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Abstract— In this paper we prove that a switched nonlinear
system has several useful ISS-type properties under average
dwell-time switching signals if each constituent dynamical
system is ISS. This extends available results for switched linear
systems. We apply our result to stabilization of uncertain
nonlinear systems via switching supervisory control, and show
that the plant states can be kept bounded in the presence of
bounded disturbances when the candidate controllers provide
ISS properties with respect to the estimation errors. Illustrative
examples are included.

I. INTRODUCTION

SWITCHED systems arise in situations where there are

several dynamical subsystems and a switching signal

that specifies the active subsystem at each instant of time.

In general, a switched system does not inherit properties

of the individual subsystems; a well-known example is that

switching among globally exponentially stable subsystems

could lead to instability (see, e.g., [12]). Morse has shown

in [15] that for dwell-time switching signals, a switched

linear system is exponentially stable if the individual subsys-

tems are exponentially stable. This result was later extended

to a larger class of switching signals, namely average dwell-
time switching signals, and to switched linear systems with

inputs and switched nonlinear without inputs by Hespanha

and Morse in [9]. For switched nonlinear systems with

inputs, Xie et. al. showed that for dwell-time switching

signals, a switched system is input-to-state stable (ISS) if

the individual systems are ISS [21]; see also [11, Section 5].

If the individual systems are integral input-to-state stable
(iISS), De Persis et. al. showed in [1] that the switched sys-

tem remains iISS with state-dependent dwell-time switching

signals.

This paper extends the results in [9] to switched nonlinear

systems with inputs. When the individual subsystems of a

switched system are ISS and their ISS-Lyapunov functions

satisfy a suitable condition (which was also used in [9]),

we show that for switching signals with sufficiently large

average dwell-time, the switched system has ISS, exponen-
tially weighted-ISS, and exponentially weighted-iISS proper-

ties. Unlike the ISS result in [21] which relies on dwell-

time switching, our result only requires average dwell-time

switching, which is a less stringent requirement. Compared

to state-dependent dwell-time switching employed in [1]
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which requires the knowledge of the state, average dwell-

time switching can be achieved using simple hysteresis-based

switching logics [3], [9].

We apply our results in switched systems to the problem

of stabilizing uncertain nonlinear systems in the presence

of disturbances via switching supervisory control (Morse et.
al. [5], [6], [15], [16]). In switching supervisory control,

a supervisor orchestrates switching among a parameterized

family of candidate controllers by appropriately filtering the

estimation errors coming out of the multi-estimator. This

control scheme with the scale-independent hysteresis switch-
ing logic has been applied successfully to linear systems in

the presence of modeling uncertainty and disturbances [7].

For nonlinear plants with the same switching logic, it has

been shown that if there are no disturbances, then switching

stops in finite time and the states converge to zero [4],

[8]. However, in the presence of disturbances, switching is

not guaranteed to stop and the states could diverge. In this

paper, we show that using switching supervisory control with

the scale-independent hysteresis switching logic, the states

of an uncertain nonlinear plant can be kept bounded for

arbitrary initial conditions and bounded disturbances when

the controllers provide ISS property with respect to the

estimation errors.

II. PRELIMINARIES

Consider a family of systems

ẋ = fp(x, v), p ∈ P, (1)

where the state x ∈ R
n, the input v ∈ R

�, and P is an index

set. For each p ∈ P , fp is locally Lipschitz and fp(0, 0) = 0.

A switched system generated by the family of systems (1)

and a switching signal σ is

ẋ = fσ(x, v), (2)

where σ : [0,∞) → P is a piecewise constant function,

continuous from the right, specifying at every time the index

of the active system. We assume that there are no jumps in

the state x at the switching instants, and that a finite number

of switches occur on every bounded time interval.

