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Abstract— In this note we discuss monotonicity and conver-
gence to equilibria of certain classes -to be specified below-
of chemical reaction networks. The results do not assume any
particular form for the kinetics of the reactions (such as mass
action kinetics) and only rely on stoichiometric constraints.
They imply in particular that the Zero Deficiency Theorem
-which does assume mass action kinetics- remains valid for
a more general class of networks. This suggests a robustness
property of this classical result.

I. INTRODUCTION

The study of the qualitative behavior of chemical reaction
networks is an area of growing interest, especially in light
of the recent challenges posed by molecular and systems
biology. One of the goals is the understanding of cell
functions at the molecular level. This could lead to new
scenarios both in terms of drug design and of therapeutical
treatments. It is needless to say that this is a formidable
task which may or may not be achievable. Nevertheless, it is
apparent that the complexity and high dimensionality of the
chemical reaction networks typically found in this context
calls for systematic tools to deal with such questions as:
What is the functionality of a specific “pathway” or what is
its qualitative behavior (for instance in Input-Output terms
)? How robust (or insensitive) is the network to parameter
changes and/or environmental fluctuations?

One of the classical conceptual tools in dynamical systems
theory, which was introduced to deal with questions concern-
ing asymptotic dynamics and their robustness to parameter
variations, is the notion of monotone systems [3]. These
systems preserve in forward in time, some ordering defined
on the state space.

Despite the fact that chemical and biological systems
(for instance, eco-systems models) were among the most
recurrent sources of examples for the rich literature devoted
to the subject, a clear connection between chemical reaction
networks and the theory of monotone dynamical systems is
still missing. The purpose of this paper is to point out a class
of networks whose dynamics can be understood in the light
of this theory.
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Fig. 1. Graph of complexes for Example 1.

Notation: The set of non-negative n-tuples is denoted by
R

n
+, the set of positive n-tuples by int(Rn

+) and we define
bd(Rn

+) := R
n
+ \ int(Rn

+).

II. CHEMICAL REACTION NETWORKS

Chemical reaction networks can be described by a list of
m chemical reactions involving n species.

Example 1:

X1 + 2X2 ↔ X2 + X3, X1 + X3 → X2.

In the above there are n = 3 species Xi and m = 3 reactions.
Reaction 1 produces one molecule of X2 and one molecule
of X3 given one molecule of X1 and two molecules of
X2. Reaction 2 is the backward reaction of reaction 1, and
reaction 3 produces one molecule of X2 from one molecule
of X1 and one molecule of X3. In a network we can always
distinguish p (≤ 2m) distinct complexes. In Example 1
there are p = 4 complexes, namely C1 = X1 + 2X2,
C2 = X2 + X3, C3 = X1 + X3 and C4 = X2. Using
complexes instead of species, we can equally well represent
the reaction network as follows:

C1 ↔ C2, C3 → C4,

and interpret the reactions as occuring between single com-
plexes, going from the (complex of) reactants to the (com-
plex of) products. This is illustrated in Figure 1.

To every complex Cj , we associate an n-dimensional
complex vector cj whose components are the stoichiometric
coefficients of all the species of the network as they appear
in the given complex. In Example 1 we have

c1 =

⎛
⎝1

2
0

⎞
⎠ , c2 =

⎛
⎝0

1
1

⎞
⎠ , c3 =

⎛
⎝1

0
1

⎞
⎠ , c4 =

⎛
⎝0

1
0

⎞
⎠ .

A network is strongly connected (connected) if given any
pair of distinct complexes Cr and Cs, there is a collection
of complexes {Cj1 , . . . , Cjl

} (l > 1) such that Cj1 = Cr,
Cjl

= Cs and such that there is a reaction Cjk
→ Cjk+1 (a

reaction Cjk
→ Cjk+1 , or a reaction Cjk+1 → Cjk

) between
every pair of consecutive complexes Cjk

and Cjk+1 in the
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collection, where k = 1, . . . , l− 1. The network in Example
1 is not connected, hence certainly not strongly connected.

