∈ Dc ⊆ D of the isolated dynamical
system G is Lyapunov stable with respect to the positively
invariant set Dc if, for every relatively open subset Nε of Dc
containing x, there exists a relatively open subset Nδ of Dc
containing x such that st(Nδ,U) ⊂ Nε for all t ≥ t0, where
U = {u : R → R : u(t) ≡ 0}. An equilibrium point x ∈ Dc

of the isolated dynamical system G is called semistable if it
is Lyapunov stable and there exists a relatively open subset
N of Dc containing x such that for all initial conditions
in N , the trajectory of G converges to a Lyapunov stable
equilibrium point, that is, ‖s(t, z, 0) − y‖ → 0 as t → ∞,
where y ∈ Dc is a Lyapunov stable equilibrium point of G
and z ∈ Dc. The isolated dynamical system G is said to be
semistable if every equilibrium point of G is semistable.

Finally, for a given interval [t0, t1], where 0 ≤ t0 < t1 <
∞, let W[t0,t1] denote the set of all possible trajectories of
G given by

W[t0,t1] � {sz : [t0, t1] × U → D : sz(·, u(·))

satisfies Axioms i) − iv) of
Definition 2.1, z ∈ D, and u(·) ∈ U}, (1)

where sz(·, u(·)) denotes the solution curve or trajectory of G
for a given fixed initial condition z ∈ D and input u(·) ∈ U .

III. REVERSIBILITY, IRREVERSIBILITY,
RECOVERABILITY, AND IRRECOVERABILITY

The notions of reversibility, irreversibility, recoverability,
and irrecoverability all play a crucial role in thermodynamic
processes. In this section we define the notions of R-state
reversibility, state reversibility, and state recoverability of a
dynamical system G. R-state reversibility concerns the exis-
tence of a system state with the property that a transformed
system trajectory through an involution operator R is an im-
age of a given system trajectory of G on a specified finite time
interval. State reversibility concerns the existence of a system
state with the property that the resulting system trajectory is
the time-reversed image of a given system trajectory of G
on a specified finite time interval. Finally, state recoverability
concerns the existence of a system state with the property that
the resulting system trajectory completely recovers the initial
state of the dynamical system over a finite time interval.

For the results of this section we use the definition of a
dynamical system given in Definition 2.1. We start by estab-
lishing the notions of (ir)reversibility and (ir)recoverability
of a dynamical system G defined on a Euclidian space D.

Definition 3.1: Consider the dynamical system G defined
on D. Let R : D → D be an involutive operator (that is,
R2 = ID, where ID denotes the identity operator on D) and
let sz(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U . The function s−z :
[t0, t1] × U → D is an R-reversed trajectory of sz(·, u(·))
if there exists an input u−(·) ∈ U and a continuous, strictly
increasing function τ : [t0, t1] → [t0, t1] such that τ(t0) =
t0, τ(t1) = t1, and

s−z(t, u−(t)) = Rsz(t0 + t1 − τ(t), u(t0 + t1 − τ(t))),

t ∈ [t0, t1]. (2)
Definition 3.2: Consider the dynamical system G defined

on D. Let R : D → D be an involutive operator, let r :
U × Y → R, and let sz(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U .
sz(·, u(·)) is an R-reversible trajectory of G if there exists
an input u−(·) ∈ U such that s−z(·, u−(·)) ∈ W[t0,t1] and

∫ t1

t0

r(u(t), y(t))dt +

∫ t1

t0

r(u−(t), y−(t))dt = 0, (3)

where y−(·) denotes the read-out map for the R-reversed
trajectory of sz(·, u(·)). Furthermore, G is an R-state re-
versible dynamical system if for every z ∈ D, sz(·, u(·)),
where u(·) ∈ U , is an R-reversible trajectory of G.

In classical mechanics, R is a transformation which re-
verses the sign of all system momenta and magnetic fields,
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whereas in classical reversible thermodynamics R can be
taken to be the identity operator. Note that if R = ID, then
sz(·, u(·)), where u(·) ∈ U , is an ID-reversible trajectory or,
simply, sz(·, u(·)) is a reversible trajectory. Furthermore, we
say that G is a state reversible dynamical system if and only
if for every z ∈ D, sz(·, u(·)), where u(·) ∈ U , is a reversible
trajectory of G. Note that unlike state reversible systems, R-
state reversible dynamical systems need not retrace every
stage of the original system trajectory in reverse order, nor
is it necessary for the dynamical system to recover the initial
system state. The function r(u, y) in Definition 3.2 is a gen-
eralized power supply from the environment to the dynamical
system through the system’s input-output ports (u, y). Hence,
(3) assures that the total generalized energy supplied to the
dynamical system G by the environment is returned to the
environment over a given R-reversible trajectory starting and
ending at any given (not necessarily the same) state z ∈ D.
Furthermore, condition (3) assures that a reversible process
completely restores the original dynamic state of a system
and at the same time restores the energy supplied by the
environment back to its original condition. The following
result provides sufficient conditions for the existence of
an R-reversible trajectory of a nonlinear dynamical system
G, and hence, establishes sufficient conditions for R-state
reversibility of the dynamical system G.