The switched system (2) is input-to-state stable (ISS) [19]

if there exist functions1 β ∈ KL and α, γ ∈ K∞, such that

1See, e.g., [10, p.144] for definitions on class KL and K∞ functions.
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∀ v ∈ V, x0 ∈ R
n we have

α(|x(t)|) � β(|x0|, t) + γ
(‖v‖[0,t)

) ∀ t � 0, (3)

where |·| the Euclidean norm, and ‖·‖I is the supremum

norm of a signal over the interval I ⊆ [0,∞). The function

α can be taken to be the identity function without loss of

generality, see [10, Lemma 4.2].

Definition II.1 The switched system (2) is eλt-weighted

input-to-state stable (eλt-weighted ISS) for some λ > 0 if
∃ α1, α2, γ ∈ K∞, such that ∀ v ∈ V, x0 ∈ R

n we have

eλtα1(|x(t)|) � α2(|x0|)+ sup
s∈[0,t)

{
eλsγ(|v(s)|)} ∀ t � 0. (4)

The switched system (2) is eλt-weighted integral input-

to-state stable (eλt-weighted iISS) for some λ > 0 if
∃ α1, α2, γ ∈ K∞, such that ∀ v ∈ V, x0 ∈ R

n we have

eλtα1(|x(t)|) � α2(|x0|) +
∫ t

0

eλτγ(|v(τ)|)dτ ∀ t � 0. (5)

The eλt-weighted ISS and eλt-weighted iISS properties gen-

eralize ISS and iISS properties2 in the spirit of exponentially

weighted induced norms considered in [9]. While the ISS

property characterizes stability in general, the eλt-weighted

ISS and eλt-weighted iISS properties characterize stability

with a “stability margin” λ (similarly to stability margin of

linear systems), which is useful in quantitative analysis (such

as in supervisory control as we shall see later).

III. INPUT-TO-STATE PROPERTIES OF SWITCHED

SYSTEMS

Recall that a switching signal σ has an average dwell-time
τa if there are two positive numbers N◦ and τa such that

Nσ(T, t) � N◦ +
T − t

τa
∀T � t � 0, (6)

where Nσ(T, t) is the number of switches in the interval

(t, T ) [9]. Average dwell-time switching, in contrast to

dwell-time switching, allows switching intervals less than τa.

Note that for N◦ = 1, this reduces to dwell-time switching.

We have the following theorem, which is an extension of the

results from [9] to switched nonlinear systems with inputs.3

Theorem III.1 Consider the switched system (2). Suppose
that there exist continuously differentiable functions Vp :
R

n → [0,∞), p ∈ P , class K∞ functions α1, α2, γ, and
numbers λ◦ > 0, µ � 1 such that ∀ ξ ∈ R

n, η ∈ R
�, and

∀ p, q ∈ P , we have

α1(|ξ|) � Vp(ξ) � α2(|ξ|), (7)

∂Vp

∂ξ
fp(ξ, η) � −λ◦Vp(ξ) + γ(|η|), (8)

Vp(ξ) � µVq(ξ). (9)

2See [18] for the original definition of iISS for nonswitched systems.
3It has come to the authors’ attention that the ISS property of switched

nonlinear systems under average dwell-time switching (but not the eλt-
weighted ISS and eλt-weighted iISS properties) has been independently
reported without proof in [2].

Let a switching signal σ having average dwell-time τa. Then:

(i) the switched system (2) is ISS if τa >
lnµ

λ◦
,

(ii) the switched system (2) is eλt-weighted ISS if

τa >
lnµ

λ◦ − λ
, λ ∈ (0, λ◦),

(iii) the switched system (2) is eλt-weighted iISS if

τa � lnµ

λ◦ − λ
, λ ∈ (0, λ◦). (10)

Proof: For notational compactness, we define Gb
a(λ) :=∫ b

a
eλsγ(|v(s)|)ds. Let T > 0 be an arbitrary time. Denote by

τ1, . . . , τNσ(T,0) the switching instants on the interval (0, T )
(by convention, τ0 := 0, τNσ(T,0)+1 := T ). Consider the

function

W (s) := eλ◦sVσ(s)(x(s)). (11)

On each interval [τi, τi+1), the switching signal is constant.