A collection of l distinct complexes {Cj1 , ..., Cjl
} (l > 1)

in a network is called a loop if there are l distinct reactions,
such that there is either a reaction Cjk

→ Cjk+1 or a reaction
Cjk+1 → Cjk

between every pair of consecutive complexes
Cjk

and Cjk+1 where k = 1, . . . , l (we agree that Cjl+1 ≡
Cj1). In Example 1, {C1, C2} is a loop. In fact, it is the
only loop in the network. More generally, every reversible
reaction gives rise to a loop.

Finally, we associate to every reaction j, a reaction vector
Sj which is defined as the difference of the complex vector
of products and the complex vector of the reactants of the
reaction. In Example 1,

S1 = c2 − c1 =

⎛
⎝−1
−1
1

⎞
⎠ , S2 = c1 − c2 =

⎛
⎝ 1

1
−1

⎞
⎠ = −S1,

S3 = c4 − c3 =

⎛
⎝−1

1
−1

⎞
⎠ .

The stoichiometric matrix S associated to a chemical reaction
network is defined as the n×m matrix whose j-th column is
Sj , the stoichiometric reaction vector associated to reaction
j. In Example 1,

S =

⎛
⎝−1 1 −1
−1 1 1
1 −1 −1

⎞
⎠

Later on, we will find it necessary to consider the linear
space generated by the columns of S. In this context, the
following is useful.

Fact 1: Let a network contain a loop {Cj1 , . . . , Cjl
}.

Then the columns of the stoichiometric matrix of the network
obtained by deleting one reaction between two consecutive
complexes in the loop, generate the same linear space as the
columns of the stoichiometric matrix of the original network.
In particular, the rank of both stoichiometric matrices is the
same.

Indeed, the linear space generated by the columns of the
stoichiometric matrix that correspond to reaction vectors of
the reactions in the loop is span(L) where L = {cj2 −
cj1 , . . . , cjl

− cjl−1 , cj1 − cjl
}. Assuming that either reaction

Cjl
→ Cj1 or reaction Cj1 → Cjl

is deleted (a possible
relabeling of complexes shows that the assumption that we
are deleting a reaction between the final and first complex
means no loss of generality), the linear space generated
by the remaining reaction vectors from the original loop is
span(Lc), where Lc = L\{cj1−cjl

}. The claim now follows
from the observation that cj1 − cjl

is a linear combination
of the vectors in Lc.

So far, we have not discussed the dynamics of the chemical
reactions. Let us do this now. The vector containing the
concentrations of the n species is denoted by x. It will be
assumed that the reaction rate of reaction j is a non-negative
C1 function of x, denoted by Rj : R

n
+ → R+. In fact, we

assume that reaction rates of all reactions in the network only
depend on the concentrations of their reactants. Moreover, we
assume that when one of the reactants is missing, the rate
is zero and that when all the reactants are present, the rate
is positive and strictly increasing in all the concentrations of
the reactants. Formally,

Assumption 1:
For all j, the function Rj : R

n
+ → R+ is C1,

1) Rj(x) = 0 if xk = 0, where xk is a reactant of
reaction j,

2) Rj(x) > 0 if xl > 0 for all reactants xl of reaction j,
3) ∂Rj/∂xk(x) > 0 if xk is a reactant of reaction j and

if x is such that xl > 0 for all reactants xl of reaction
j, and

4) ∂Rj/∂xl ≡ 0, when xl is not a reactant of reaction j.
A familiar example occurs when the reaction rates obey

the law of mass action kinetics. In this case, reaction rates
are given by Rj(x) = κj

∏
k xαk

k . Here, the product consists
of factors of powers of concentrations of the reactants of
reaction j. The power αk is the stoichiometric coefficient of
reactant Xk in reaction j, and κj is some positive constant.