Theorem 3.1: Consider the dynamical system G defined
on D. Let R : D → D be an involutive operator, and let
sz(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U . Assume there exist a
continuous function V : D → R and a function r : U ×Y →
R such that V (z) = V (Rz), z ∈ D, and for every z ∈ D
and all t̂0, t̂1, t0 ≤ t̂0 < t̂1 ≤ t1,

V (sz(t̂1, u(t̂1))) ≥ V (sz(t̂0, u(t̂0)))

+

∫ t̂1

t̂0

r(u(t), y(t))dt. (4)

Furthermore, assume there exists M ⊂ D such that for all t̂0,
t̂1, t0 ≤ t̂0 < t̂1 ≤ t1, and sz(t, u(t)) 
∈ M, t ∈ [t̂0, t̂1], (4)
holds as a strict inequality. If sz(·, u(·)) is an R-reversible
trajectory of G, then sz(t, u(t)) ∈ M, t ∈ [t0, t1].

It is important to note that since V : D → R in Theorem
3.1 is not sign definite, Theorem 3.1 also holds for the
case where the inequality in (4) is reversed. The following
corollary to Theorem 3.1 is immediate.

Corollary 3.1: Consider the dynamical system G defined
on D. Let R : D → D be an involutive operator, let M ⊂
D, and let sz(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U . Assume
there exists a continuous function V : D → R such that
V (z) = V (Rz), z ∈ D, and for sz(t, u(t)) 
∈ M, t ∈
[t1, t2], V (s(t, z0, u(·))) is a strictly increasing (respectively,
decreasing) function of time. If sz(·, u(·)) is an R-reversible
trajectory of G, then sz(t, u(t)) ∈ M, t ∈ [t0, t1].

It follows from Corollary 3.1 that if, for a given dynamical
system G, there exists an R-reversible trajectory of G, then
there does not exist a function of the state of the system that
strictly decreases or increases in time on any trajectory of
G lying in M. In this case, the existence of a completely
ordered time set having a topological structure involving a
closed set homeomorphic to the real line cannot be estab-
lished. Such systems, which include lossless Newtonian and
Hamiltonian systems, are time-reversal symmetric and hence
lack an inherent time direction. However, that is not the case
with thermodynamic systems.

Next, we present a notion of state recoverability of a
dynamical system G.

Definition 3.3: Consider the dynamical system G defined
on D. Let r : U × Y → R, and let sz(·, u(·)) ∈ W[t0,t1],

where u(·) ∈ U . sz(·, u(·)) is a recoverable trajectory of
G if there exists u−(·) ∈ U and t2 > t1 such that u− :
[t1, t2] → U ,

s(t2, s
z(t1, u(t1)), u

−(t2)) = sz(t0, u(t0)), (5)

and∫ t1

t0

r(u(t), y(t))dt +

∫ t2

t1

r(u−(t), y−(t))dt = 0, (6)

where y−(·) denotes the read-out map for the trajectory
s(·, sz(t1, u(t1)), u−(·)). Furthermore, G is a state recov-
erable dynamical system if for every z ∈ D, sz(·, u(·)) is a
recoverable trajectory of G.

It follows from the definition of state recoverability that
the way in which the initial dynamical system state is
restored may be chosen freely so long as (6) is satisfied.
Hence, unlike R-state reversibility, it is not necessary for the
dynamical system to recover the initial state of the system
through an involutive transformation of the system trajectory.
Furthermore, unlike state reversibility, it is not necessary for
the dynamical system to retrace every stage of the original
trajectory in the reverse order. However, condition (6) assures
that the recoverable process completely restores the original
dynamic state and at the same time restores the energy sup-
plied by the environment back to its original condition. This
notion of recoverability is closely related to Planck’s notion
of complete reversibility, wherein the initial system state
is restored in the totality of Nature (“die gesamte Natur”).
The following result provides a sufficient condition for the
existence of a recoverable trajectory of a nonlinear dynamical
system G, and hence, establishes sufficient conditions for
state recoverability of G.

Theorem 3.2: Consider the dynamical system G defined
on D. Let sz(·, u(·)) ∈ W[t0,t1], where u(·) ∈ U . Assume
there exist a continuous function V : D → R and a function
r : U × Y → R such that for every z ∈ D and all t̂0, t̂1,
t0 ≤ t̂0 < t̂1 ≤ t1, V (sz(t, u(t))) satisfies (4). Furthermore,
assume there exists M ⊂ D such that for all t̂0, t̂1, t0 ≤
t̂0 < t̂1 ≤ t1, and sz(t, u(t)) 
∈ M, t ∈ [t̂0, t̂1], (4) holds as
a strict inequality. If sz(·, u(·)) is a recoverable trajectory of
G, then sz(t, u(t)) ∈ M, t ∈ [t0, t1].

The following corollary to Theorem 3.2 is immediate.
Corollary 3.2: Consider the dynamical system G defined

on D. Let M ⊂ D, and let sz(·, u(·)) ∈ W[t0,t1], where
u(·) ∈ U . Assume there exists a continuous function V :
D → R such that for sz(t, u(t)) 
∈ M, t ∈ [t0, t1],
V (s(t, z0, u(·)) is a strictly increasing (respectively, decreas-
ing) function of time. If sz(·, u(·)) is a recoverable trajectory
of G, then sz(t, u(t)) ∈ M, t ∈ [t0, t1].

As in the case of R-state reversibility and state reversibil-
ity, state recoverability can be used to establish a connection
between a dynamical system evolving on a manifold M ⊂
D and the arrow of time. However, in the case of state
recoverability, the recoverable dynamical system trajectory
need not involve an involutive transformation of the system
trajectory, nor is it required to retrace the original system
trajectory in recovering the original dynamic state. It should
be noted here that state recoverability is not implied by
the concepts of reachability and controllability, which play
a central role in control theory. For example, one might
envision, albeit with a considerable stretch of the imag-
ination, perfectly controlled inputs that could reassemble
a broken egg or even fuse water into solid cubes of ice.
However, in all such cases, an external source of energy
from the environment would be required to operate such an
immaculate state recoverable mechanism and would violate
condition (6). Clearly, state recoverability is a weaker notion
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than that of state reversibility since state reversibility implies
state recoverability; the converse, however, is not generally
true. Conversely, state irrecoverability is a logically stronger
notion than state irreversibility since state irrecoverability
implies state irreversibility. However, as we see in Section
VI, these notions are equivalent for thermodynamic systems.