From (8) and (11), we obtain Ẇ (s) � eλ◦sγ(|v(s)|) ∀ s ∈
[τi, τi+1). Integrating both sides of the foregoing inequality

from τi to τ−
i+1 and using (9), we arrive at W (τi+1) �

µ
(
W (τi)+G

τi+1
τi (λ◦)

)
. Iterating the foregoing inequality

from i=0 to Nσ(T, 0), we get

W (T−) � µNσ(T,0)

⎛
⎝W (0) +

Nσ(T,0)∑
k=0

µ−kGτk+1
τk

(λ◦)

⎞
⎠. (12)

From (10), for every δ ∈ [0, λ◦−λ− lnµ/τa), we have τa �
lnµ/(λ◦ − λ − δ), and by virtue of (6) and since Nσ(T, 0)−
k − 1 � Nσ(T, τk+1), it follows that

µNσ(T,0)−k � µ1+N◦e(λ◦−λ−δ)(T−τk+1), (13)

for all k = 0, . . . , Nσ(T, 0). Also, since λ+δ < λ◦, we have

Gτk+1
τk

(λ◦) � e(λ◦−λ−δ)τk+1Gτk+1
τk

(λ + δ). (14)

From (12), (13) and (14), we then arrive at

α1(|x(T )|) � ce−(λ+δ)T (α2(|x0|) + GT
0 (λ + δ)), (15)

c := µ1+N◦ , (16)

by virtue of (11) and (7) and since x(·) is continuous. Letting

δ = 0 in (15), we obtain (5) with α1 := α1, α2 := cα2,

γ := cγ. We have GT
0 (λ + δ) � (c1/c)(e(λ+δ−λ̄)T −

1) supτ∈[0,T )

{
eλ̄τγ(|v(τ)|)} for all λ̄ ∈ [0, λ + δ) where

c1 := c/(λ + δ − λ̄). This together with (15) yields

α1(|x(T )|) � ce−(λ+δ)T α2(|x0|)
+ c1e−λ̄T sup

τ∈[0,T )

{
eλ̄τγ(|v(τ)|)

}
∀T � 0.

(17)

Picking some δ such that 0 < δ < λ◦ − λ − lnµ/τa, and

letting λ̄ = λ in (17), we have the property (4) with α1 := α1,

α2 := cα2, and γ := c1γ. If we let λ̄ = 0, δ = 0 in (17), we

have the property (3) with α := α1, β(r, s) := ce−λsα2(r),
and γ := cγ/λ by the fact that supτ∈[0,T ) γ(|v(τ)|) �
γ

(‖v‖[0,T )

)
.
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Remark 1 If the individual subsystems in the family (1)

are ISS, then for every p ∈ P there exist α1,p, α2,p, γp ∈
K∞, λ◦,p > 0, and ISS-Lyapunov functions Vp, satis-

fying α1,p(|ξ|) � Vp(ξ) � α2,p(|ξ|), and
∂Vp

∂ξ fp(ξ) �
−λ◦,pVp(ξ)+γp(|η|) ∀ ξ ∈ R

n, η ∈ R
�; see [17], [19]. If the

set P is finite, then (7) and (8) are trivially satisfied. Also, if

the set P is compact, and suitable continuity assumptions

on
{
α1,p, α2,p, γp

}
p∈P and {λ◦,p}p∈P with respect to p

hold, (7) and (8) follow. The set of possible ISS-Lyapunov

functions is restricted by (9). This inequality does not hold,

for example, if Vp is quadratic for one value of p and

quartic for another. If µ = 1, the relation (9) implies that

V = Vp, p ∈ P is a common ISS-Lyapunov function for the

family of systems (1). In this case, the switched system is ISS

for arbitrary switching (also called uniformly input-to-state
stable [14]).