Denoting the reaction rate vector whose j-th coordinate
is Rj(x) by R(x), we have that the concentrations of the
species obey the following ODE:

ẋ = SR(x). (1)

It can be proved that our assumptions imply that if x(0) ∈
R

n
+, then the corresponding solution x(t) ∈ R

n
+ for all t >

0 for which this solution is defined (essentially because if
xk(0) = 0, then ẋk(0) ≥ 0). Also, this solution remains in
the affine subspace of R

n, given by

{x(0)} + span(S),

where span(S) denotes the linear space generated by the
column vectors of the matrix S. This follows from the
observation that the vector field of system (1) is a linear
combination of the constant columns of S. In general, for
every c ∈ R

n
+ there holds that the set

C = ({c} + span(S)) ∩ R
n
+

is forward invariant for system (1). We call such a set a
class of system (1). If a class of system (1) has nonempty
intersection with int(Rn

+), we call it a positive class and
denote it by Cp. We define the dimension of a positive class
as the dimension of the vector space span(S).

Returning to Example 1 one last time, assuming mass
action kinetics with all κj = 1, we obtain for the dynamics
of the concentrations of the species that

ẋ1 = −x1x
2
2 + x2x3 − x1x3

ẋ2 = −x1x
2
2 + x2x3 + x1x3

ẋ3 = x1x
2
2 − x2x3 − x1x3

The classes of this system are the nonempty intersections of
R

3
+ and parallel translates of the (here, planar) linear space

span

⎛
⎝

⎛
⎝−1
−1
1

⎞
⎠ ,

⎛
⎝−1

1
−1

⎞
⎠

⎞
⎠ .
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Fig. 2. Network and an associated tree

Notice that these sets are unbounded.
One assumption for the networks that we wish to consider

is the following.
Assumption 2:
The chemical reaction network is strongly connected.
This implies that our networks can be depicted as in the

left panel of Figure 2. We will now construct a simpler
reaction network from the given one by removing reactions.
The resulting network is a tree, that is, a connected network
without loops, illustrated in the right panel of Figure 2. Given
an arbitrary graph, there are different ways to obtain a tree
(by removing a finite number of edges), and in general the
resulting tree is not unique. Any choice will do for what
follows. If we assume that the remaining reactions proceed
with the same rates as before the deletion, then the ODE for
the concentrations of the species in the resulting tree network
is easily obtained from system (1) by deleting those columns
of S that correspond to the reactions that were deleted, and
also by deleting the corresponding entries in the reaction
vector R(x). Denoting this reduced matrix and vector by Sr

and Rr(x) respectively, we obtain

ẋ = SrRr(x). (2)

Denoting the null space of a matrix M by ker(M), it follows
immediately from Fact 1 that

Fact 2: span(S) = span(Sr) and ker(ST ) = ker(ST
r ).

Fact 2 implies that the (positive) classes of system (1) and
(2) are the same.

The main feature of the class of networks we will study
is the following:

Assumption 3:
Every chemical species appears in precisely one complex.
In many realistic chemical networks, this assumption does

not hold (Assumptions 1 and 2 are less problematic in this
respect.).

This assumption in conjunction with Fact 2 enables us
to compute the rank of S, and hence the dimension of the
positive classes of system (1).

Lemma 1.
Under assumptions 2 and 3, the rank of the stoichiometric
matrix S is p − 1, and there is some vector v ∈ int(Rn

+)
such that ST v = 0.

Proof: We start with relabeling the species according
to a natural order suggested by Figure 2: The species in
complex C1 will be the first, followed by those in complex
C12 (by assumption 3, any given species cannot belong
to both complexes). Those are followed by the species in
complex C13, etc. Still referring to Figure 2, in assigning
new labels, we are traversing the tree from west to east and
from north to south. The same rule is used to relabel the
reactions.

Let us now consider the matrix Sr. Assumption 3 implies
that Sr is generated by the columns of the following matrix:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c1 −c1 . . . −c1 0 . . . 0 . . .
c11 0 . . . 0 −c11 . . . −c11 . . .

0 c12 . . .
...

... . . .
... . . .

...
...

. . .
...

... . . .
... . . .

0
... . . . c1n1 0 . . . 0 . . .

...
... . . .

... c111 . . . 0 . . .
...