IV. REVERSIBLE SYSTEMS, VOLUME-PRESERVING

FLOWS, AND POINCARÉ RECURRENCE

The notion of R-state reversibility introduced in Section
III is one of the fundamental symmetries that arises in natural
science. This notion can also be characterized by the flow
of a dynamical system. In particular, consider the dynamical
system given by

ż(t) = w(z(t)), z(t0) = z0, t ∈ Iz0
, (7)

where z(t) ∈ D ⊆ R
q, t ∈ Iz0

, is the system state vector,
D is an open subset of R

q, w : D → R
q is locally Lipschitz

continuous on D, and Iz0
= [t0, τz0

), t0 < τz0
≤ ∞, is the

maximal interval of existence for the solution z(·) of (7). A
function z : Iz0

→ D is said to be the solution to (7) on the
interval Iz0

⊆ R with initial condition z(t0) = z0, if z(t)
satisfies (7) for all t ∈ Iz0

. Note that since w(·) is locally
Lipschitz continuous on D, it follows from Theorem 3.1 of
[4, p. 18] that the solution to (7) is unique for every initial
condition in D and jointly continuous in t and z0. In this
case, the semi-group property s(t + τ, z0) = s(t, s(τ, z0)),
t, τ ∈ Iz0

, and the continuity of s(t, ·) on D, t ∈ Iz0
,

hold. Given t ∈ R, we denote the flow s(t, ·) : D → D
of (7) by st(z0) for z0 ∈ D, and given z ∈ D, we denote
the trajectory s(·, z) : R → D of (7) by sz(t). Now, in
terms of the flow st : D → D of (7), the consistency and
semi-group properties of (7) can be equivalently written as
s0(z0) = z0 and (sτ ◦ st)(z0) = sτ (st(z0)) = st+τ (z0),
where “◦” denotes the composition operator. Next, it follows
from continuity of solutions and the semi-group property
that the map st : D → D is a continuous function with
a continuous inverse s−t. Thus, st, t ∈ Iz0

, generates a
one-parameter family of homeomorphisms on D forming a
commutative group under composition.

To show that R-state reversibility can be characterized by
the flow of (7), let R : D → D be a continuous map of (7)
such that

Ṙ(z(t)) = −w(R(z(t))), t ∈ IR(z0). (8)

Now, it follows from (8) that R◦st = s−t ◦R, t ∈ Iz0
. This

condition, with R(·) satisfying (8), defines an R-reversed
trajectory of (7) in the sense of Definition 3.1 with τ(t) = t.

In the context of classical mechanics involving the config-
uration manifold (space of generalized positions) Q = R

n,
with governing equations given by

q̇(t) =

(
∂H(q(t), p(t))

∂p(t)

)T

, q(t0) = q0, t ≥ t0, (9)

ṗ(t) = −

(
∂H(q(t), p(t))

∂q(t)

)T

, p(t0) = p0, (10)

where q ∈ R
n denotes generalized system positions, p ∈ R

n

denotes generalized system momenta, H : R
n × R

n → R is
the system Hamiltonian given by H(q, p) � q̇Tp − L(q, q̇),

L(q, q̇) is the system Lagrangian, and p(q, q̇) �

(
∂L(q,q̇)

∂q̇

)T

,
the reversing symmetry R : R

n×R
n → R

n×R
n is such that

R(q, p) = (q,−p) and satisfies (8) trivially. In this case, R
is an involution. This implies that if (q(t), p(t)), t ≥ t0, is a
solution to (9) and (10), then (q(−t),−p(−t)), t ≥ t0, is also

a solution to (9) and (10) with initial condition (q0,−p0). In
the configuration space this clearly shows the time reversal
nature of lossless mechanical systems.

Reversible dynamical systems tend to exhibit a phe-
nomenon known as Poincaré recurrence [5]. Poincaré re-
currence states that if a dynamical system has a fixed total
energy that restricts its dynamics to bounded subsets of its
state space, then the dynamical system will eventually return
arbitrarily close to its initial system state infinitely often.
More precisely, Poincaré [5] established the fact that if the
flow of a dynamical system preserves volume and has only
bounded orbits, then for each open set there exist orbits that
intersect the set infinitely often. In order to state the Poincaré
recurrence theorem, the following definitions are needed.

Definition 4.1: Let V ⊂ R
q be a bounded set. The volume

Vvol of V is defined as

Vvol �

∫
V

dV. (11)

Definition 4.2: Let V ⊂ R
q be a bounded set. A map

g : V → Q, where Q ⊂ R
q, is volume-preserving if for any

V0 ⊂ V , the volume of g(V0) is equal to the volume of V0.
The following theorem, known as Liouville’s theorem [1],

establishes sufficient conditions for volume-preserving flows.
For the statement of this theorem, consider the nonlinear
dynamical system (7) and define the divergence of w =
[w1, ..., wq]

T : D → R
q by

∇ · w(z) �

q∑
i=1

∂wi(z)

∂zi

, (12)

where ∇ denotes the nabla operator, “ · ” denotes the dot
product in R

q, and zi denotes the ith element of z.
Theorem 4.1 ([1]): Consider the nonlinear dynamical sys-

tem (7). If ∇ ·w(z) ≡ 0, then the flow st : D → D of (7) is
volume-preserving.