IV. APPLICATION TO SWITCHING SUPERVISORY

CONTROL OF NONLINEAR SYSTEMS

We quickly review here the switching supervisory control

framework; for details, see e.g., [12, Chapter 6] and refer-

ences therein. Suppose that an unknown process P belongs

to a family of plants parameterized by a parameter p ∈ P ,

for some known finite index set P of m elements, and denote

by p� ∈ P the true value of the unknown parameter:

ẋ = f(x, u, p�, d), y = h(x),

where x, y, u, d are the state, output, input and disturbance,

respectively. A family of candidate controllers

ẋC = gq(xC, y, u), uq = rq(xC, y), q ∈ P, (18)

are designed such that the controller indexed by q stabilizes

the plant with index q. Controller selection is carried out by

a high-level supervisor, which comprises three subsystems:

(i) The first subsystem is a multi-estimator:

ẋE = F (xE, y, u), yp = hp(xE), p ∈ P. (19)

Let ep = yp − y, p ∈ P be the estimation errors. The

multi-estimator has the following property.

Assumption IV.1 There exists a constant c0 > 0 such
that |ep�(t)| � c0 ∀ t � 0.

There is a family of injected systems, where the injected

system indexed by q ∈ P comprises the multi-estimator

and the corresponding controller:

ẋCE =
[
gq(xC, y, rq(xC, y))
F (xE, y, rq(xC, y))

]
=: fq(xCE, eq)

by virtue of y = hq(xE) − eq ∀q ∈ P , where xCE :=
[xT

C
xT

E
]T is the state of the injected system; xCE ∈ R

n;

eq ∈ R
�. The switched injected system is generated

by the above family of injected systems and some

switching signal σ defined in (iii) below.4 We assume

4By switched injected system we mean that there are no jumps in xCE at
switching instants. When implementing (18), at each switching instant τi,
we can ensure that xC(τ−

i ) = xC(τi), and thus xC is continuous; xE is
continuous in view of (19).

that the hypotheses of Theorem III.1 are satisfied for

this switched injected system (see also Remark 1).

(ii) The second subsystem is the monitoring signal gener-
ator generating the monitoring signals µp, p ∈ P as

żp = −λzp + γ(|ep|), zp(0)=0, µp(t)=ε + zp(t),
(20)

for some ε > 0, λ ∈ (0, λ◦), where λ◦, γ are as in (8).

(iii) The third subsystem is a switching logic. We use

the scale-independent hysteresis switching logic, which

produces the switching signal σ as follows:

σ(t) :=

⎧⎨
⎩

argmin
q∈P

µq(t) if ∃ q ∈ P such that
(1 + h)µq(t) � µσ(t−)(t),

σ(t−) else,

where h > 0 is a design parameter such

ln(1 + h)
λm

>
lnµ

λ◦ − λ
· (21)

Note that the above hysteresis switching logic is scale-

independent—the switching signal σ is unaltered when we

multiply all the monitoring signals by a positive scalar. Let

µ̄p(t) := eλtµp(t), t � 0, p ∈ P , be the scaled version of

µp. From (20), for each p ∈ P , we have

µ̄p(t) = εeλt +
∫ t

0

eλsγ(|ep(s)|)ds, t � 0. (22)

It is evident from (22) that µ̄p is continuous and monotoni-

cally nondecreasing. The following lemma provides a char-

acterization of the switching signal σ (cf. [3, Theorem 1]);

the proof is along the lines of [3] and is omitted.

Lemma IV.2 For arbitrary t � t0 � 0, we have

Nσ(t, t0) � m +
m

ln(1 + h)
ln

(
µ̄q(t)

minp∈P µ̄p(t0)

)
, (23)

Nσ(t,t0)∑
k=0

(
µ̄σ(τk)(τk+1) − µ̄σ(τk)(τk)

)

� m

(
(1 + h)µ̄q(t) − min

p∈P
µ̄p(t0)

)
,

(24)

for every index q ∈ P where τ1, τ2, . . . , τNσ(t,t0) are the
discontinuities of σ on (t0, t) and τNσ(t,t0)+1 := t, τ0 := t0.