... . . .
...

...
. . .

... . . .
...

... . . .
...

... . . . c11n11 . . .
...

... . . .
...

... . . .
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

where c1, c11, c12, . . . are vectors with positive entries that
equal the stoichiometric coefficients of the relabeled species
in the respective complexes C1, C11, C12, . . . .

It is now evident that the rank of Sr is p − 1 (= the
number of columns in the above matrix, since these are
clearly linearly independent) and by Fact 2 this is also the
rank of S.

Moreover, denoting by nC1 , nC11 , nC12 , . . . the number of
species in the complexes indicated by the indices, we have
that the vector

v = (
1

nC1c
T
1

1
nC11c

T
11

. . .
1

nC1n1
cT
1n1

1
nC111c

T
111

. . .

1
nC11n11

cT
11n11

. . . )T

where the fractions of vectors are understood component-
wise, is obviously in ker(ST

r ) and by Fact 2 also in ker(ST ).
This concludes the proof.

III. STATEMENT OF THE MAIN RESULT

Our main result is the following.

Theorem 1.
Under assumptions 1, 2 and 3, every positive class Cp of
system (1) contains a unique equilibrium. This equilibrium
belongs to int(Rn

+), and it attracts every solution of system
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Fig. 3. Graph of complexes for Example 2, and x1(t), x3(t) and x5(t).

(1) which starts in Cp ∩ int(Rn
+).

Example 2: Consider

X1 + X2 → X3 + X4, X3 + X4 → X5 + X6,

X5 + X6 → X1 + X2.

There are n = 6 chemical species, m = 3 reactions,
and p = 3 complexes C1 := X1 + X2, C2 := X3 + X4+
and C3 := X5 + X6. The graph of complexes, depicted in
the left panel of Figure 3 is obviously strongly connected.
Clearly, assumption 3 is satisfied. Choosing reaction rates
r1(x) = x1x2/(1 + x1)(1 + x2), r2(x) = 2x3x4/(0.5 +
x3)(0.3+x4) and r3(x) = x5x6/(0.2+x5)(0.9+x6) shows
that assumption 1 is satisfied and thus Theorem 1 holds. In
the right panel of Figure 3 we plot the odd components of
the solution x(t) having initial condition xi(0) = 0.i for
i = 1, ..., 6.

Our main result should be compared to the so-called
Zero Deficiency Theorem, see [2], [4] for statements and
preliminary proofs, [5] for a retraction of a global stability
proof, and [8] for a global stability proof.

Recall that the deficiency of a chemical reaction network
is defined as

d = p − l − r

where p is the number of complexes, l is the number of
linkage classes (this is the number of connected components
of the graph of complexes, see [2]) and r is the rank of the
stoichiometric matrix S.

From assumption 2 follows that l = 1 in our networks and
then Lemma 1 implies that their deficiency is p−1−(p−1) ≡
0. Thus the Zero Deficiency Theorem is applicable to our
networks. The conclusion of that Theorem is the same as the
conclusion of Theorem 1, provided that mass action kinetics
are assumed. Assumption 1 relaxes this considerably, but on
the other hand the structure of the networks we allow is
limited by assumption 3.

Theorem 1 also generalizes the results from [1], where the
reaction networks were restricted to chains:

C1 ↔ C2 ↔ · · · ↔ Cp

in which the distinct complexes don’t share any species.

IV. PROOF OF THEOREM 1

We begin with a lemma.

Lemma 2.
Under assumptions 1, 2 and 3, no positive class of system
(1) contains equilibria belonging to bd(Rn

+).