Volume preservation is the key conservation law under-
lying statistical mechanics. The flows of volume-preserving
dynamical systems belong to one of the Lie pseudogroups
of diffeomorphisms. These systems arise in incompressible
fluid dynamics, classical mechanics, and acoustics. Next, we
state the well known Poincaré recurrence theorem. For this
result, let g(n)(z), n ∈ Z+, denote the n-time composition
operator of g(z) with itself and define g(0)(z) � z.

Theorem 4.2: Let D ⊂ R
q be an open bounded set,

and let g : D → D be a continuous, volume-preserving
bijective (one-to-one and onto) map. Then for every open
neighborhood N ⊂ D, there exists a dense subset V ⊂ N
such that for every point z ∈ V , limi→∞ g(ni)(z) = z for
some sequence {ni}

∞
i=1, with ni → ∞ as i → ∞.

It follows from Theorem 4.2 that almost every point
in D ⊂ R

q will return infinitely many times to any
open neighborhood of itself under a continuous, volume-
preserving bijective mapping which maps a bounded region
D of a Euclidean space onto itself. For the remainder of
this section we consider the nonlinear dynamical system
(7) and assume that the solutions to (7) are defined for all
t ∈ R. Recall that if all solutions to (7) are bounded, then it
follows from the Peano-Cauchy theorem [4, pp. 16, 17] that
Iz0

= R. The following theorem shows that if a dynamical
system preserves volume, then almost all trajectories return
arbitrarily close to their initial position infinitely often.

Theorem 4.3: Consider the nonlinear dynamical system
(7). Assume that the flow st : D → D of (7) is volume-
preserving and maps an open bounded set Dc ⊂ R

q onto
itself. Then the nonlinear dynamical system (7) exhibits
Poincaré recurrence, that is, almost every point z ∈ Dc

5998



returns to every open neighborhood N ⊂ Dc of z infinitely
many times.

All Hamiltonian dynamical systems of the form (9) and
(10) exhibit Poincaré recurrence since they possess volume-
preserving flows and are conservative in the sense that the
Hamiltonian function H(q, p) remains constant along system
trajectories. To see this, note that with z � [qT, pT]T, (9) and
(10) can be rewritten as

ż(t) = J

(
∂H

∂z
(z(t))

)T

, z(t0) = z0, t ≥ t0, (13)

where z0 � [qT
0 , pT

0 ]T ∈ R
2n and J �

[
0n In

−In 0n

]
. Now,

since

Ḣ(z) =

(
∂H

∂z
(z)

)
J

(
∂H

∂z
(z)

)T

= 0, z ∈ R
2n, (14)

the Hamiltonian function H(·) is conserved along the flow
of (13). If H(·) is bounded from below and is radially
unbounded, then every trajectory of the Hamiltonian system
(13) is bounded. Hence, by choosing the bounded region
D � {z ∈ R

2n : H(z) ≤ η}, where η ∈ R and η > 0, it
follows that the flow st(·) of (13) maps the bounded region
D onto itself. Since η > 0 is arbitrary, the region D can be
chosen arbitrarily large. Furthermore, since (13) possesses
unique solutions over R, it follows that the mapping st(·) is
one-to-one and onto. Moreover,

∇ · J

(
∂H

∂z
(z)

)T

= 0, z ∈ R
2n, (15)

which, by Theorem 4.1, shows that the flow st(·) of (13)
is volume-preserving. Finally, since the flow st(·) of (13)
is volume-preserving, continuous, and bijective, and st(·)
maps a bounded region of a Euclidean space onto itself, it
follows from Theorem 4.3 that the Hamiltonian dynamical
system (13) exhibits Poincaré recurrence. That is, in any open
neighborhood N of any point z0 ∈ R

2n there exists a point
y ∈ N such that the trajectory s(t, y), t ≥ t0, of (13) will
return to N infinitely many times.

Poincaré recurrence has been the main source for the long
and fierce debate between the microscopic and macroscopic
points of view of thermodynamics [1]. In thermodynamic
models predicated on statistical mechanics, an isolated dy-
namical system will return arbitrarily close to its initial state
of molecular positions and velocities infinitely often. If the
system entropy is determined by the state variables, then
it must also return arbitrarily close to its original value, and
hence, undergo cyclical changes. This apparent contradiction
between the behavior of a mechanical system of particles and
the second law of thermodynamics remains one of the hardest
and most controversial problems in statistical physics. The
resolution of this paradox lies in the controversial statement
that as system dimensionality increases, the recurrence time
increases at an extremely fast rate. Nevertheless, the short-
coming of the mechanistic world view of thermodynamics
is the absence of the emergence of damping in lossless
mechanical systems. The emergence of damping is, however,
ubiquitous in isolated thermodynamic systems. Hence, the
development of a viable dynamical system model for thermo-
dynamics must guarantee the absence of Poincaré recurrence.
The next set of results presents sufficient conditions for the
absence of Poincaré recurrence for the nonlinear dynamical
system (7). For these results define the set of equilibria for
the nonlinear dynamical system (7) in D by Me � {z ∈ D :
w(z) = 0}.

Si

Sj

S1

Sq σqq(E)

σjj(E)

σii(E)

σ11(E)
G1

Gi

Gj

Gq

σij(E) σji(E)

Fig. 1. Large-scale dynamical system G.