Letting p=p� in (22), by Assumption IV.1 we obtain

µ̄p�(t) � κeλt, κ := ε + γ(c0)/λ. (25)

Since minp∈P µ̄p(t0) � εeλt0 ∀ t0 � 0, (23) with q = p�

and (25) yield Nσ(t, t0) � N◦ + t−t0
τa

, where N◦ := m +
m ln(κ/ε)/ ln(1+h), and τa := ln(1+h)/(λm). With q = p
in (24), using µ̄p(t) from (22), and (25), we arrive at∫ t

0

eλsγ(|eσ(s)(s)|)ds + εeλt − ε =

Nσ(t,t0)∑
k=0

(
µ̄σ(τk)(τk+1) − µ̄σ(τk)(τk)

)
� m(1 + h)κeλt.

(26)
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We now have the following result on switching supervisory

control of nonlinear plants in the presence of disturbances.

Theorem IV.3 Suppose that
(i) the state x of the process P is bounded when the input

u, output y and disturbance d are bounded,
(ii) the multi-estimator is designed such that Assump-

tion IV.1 holds,
(iii) the candidate controllers are designed such that the

hypotheses of Theorem III.1 hold for the switched
injected system.

Then under the supervisor with scale-independent hysteresis
switching logic, all continuous states of the closed-loop
system are bounded for arbitrary initial conditions and
bounded disturbances.

Proof: From hypothesis (iii) and the condition on aver-

age dwell-time (21), it follows from Theorem III.1 that the

state of switched injected system xCE has the eλt-weighted

iISS property (5) for some class K∞ functions α1, α2 and γ.

This property together with (26) yield

|xCE(t)| � α−1
1 (α2(|xCE(0)|) + cm(1 + h)κ) =: c2 ∀t � 0.

(27)

We have ∀ q ∈ P, ∀ t � 0, |yq(t)| = |hq(xE(t))| �
supp∈P,|ξ|�c2

{|hp(ξ)|} =: c3. Since y = yp� − ep� and

|ep�(t)| � c0 ∀ t � 0 (by Assumption IV.1), it follows that

|y(t)| � c3+c0 =: c4 ∀ t � 0. Also eq = yq−y, and therefore

|eq(t)| � c0 + 2c3 =: c5 ∀ q ∈ P, ∀ t � 0. Further, we have

∀ t � 0, |u(t)| � supq∈P,|ξ|�c2,|η|�c4
{|rq(ξ, η)|} =: c6.

Since d, u and y are bounded, the state x remains bounded

in view of hypothesis (i). Finally, every monitoring signal

µq, q ∈ P , is bounded since |eq| is bounded for all q ∈ P .

Remark 2 Hypothesis (i) of Theorem IV.3 holds, for ex-

ample, when the plant is input-output-to-state stable (IOSS)

(see [20] for the definition). Hypothesis (ii) requires that at

least one estimator provides a bounded estimation error in the

presence of disturbances. This is more or less a standard as-

sumption in multi-estimator design; a similar assumption was

used in [8] for plants without disturbances. Hypothesis (iii)

stipulates that the injected systems are ISS (which was also

an assumption in [8]); the design of ISS injected systems

is nontrivial, and is a topic of ongoing research (cf. [13]).

All three hypotheses can be completely characterized via

detectability and stabilizability of the plant for linear systems

[15], but for nonlinear systems, there is no known criterion

on the plant which guarantees that these requirements can

be fulfilled. However, there are certain nonlinear systems for

which these conditions hold (see Example 1 below).