Proof: Let us argue by contradiction and assume that
some positive class Cp of system (1), does have an equi-
librium x∗ ∈ bd(Rn

+). We first claim that this equilibrium
much be such that in every complex of the network, there is
at least one species having zero concentration at x∗. To see
this, pick i such that x∗

i = 0 (this is always possible because
x∗ ∈ bd(Rn

+)), and consider the i-th equilibrium equation
corresponding to system (1), 0 = [SR(x∗)]i. This equation
takes the form:

0 = αi

⎛
⎝∑

j

Rj(x∗) −
∑

k

Rk(x∗)

⎞
⎠ ,

where αi is the stoichiometric coefficient of species Xi

in the unique complex to which this species belongs (this
complex is unique by assumption 3). The sum indexed by
j, respectively k, runs over those reactions in which Xi is a
reaction product, respectively reactant. Notice that both sets
of indices j and k are nonempty by assumption 2. Since
x∗

i = 0, it follows from assumption 1 (part 1)), that

−
∑

k

Rk(x∗) = 0,

and therefore, since all reaction rates are non-negative, we
find that for all reactions j having Xi as a reaction product,

Rj(x∗) = 0.

Then assumption 1 (parts 1), 2) and 4)) implies that all the
complexes of reactants of these reactions, must have at least
one species whose concentration at x∗, is zero. This yields
a nonempty set of indices l, all different from i, such that
x∗

l = 0 and we can repeat the argument for the corresponding
l-th equilibrium equations that we just performed for the i-
th equilibrium equation. By repeating this process a finite
number of times, and invoking assumption 2, it follows that
in every complex of the network, we can find a species whose
concentration is zero at x∗. This concludes the proof of our
claim.

The positive class Cp can now be written as

{x∗} + span(S),

or equivalently by Fact 2 and (the proof of) Lemma 1, as

{x∗} + span(M),

where M is the matrix (3). Since Cp is a positive class, there
is some x ∈ int(Rn

+) which belongs to Cp. Therefore, there
are scalars γi such that

x = x∗ +
∑

i

γicoli(M), (4)

where coli(M) denotes the i-th column of M . Assume for
simplicity that M has only the first n1 +n11 columns in (3)
(if M has more columns, the argument is similar).
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Then among the scalars γi corresponding to the first n1

columns of M , there must be at least one negative scalar. To
see this, suppose this were not true and consider the species
in complex C1 (see Figure 2) whose concentration at x∗ is
zero. Note that such a species exists by the claim we proved
above. Then it is clear from (4) that the concentration of
that same species in x cannot be positive, contradicting that
x ∈ int(Rn

+).
Let γj < 0 be such a scalar for some j ∈ {1, ..., n1}. In

case j �= 1, we can find a species in complex C1j such that
it has zero concentration at x∗, by the claim above. But then
(4) implies that this species has a negative concentration at x,
which is nonsense. In case j = 1, there must be at least one
negative scalar γj corresponding to the last n11 columns of
M (same argument as we used before to prove existence of a
negative scalar corresponding to the first n1 columns). This
in turn will –as before– lead to a species whose concentration
at x is negative, which is nonsense as well.

We have the following conservation law.

Lemma 3.
Let assumptions 1, 2 and 3 hold for system (1) and suppose
that some complex C of the network contains distinct
species Xi and Xj having stoichiometric coefficients αi,
respectively αj . Then for an arbitrary solution x(t) of
system (1), we have that for all t ≥ 0,

xj(t)/αj = xi(t)/αi + kij (5)

where kij = xj(0)/αj − xi(0)/αi.
Moreover, this constant is the same for all solutions in

the same class.

Proof: By assumption 3, the first claim is immediate
from the fact that vij ∈ ker(ST ), where vij is the n-
dimensional vector having precisely two nonzero entries,
namely 1/αi and −1/αj as the i-th, respectively j-th entry.
To prove the second claim, notice that if x(t) and y(t) are
solutions of system (1), then

ẋ(t) − ẏ(t) = S (R(x(t)) − R(y(t))) ,

hence

x(t) − y(t) = x(0) − y(0) + S

∫ t

0

R(x(s)) − R(y(s))ds.

Now if x(t) and y(t) belong to the same class of system (1),
then x(0) − y(0) ∈ span(S) and thus

x(t) − y(t) = S

(
w +

∫ t

0

R(x(s)) − R(y(s))ds

)
,

for some vector w. The second claim now follows from the
first.