Theorem 4.4: Consider the nonlinear dynamical system
(7) and assume that D \ Me 
= Ø. Assume that there
exists a continuous function V : D → R such that for
every z0 ∈ D \ Me, V (s(t, z0)), t ≥ t0, is a strictly
increasing (respectively, decreasing) function of time. Then
the nonlinear dynamical system (7) does not exhibit Poincaré
recurrence on D \Me. That is, for some z ∈ D \Me, there
exists a neighborhood N ⊂ D \ Me such that for every
y ∈ N , y 
∈ ω(y).

The next result gives an alternative sufficient condition for
the absence of Poincaré recurrence in a dynamical system.
For this result, let Dc ⊆ D be a closed invariant set with
respect to the nonlinear dynamical system (7).

Theorem 4.5: Consider the nonlinear dynamical system
(7). Assume that Dc\Me 
= Ø and assume (7) is convergent
and semistable in Dc. Then the nonlinear dynamical system
(7) does not exhibit Poincaré recurrence in Dc\Me. That is,
for some z ∈ Dc \Me, there exists an open neighborhood
N ⊂ Dc\Me such that for any y ∈ N the trajectory s(t, y),
t ≥ t0, does not return to N infinitely many times.

V. SYSTEM THERMODYNAMICS

To formulate our state space thermodynamic model, con-
sider the large-scale dynamical system G shown in Figure
1 involving energy exchange between q interconnected sub-
systems. Let Ei : [0,∞) → R+ denote the energy (and
hence a nonnegative quantity) of the ith subsystem, let Si :
[0,∞) → R denote the external power (heat flux) supplied
to (or extracted from) the ith subsystem, let σij : R

q

+ → R+,
i 
= j, i, j = 1, ..., q, denote the instantaneous rate of energy
(heat) flow from the jth subsystem to the ith subsystem, and
let σii : R

q

+ → R+, i = 1, ..., q, denote the instantaneous
rate of energy (heat) dissipation from the ith subsystem
to the environment. Here we assume that σij : R

q

+ →
R+, i, j = 1, ..., q, are locally Lipschitz continuous on R

q

+
and Si : [0,∞) → R, i = 1, ..., q, are bounded piecewise
continuous functions of time.

An energy balance for the ith subsystem yields

Ei(T ) = Ei(t0) +

q∑
j=1, j �=i

∫ T

t0

[σij(E(t)) − σji(E(t))]dt
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−

∫ T

t0

σii(E(t))dt +

∫ T

t0

Si(t)dt, T ≥ t0, (16)

or, equivalently, in vector form,

E(T ) = E(t0) +

∫ T

t0

w(E(t))dt −

∫ T

t0

d(E(t))dt

+

∫ T

t0

S(t)dt, T ≥ t0, (17)

where E(t) � [E1(t), ..., Eq(t)]
T, d(E(t)) �

[σ11(E(t)), ..., σqq(E(t))]T, S(t) � [S1(t), ..., Sq(t)]
T,

t ≥ t0, and w = [w1, ..., wq]
T : R

q

+ → R
q is such that

wi(E) =

q∑
j=1, j �=i

[σij(E) − σji(E)], E ∈ R
q

+. (18)

It is important to note that the exchange of energy between
subsystems in (16) is assumed to be a nonlinear function
of all the subsystems, that is, σij = σij(E), E ∈ R

q

+, i 
=
j, i, j = 1, ..., q. This assumption is made for generality and
would depend on the complexity of the diffusion process.
For example, thermal processes may include evaporative
and radiative heat transfer as well as thermal conduction
giving rise to complex heat transport mechanisms. However,
for simple diffusion processes it suffices to assume that
σij(E) = σij(Ej), wherein the energy flow from the jth
subsystem to the ith subsystem is only dependent (possibly
nonlinearly) on the energy in the jth subsystem. Similar
comments apply to system dissipation.

Note that (16) yields a conservation of energy equation and
implies that the energy stored in the ith subsystem is equal
to the external energy supplied to (or extracted from) the ith
subsystem plus the energy gained by the ith subsystem from
all other subsystems due to subsystem coupling minus the
energy dissipated from the ith subsystem to the environment.
Equivalently, (16) can be rewritten as

Ė(t) = w(E(t)) − d(E(t)) + S(t), E(t0) = E0, (19)

where t ≥ t0 and E0 � [E10, ..., Eq0]
T, yielding a power

balance equation that characterizes energy flow between
subsystems of the large-scale dynamical system G. Equation
(19) shows that the rate of change of energy, or power, in the
ith subsystem is equal to the power input (heat flux) to the ith
subsystem plus the energy (heat) flow to the ith subsystem
from all other subsystems minus the power dissipated from
the ith subsystem to the environment. Furthermore, since
w(·)−d(·) is locally Lipschitz continuous on R

q

+ and S(·) is
a bounded piecewise continuous function of time, it follows
that (19) has a unique solution over the finite time interval
[t0, τE0

). If, in addition, the power balance equation (19) is
input-to-state stable, then τE0

= ∞.
Equation (17) or, equivalently, (19) is a statement of the

first law of thermodynamics as applied to isochoric trans-
formations (i.e., constant subsystem volume transformations)
for each of the subsystems Gi, i = 1, ..., q, with Ei(·),
Si(·), σij(·), i 
= j, and σii(·), i, j = 1, ..., q, playing
the role of the ith subsystem internal energy, rate of heat
supplied to (or extracted from) the ith subsystem, heat flow
between subsystems due to coupling, and the rate of energy
(heat) dissipated to the environment, respectively. To further
elucidate that (17) is essentially the statement of the principle
of the conservation of energy, let the total energy in the large-
scale dynamical system G be given by U � eTE, where
eT � [1, ..., 1] and E ∈ R

q

+, and let the net energy received

by the large-scale dynamical system G over the time interval
[t1, t2] be given by

Q �

∫ t2

t1

eT[S(t) − d(E(t))]dt, (20)

where E(t), t ≥ t0, is the solution to (19). Then, premul-
tiplying (17) by eT and using the fact that eTw(E) ≡ 0,
it follows that ∆U = Q, where ∆U � U(t2) − U(t1)
denotes the variation in the total energy of the large-scale
dynamical system G over the time interval [t1, t2]. This is a
statement of the first law of thermodynamics for isochoric
transformations of the large-scale dynamical system G and
gives a precise formulation of the equivalence between the
variation in system internal energy and heat.