Remark 3 If the disturbance d is vanishing and in Assump-

tion IV.1 we replace the constant bound c0 with a time-

varying bound c0(t) → 0 as t → ∞, and further, if the

plant is IOSS, then we can have |x(t)| → 0 as t → ∞
if we use a non-negative decaying ε(t) in the monitoring

signal generator such that ε(t) → 0 and γ(c0(t))/ε(t) < ∞
as t → ∞ (which means ε should decay more slowly

than γ(c0)). If this is the case, κ → 0 in (25) and the

chatter bound N◦ < ∞. Then the iISS property of the

switched injected system together with (26) yields |xCE(t)| �
α−1

1 (e−λtα2(|xCE(0)|)+cm(1+h)κ(t)) → 0 as t → ∞; thus,

c2 in (27) becomes a time-varying c2(t) → 0 as t → ∞. It

then follows that c3(t), c4(t), c5(t), c6(t) → 0 as t → ∞.

Since |u(t)| → 0, |y(t)| → 0 and the plant is IOSS, the state

norm |x(t)| goes to 0 as t → ∞.

Example 1 Consider a scalar nonlinear plant

ẏ = y2 + p�u + d, (28)

where p� is an unknown constant belonging to a finite index

set P := {p1, . . . , pm}, and d is a disturbance. Our objective

is to keep the state bounded in the presence of a bounded

disturbance. The unknown parameter enters as the input

gain, which makes the problem challenging to solve in the

framework of conventional adaptive control when the sign

of p� is unknown.

The multi-estimator and the candidate controllers are

ẏp = −(yp − y) − (yp − y)3 + pu + y2,

up =
1
p
(−y − y2 − y3),

p ∈ P.

For the controller with index q ∈ P , the injected system is

ẏp = −(yp−y) − (yp−y)3 +
p

q
(−y−y2−y3) + y2, p ∈ P.

(29)

Consider the candidate ISS-Lyapunov function

Vq(xCE) := a1y
4
q + b1y

2
q +

∑
p �=q,p∈P

a0y
4
p + b0y

2
p, q ∈ P,

where xCE := [yp1 , . . . , ypm ]T is the state of the injected

system, for some a1, b1, a0, b0 > 0 to be determined. One

can pick µ := max
{

a1
a0

, a0
a1

, b1
b0

, b0
b1

}
. The derivative of Vq

along the qth injected system is

V̇q = 4a1y
3
q ẏq + 2b1yq ẏq +

∑
p �=q,p∈P

4a0y
3
pẏp + 2b0ypẏp. (30)

Substituting (29) into (30), after some expansions and sim-

plifications, we arrive at

V̇q � −a1y
6
q − 4a1y

4
q − 2b1y

2
q+∑

p �=q,
p∈P

−a0y
6
p−4a0y

4
p−2b0y

2
p+(4a0y

3
p+2b0yp)κpqg(y). (31)

where κpq := (1 − p/q) and g(y) := y + y2 + y3. Define

κmax := max{|κpq| : p, q ∈ P}. Using completions of the

squares with −a0y
6
p − b0y

2
p + (4a0y

3
p + 2b0y

2
p)κpqg(y) and

using the triangle inequality with |g(y)|2 in (31), after some

computations, we obtain

V̇q � −Vq − (a1 − 256(4a0 + b0)mκ2
max)y

6
q

− (b1 − 16(4a0 + b0)mκ2
max)y

2
q

+ (4a0 + b0)mκ2
max(16e2

q + 256e6
q).
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Fig. 1. Example 1

If b0, a0 chosen such that (4a0 + b0)mκ2
max � 1, a1 �

256, b1 � 16, we then get V̇q � −Vq + γ(|eq|), where

γ(r) := 16r2 + 256r6 is a class K∞ function. The fore-

going inequality shows that for each fixed controller with

index q, the corresponding injected system is ISS with

respect to the output error eq. By Theorem IV.3, all the

continuous states are bounded for arbitrary initial conditions

and bounded disturbances under the supervisor with scale-

independent hysteresis switching logic for a large enough h
satisfying (21).

For P = {−2,−1, 1, 2}, p� = 1, numerical values are

m = 4, κmax = 3, a0 = 6.5×10−3, b0 = 0.5×10−3, a1 = 256,

b1 = 16, µ = 3.94×104. Choose ε = 10−6, λ = 2×10−4.