Sketch of the proof of Theorem 1.
Consider a positive class Cp of system (1). Obviously, Cp

is convex since it is the intersection of the two convex sets
R

n
+ and an affine subspace {c}+span(S) of R

n. By Lemma
1, Cp is compact and thus an application of Brouwer’s fixed
point Theorem, yields the existence of an equilibrium in Cp

which by Lemma 2 cannot belong to bd(Rn
+). We will later

see that such an equilibrium is unique in Cp.
Now fix a solution x(t) of system (1) which starts in

x(0) ∈ Cp ∩ int(Rn
+). To this solution, we will associate a

new system.
More precisely, we will consider the dynamics of the

vector variable z(t) which is obtained from x(t) as follows.
First we select in every complex Ci of the network a single
species Xji and thus obtain p distinct (by assumption 3)
species, one from each complex. We define the vector z(t)
as the vector consisting of the concentrations of the vector
x(t) corresponding to the selected species. Then one can
verify that z(t) satisfies the following ODE, defined on R

p
+,

ż = S̃r(z), (6)

where S̃ is the p × m matrix obtained from S by deleting
those rows of S that correspond to species of the original
network which were not selected. The vector r(z) is obtained
from the vector R(x) by setting xi = zi if Xi was a selected
species, and by setting xj = αj(zi/αi +kij) if Xj was not a
selected species. In the latter assignment, Xi is the selected
species that belongs to the same complex as Xj and kij is
the constant from (5). By assumption 1, it follows that each
component of the vector r(y) is nonnegative and depends on
a single component of the vector y. As such, this function
is C1 with a positive derivative whenever this derivative is
evaluated in a positive value.

Notice that if y(t) is another solution of (1) which starts
in the same positive class as x(t), namely in some y(0) ∈
Cp ∩ int(Rn

+), then we can construct a second -in principle,
different- system (6), associated to y(t). However, if in this
construction, we select the same species from each complex
as we selected in constructing the system (6) associated
to x(t), then both systems (6) will be the same, since the
parameters kij associated to x(t) and y(t) are the same by
Lemma 3. We will always assume that this is the case.

Although we really are only interested in the behavior of
one particular solution of system (6), namely the solution
z(t), we will study this system as a whole, defined on R

p
+.

Let us -without proof- summarize the main properties of
system (6).

1) For every c ∈ R
p
+, holds that R

p
+ ∩

(
{c} + span(S̃)

)
is forward invariant. We will also refer to these sets as
classes of system (6). And if they have a nonempty
intersection with int(Rp

+), then we will call them
positive classes.

2) System (6) is cooperative and irreducible (see Ap-
pendix for definitions) in int(Rp

+).
3) The rank of S̃ is p− 1 and thus the positive classes of

system (6) are (p − 1)-dimensional. Moreover, every
positive class of system (6) is convex and compact and
hence contains an equilibrium, yet no positive class
contains an equilibrium on bd(Rp

+).
4) System (6) has a linear first integral with positive

gradient, and the level sets of the first integral coincide
with the classes of system (6) (see Appendix for
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definitions).
5) Let x(t) and y(t) be two solutions of system (1) in the

same positive class Cp and assume that x(0), y(0) ∈
int(Rn

+). Let z(t) and z∗(t) be the vector functions
associated to x(t), respectively y(t), which satisfy
equation (6). Then z(t) and z∗(t) belong to the same
positive class of system (6), and hence to the same
level set of the first integral of system (6).

Item 2 enables us to apply the Theorem from the Appendix
to the restriction of system (6) to int(Rp

+). Obviously this
restricted system also has a linear first integral whose level
sets are the intersections of int(Rp

+) with the positive classes
of system (6). By item 3 and 4, such level sets contain at least
one equilibrium. The Theorem from the Appendix shows that
this equilibrium is in fact unique in each level set and attracts
all solutions starting in the level set.

In particular, this implies that the two solutions
z(t), z∗(t) → q as t → ∞, where q is the unique equilibrium
of system (6) contained in the level set associated to the
solutions z(t) and z∗(t) (recall that by item 5, these solutions
remain in the same level set).