It is important to note that the large-scale dynamical sys-
tem model (19) does not consider work done by the system
on the environment nor work done by the environment on
the system. Hence, Q can be physically interpreted as the
net amount of energy that is received by the system in
forms other than work. The extension of addressing work
performed by and on the system can be easily addressed by
including an additional state equation, coupled to the power
balance equation (19), involving volume (deformation) states
for each subsystem. Since this extension does not alter any
of the conceptual results of this paper, it is not considered
in this paper for simplicity of exposition. Work performed
by the system on the environment and work done by the
environment on the system is addressed in [1].

For our large-scale dynamical system model G, we assume
that σij(E) = 0, E ∈ R

q

+, whenever Ej = 0, i, j =

1, ..., q. In this case, w(E) − d(E), E ∈ R
q

+, is essentially
nonnegative. The above constraint implies that if the energy
of the jth subsystem of G is zero, then this subsystem cannot
supply any energy to its surroundings nor dissipate energy
to the environment. Moreover, we assume that Si(t) ≥ 0
whenever Ei(t) = 0, t ≥ t0, i = 1, ..., q, which implies
that when the energy of the ith subsystem is zero, then
no energy can be extracted from this subsystem. Under
these assumptions, it can be shown (see [1] for details) that
the solution E(t), t ≥ t0, to (19) is nonnegative for all
nonnegative initial conditions E0 ∈ R

q

+.

VI. ENTROPY AND IRREVERSIBILITY

The nonlinear power balance equation (19) can exhibit
a full range of nonlinear behavior, including bifurcations,
limit cycles, and even chaos. However, a thermodynamically
consistent energy flow model should ensure that the evolution
of the system energy is diffusive (parabolic) in character with
convergent subsystem energies. As established in Section
IV, such a system model would guarantee the absence of
Poincaré recurrence. Otherwise, the thermodynamic model
would violate the second law of thermodynamics, since sub-
system energies (temperatures) would be allowed to return
to their starting state and thereby subverting the diffusive
character of the dynamical system. Hence, to ensure a
thermodynamically consistent energy flow model, we require
the following axioms. For the statement of these axioms, we
first recall the following graph-theoretic notions.

Definition 6.1 ([6]): A directed graph G(C) associated
with the connectivity matrix C ∈ R

q×q has vertices
{1, 2, ..., q} and an arc from vertex i to vertex j, i 
= j,
if and only if C(j,i) 
= 0. A graph G(C) associated with the
connectivity matrix C ∈ R

q×q is a directed graph for which
the arc set is symmetric, that is, C = CT. We say that G(C)
is strongly connected if for any ordered pair of vertices (i, j),
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i 
= j, there exists a path (i.e., a sequence of arcs) leading
from i to j.

Recall that the connectivity matrix C ∈ R
q×q is irre-

ducible, that is, there does not exist a permutation matrix
such that C is cogredient to a lower-block triangular matrix,
if and only if G(C) is strongly connected (see Theorem 2.7
of [6]). Let φij(E) � σij(E) − σji(E), E ∈ R

q

+, denote
the net energy flow from the jth subsystem Gj to the ith
subsystem Gi of the large-scale dynamical system G.

Axiom i) For the connectivity matrix C ∈ R
q×q associated

with the large-scale dynamical system G defined by

C(i,j) �

{
0, if φij(E) ≡ 0,

1, otherwise,
i 
= j, i, j = 1, ..., q,

(21)

and

C(i,i) � −

q∑
k=1, k �=i

C(k,i), i = j, i = 1, ..., q, (22)

rank C = q− 1, and for C(i,j) = 1, i 
= j, φij(E) = 0 if and
only if Ei = Ej .

Axiom ii) For i, j = 1, ..., q, (Ei − Ej)φij(E) ≤ 0, E ∈
R

q

+.

The fact that φij(E) = 0 if and only if Ei = Ej , i 
= j,
implies that subsystems Gi and Gj of G are connected; alter-
natively, φij(E) ≡ 0 implies that Gi and Gj are disconnected.
Axiom i) implies that if the energies in the connected sub-
systems Gi and Gj are equal, then energy exchange between
these subsystems is not possible. This statement is consistent
with the zeroth law of thermodynamics, which postulates that
temperature equality is a necessary and sufficient condition
for thermal equilibrium. Furthermore, it follows from the fact
that C = CT and rank C = q−1 that the connectivity matrix C
is irreducible, which implies that for any pair of subsystems
Gi and Gj , i 
= j, of G there exists a sequence of connectors
(arcs) of G that connect Gi and Gj . Axiom ii) implies
that energy flows from more energetic subsystems to less
energetic subsystems and is consistent with the second law
of thermodynamics, which states that heat (energy) must flow
in the direction of lower temperatures. Furthermore, note that
φij(E) = −φji(E), E ∈ R

q

+, i 
= j, i, j = 1, ..., q, which
implies conservation of energy between lossless subsystems.
With S(t) ≡ 0, Axioms i) and ii) along with the fact
that φij(E) = −φji(E), E ∈ R

q

+, i 
= j, i, j = 1, ..., q,
imply that at a given instant of time, energy can only be
transported, stored, or dissipated but not created, and the
maximum amount of energy that can be transported and/or
dissipated from a subsystem cannot exceed the energy in the
subsystem.

Next, we show that the classical Clausius equality and
inequality for reversible and irreversible thermodynamics
over cyclic motions are satisfied for our thermodynamically
consistent energy flow model. For this result

∮
denotes a

cyclic integral evaluated along an arbitrary closed path of
(19) in R

q

+; that is,
∮

�
∫ tf

t0
with tf ≥ t0 and S(·) ∈ U such

that E(tf) = E(t0) = E0 ∈ R
q

+.

Proposition 6.1: Consider the large-scale dynamical sys-
tem G with power balance equation (19), and assume that
Axioms i) and ii) hold. Then for all E0 ∈ R

q

+, tf ≥ t0, and

S(·) ∈ U such that E(tf) = E(t0) = E0,∫ tf

t0

q∑
i=1

Si(t) − σii(E(t))

c + Ei(t)
dt =

∮ q∑
i=1

dQi(t)

c + Ei(t)
≤ 0, (23)

where c > 0, dQi(t) � [Si(t)− σii(E(t))]dt, i = 1, ..., q, is
the amount of net energy (heat) received by the ith subsystem
over the infinitesimal time interval dt, and E(t), t ≥ t0,
is the solution to (19) with initial condition E(t0) = E0.
Furthermore, (23) holds as an equality if and only if there
exists a continuous function α : [t0, tf ] → R+ such that
E(t) = α(t)e, t ∈ [t0, tf ].

Inequality (23) is a generalization of Clausius’ inequality
for reversible and irreversible thermodynamics as applied
to large-scale dynamical systems and restricts the manner
in which the system dissipates (scaled) heat over cyclic
motions. It follows from Axiom i) and (19) that for the
adiabatically isolated large-scale dynamical system G (that
is, S(t) ≡ 0 and d(E(t)) ≡ 0), the energy states given by
Ee = αe, α ≥ 0, correspond to the equilibrium energy states
of G. Thus, as in classical thermodynamics, we can define
an equilibrium process as a process in which the trajectory
of the large-scale dynamical system G moves along the
equilibrium manifold Me � {E ∈ R

q

+ : E = αe, α ≥ 0}
corresponding to the set of equilibria of the isolated system
G. The power input that can generate such a trajectory can
be given by S(t) = d(E(t)) + u(t), t ≥ t0, where u(·) ∈ U
is such that ui(t) ≡ uj(t), i 
= j, i, j = 1, ..., q. Our defini-
tion of an equilibrium transformation involves a continuous
succession of intermediate states that differ by infinitesimals
from equilibrium system states and thus can only connect
initial and final states, which are states of equilibrium. This
process need not be slowly varying, and hence, equilibrium
and quasistatic processes are not synonymous in this paper.
Alternatively, a nonequilibrium process is a process that does
not lie on the equilibrium manifold Me. Hence, it follows
from Axiom i) that for an equilibrium process φij(E(t)) =
0, t ≥ t0, i 
= j, i, j = 1, ..., q, and thus, by Proposition 6.1,
inequality (23) is satisfied as an equality. Alternatively, for
a nonequilibrium process it follows from Axioms i) and ii)
that (23) is satisfied as a strict inequality.

Next, we give a deterministic definition of entropy for the
large-scale dynamical system G that is consistent with the
classical thermodynamic definition of entropy.

Definition 6.2: For the large-scale dynamical system G
with power balance equation (19), a function S : R

q

+ → R

satisfying

S(E(t2)) ≥ S(E(t1)) +

∫ t2

t1

q∑
i=1

Si(t) − σii(E(t))

c + Ei(t)
dt (24)

for any t2 ≥ t1 ≥ t0 and S(·) ∈ U is called the entropy
function of G.

Next, we establish the existence of a unique, continuously
differentiable entropy function for G for equilibrium and
nonequilibrium processes. This result answers the long-
standing question of how the entropy of a nonequilibrium
state of a dynamical process should be defined [7], [8], and
establishes its global existence and uniqueness.

Theorem 6.1: Consider the large-scale dynamical system
G with power balance equation (19), and assume that Axioms
i) and ii) hold. Then the function S : R

q

+ → R
q

+ given by

S(E) = eTloge(ce + E) − q loge c, E ∈ R
q

+, (25)

where loge(ce+E) � [loge(c+E1), ..., loge(c+Eq)]
T and

c > 0 is a unique (modulo a constant of integration), con-
tinuously differentiable entropy function of G. Furthermore,
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for E(t) 
∈ Me, t ≥ t0, where E(t), t ≥ t0, denotes the
solution to (19) and Me = {E ∈ R

q

+ : E = αe, α ≥ 0},
(25) satisfies (24) as a strict inequality.