Consequently, x(t), y(t) → e as t → ∞, where e is an
equilibrium of system (1) in the positive class Cp. Moreover,
e is the unique equilibrium in this class, and this concludes
the proof of the Theorem.

V. CONCLUSIONS

We identified a class of chemical reaction networks that
give rise to systems whose solutions converge to equilib-
ria. This class is characterized by topological conditions
(assumptions 2 and 3) on the graph of complexes, and by
the qualitative condition that the reaction rates should be
monotonically increasing (assumption 1). The latter shows
that some of the results such as the Zero Deficiency Theorem
[2], [4] which require reaction rates to be of mass action type,
are actually robust with respect to suitable perturbations in
the reaction rates, as long as these perturbations result in
monotonically increasing reaction rates. On the other hand,
the topological requirement expressed in assumption 3 is a
rather severe one from the point of view of applications (this
is much less of an issue for assumption 2). It would therefore
be interesting to see whether or not it can be relaxed.

VI. APPENDIX

We will state an adaptation of a result by Mierczynski
(Theorem 10 from [7]), see also [6] for related work.

Recall that a system ẋ = f(x) with x ∈ X for some open
X ⊂ R

n and some C1 vector field f , is called cooperative if
in every point x ∈ X , the Jacobian matrix ∂f/∂x has non-
negative off-diagonal entries. If the Jacobian matrix is an
irreducible matrix in every x ∈ X , then we call the system
irreducible (a matrix M is irreducible if its digraph -which is
obtained by drawing an edge from node j to i iff Mij �= 0-
, is strongly connected; that is, given any pair (i, j), there
is a path from i to j following the directed edges of the
digraph). A first integral H for system ẋ = f(x) is a C1

function whose value remains constant along all solutions

of the system. And a level set of a first integral H is every
nonempty set of the form {x ∈ X |H(x) = c}, where c is a
given constant.

Mierczynski’s result is the following.
Theorem
Let ẋ = f(x), x ∈ int(Rn

+), be cooperative and irreducible.
Assume that this system has a first integral H with positive
gradient and that it is forward complete (that is, all solutions
are defined on [0, +∞)). Fix a level set L for H . Then either

• There is exactly one equilibrium in L and all solutions
in L converge to L, or

• There is no equilibrium in L and the omega limit set
ω(x) of every point x ∈ L, is empty.

REFERENCES

[1] P. De Leenheer, D. Angeli and E.D. Sontag, “Monotone chemical
reaction networks”, accepted for publication in J. Math. Chem.

[2] M. Feinberg, Lectures on Chemical Reaction Net-
works, available on-line at www.che.eng.ohio-
state.edu/∼FEINBERG/LecturesOnReactionNetworks/

[3] M. W. Hirsch, “Stability and convergence in strongly monotone
dynamical systems”, (English) J. Reine Angew. Math., Vol. 383, pp.
1-53, (1988).

[4] F. J. M. Horn and R. Jackson, “General mass action kinetics”, Arch.
Rational Mech. Anal., Vol. 49, pp. 81-116, (1972).

[5] Horn, F. “The dynamics of open reaction systems” Proc. SIAM-AMS
Sympos. Appl. Math., New York, pp. 125-137, (1974).

[6] J. Mierczynski, “Strictly cooperative systems with a first integral”,
SIAM J. Math. Anal., Vol. 18, pp. 642-646, (1987).

[7] J. Mierczynski, “Cooperative irreducible systems of ordinary differ-
ential equations with first integral”, Proceedings of the Second Mar-
rakesh International Conference of Differential Equations, to appear
(available online from www.im.pwr.wroc.pl/∼mierczyn/)

[8] E.D. Sontag, “Structure and stability of certain chemical networks
and applications to the kinetic proofreading model of T-cell receptor
signal transduction”, IEEE Trans. Autom. Control, Vol. 46, (2001), pp.
1028-1047. (Errata in IEEE Trans. Autom. Control, Vol. 47, (2002),
pag: 705.)

2367


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