Note that it follows from Axiom i) and Axiom ii) that the
entropy function given by (25) satisfies (24) as an equality
for an equilibrium process and as a strict inequality for a
nonequilibrium process. Hence, it follows from Theorem 4.4
that the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) large-scale
dynamical system G does not exhibit Poincaré recurrence
in R

q

+ \ Me. The entropy expression given by (25) is
identical in form to the Boltzmann entropy for statistical
thermodynamics. Due to the fact that the entropy given by
(25) is indeterminate to the extent of an additive constant,
we can place the constant of integration q loge c to zero by
taking c = 1. Since S(E) given by (25) achieves a maximum
when all the subsystem energies Ei, i = 1, ..., q, are equal
[1], the entropy of G can be thought of as a measure of the
tendency of a system to lose the ability to do useful work,
lose order, and settle to a more homogenous state.

Finally, using the system entropy function given by (25)
we show that our large-scale dynamical system G with power
balance equation (19) is state irreversible for every nontrivial
(nonequilibrium) trajectory of G. For this result, let W[t0,t1]
denote the set of all possible energy trajectories of G over
the time interval [t0, t1] given by

W[t0,t1] � {sE : [t0, t1] × U → R
q

+ : sE(·, S(·))

satisfies (19)}, (26)

and let Me ⊂ R
q

+ denote the set of equilibria of the isolated
system G given by Me = {E ∈ R

q

+ : αe, α ≥ 0}.

Theorem 6.2: Consider the large-scale dynamical system
G with power balance equation (19), and assume Axioms i)
and ii) hold. Furthermore, let sE(·, S(·)) ∈ W[t0,t1], where
S(·) ∈ U . Then sE(·, S(·)) is an Iq-reversible trajectory of
G if and only if sE(t, S(t)) ∈ Me, t ∈ [t0, t1].

Theorem 6.2 establishes an equivalence between
(non)equilibrium and state (ir)reversible thermodynamic
systems. Furthermore, Theorem 6.2 shows that for every
E0 
∈ Me, the large-scale dynamical system G is state
irreversible. In addition, since state irrecoverability implies
state irreversibility and, by Theorem 6.2, state irreversibility
is equivalent to E(t) 
∈ Me, t ≥ t0, it follows from Theorem
3.2 that state (ir)reversibility and state (ir)recoverability
are equivalent for our thermodynamically consistent large-
scale dynamical system G. Hence, in the remainder of
the paper we use the notions of (non)equilibrium, state
(ir)reversible, and state (ir)recoverable dynamical processes
interchangeably.

VII. SEMISTABILITY AND THE ARROW OF TIME

For the isolated large-scale dynamical system G, (24)
yields the fundamental inequality

S(E(t2)) ≥ S(E(t1)), t2 ≥ t1. (27)

Inequality (27) implies that, for any dynamical change in an
isolated large-scale dynamical system G, the entropy of the
final state can never be less than the entropy of the initial
state. Inequality (27) is often identified with the second law
of thermodynamics as a statement about entropy increase.
Furthermore, it follows from Theorem 6.1 that for an isolated
large-scale dynamical system G the entropy function (25) is
a strictly increasing function of time along the trajectories of
(19) with initial conditions in R

q

+ \ Me. Hence, it follows
from Theorem 4.4 that the isolated large-scale dynamical
system G does not exhibit Poincaré recurrence in R

q

+ \Me.

This result can also be arrived at using the fact that our
thermodynamically consistent large-scale dynamical system
G is semistable.

Theorem 7.1: Consider the large-scale dynamical system
G with power balance equation (19) with S(t) ≡ 0 and
d(E) ≡ 0, and assume that Axioms i) and ii) hold. Then for
every α ≥ 0, αe is a semistable equilibrium state of (19).
Furthermore, E(t) → 1

q
eeTE(t0) as t → ∞ and 1

q
eeTE(t0)

is a semistable equilibrium state.
Theorem 7.1 shows that the isolated (i.e., S(t) ≡ 0 and

d(E) ≡ 0) large-scale dynamical system G is semistable.
Hence, it follows from Theorem 4.5 that the isolated large-
scale dynamical system G does not exhibit Poincaré re-
currence in R

q

+ \ Me. Next, using the system entropy
function given by (25), we show that our large-scale isolated
dynamical system G with power balance equation (19) is
state irreversible for all nonequilibrium trajectories of G
establishing a clear connection between our thermodynamic
model and the arrow of time.

Theorem 7.2: Consider the large-scale dynamical system
G with power balance equation (19) with S(t) ≡ 0 and
d(E) ≡ 0, and assume Axioms i) and ii) hold. Furthermore,
let sE(·, 0) ∈ W[t0,t1]. Then for every E0 
∈ Me, there exists
a continuously differentiable function S : R

q

+ → R such
that S(sE(t, 0)) is a strictly increasing function of time.
Furthermore, sE(·, 0) is an Iq-reversible trajectory of G if
and only if sE(t, 0) ∈ Me, t ∈ [t0, t1].

Theorem 7.2 shows that for every E0 
∈ Me, the isolated
dynamical system G is state irreversible. This gives a clear
connection between our thermodynamic model and the arrow
of time. In particular, it follows from Corollary 3.1 and
Theorem 7.2 that there exists a function of the system
state that strictly increases in time on any nonequilibrium
trajectory of G if and only if there does not exist a nonequi-
librium reversible trajectory of G. Thus, the existence of the
continuously differentiable entropy function given by (25)
for G establishes the existence of a completely ordered time
set having a topological structure involving a closed set
homeomorphic to the real line. This fact follows from the
inverse function theorem of mathematical analysis and the
fact that a continuous strictly monotonic function is a topo-
logical mapping (i.e., a homeomorphism), and conversely
every topological mapping of a strictly monotonic function’s
domain onto its codomain must be strictly monotonic. This
topological property gives a clear time-reversal asymmetry
characterization of our thermodynamic model establishing an
emergence of the direction of time flow.
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