The hysteresis constant h = 0.02 satisfies the condition on

average dwell-time (21). Simulation results in MATLAB�

with disturbance uniformly distributed between −10 and 10,

and x0 = 0.1, xE(0) = 0 are plotted in Fig. 1. �

Boundedness under Weaker Hypotheses

As noted in Remark 1, the existence of µ as in (9) for all

ξ restricts the set of possible ISS-Lyapunov functions. We

now assume that we only have µ such that the inequality (9)

holds in some annulus Ω := {ξ ∈ R
n : r1 � |ξ| � r2}, for

some numbers r2 > r1 � 0.

Consider the switched injected system described in the

previous section. Suppose µ � 1 such that Vp(ξ) �
µVq(ξ), ∀ r1 � |ξ| � r2 ∀ p, q ∈ P . We can set xCE(0) = 0.

Let t̂1 := inf{t � 0 : |xCE(t)| > r1}. If t̂1 = ∞, then

|xCE(t)| � r1 ∀t � 0. Otherwise, let t̂2 := inf{t � t̂1 :
|xCE(t)| > r2} and ť1 := inf{t � t̂1 : |xCE(t)| < r1} and

t̄ := min{t̂2, ť1}. Since r1 � |xCE(t)| � r2 ∀t ∈ [t̂1, t̄), it

follows from (27) that

|xCE(t)| � α−1
1 (α2(r1) + cm(1 + h)κ) =: c2 ∀t ∈ [t̂1, t̄)

(32)

with c and κ are as in (16), (25).

Let x̄0 and d̄ be the bounds on the plant initial state and

disturbance, respectively. Then the bound c0 in Assump-

tion IV.1 depends on x̄0 and d̄ only. Suppose that x̄0 and

d̄ are sufficiently small such that

c2 � r2. (33)

In view of (32) and (33), from the definition of t̂2, we must

have t̂2 = ∞. If ť1 = ∞, then t̄ = ∞ and hence, |xCE(t)| �
c2 ∀ t � 0. If ť1 < ∞, then t̄ = ť1, and let t̂3 := inf{t � ť1 :
|xCE(t)| > r1}. If t̂3 = ∞, then |xCE(t)| � r1 � c2 ∀t � ť1,

and hence, |xCE(t)| � c2 ∀t � 0; otherwise, repeat the current

argument with t̂3 playing the role of t̂1. We can then conclude

that |xCE(t)| � c2 ∀t � 0. From the boundedness of xCE, we

can prove that all continuous states are bounded using similar

arguments as in the proof of Theorem IV.3. We then have

the following result.

Theorem IV.4 Suppose that
(i) the state x of the process P is bounded when the input

u, output y and disturbance d are bounded,
(ii) the multi-estimator is designed such that Assump-

tion IV.1 holds,
(iii) the candidate controllers are designed such that hy-

potheses (7), (8) of Theorem III.1 hold for the switched
injected system for some family of ISS-Lyapunov func-
tions {Vp}p∈P ,

(iv) there exist positive numbers r1, r2, µ, such that Vq(ξ) �
µVq(ξ) ∀ r1 � |ξ| � r2 and positive numbers x̄0, d̄ such
that c2 � r2 for some ε > 0, h > 0, 0 < λ < λ◦ where
c2 is as in (32).

Then under the supervisor with the scale-independent hys-
teresis switching logic, with hysteresis constant h, all con-
tinuous states of the closed-loop system are bounded for
bounded disturbances |d(t)| � d̄, t � 0 whenever the initial
plant state |x(0)| � x̄0.

Example 2 Consider the scalar nonlinear plant in Example

1, and the following simpler multi-estimator and candidate

controllers

ẏp = −(yp − y) + y2 + pu,

up = −1
p
(y + y2),

p ∈ P.

The injected system with the controller indexed by q is

ẏp = −(yp − y) + y2 +
p

q
(−y − y2), p ∈ P.

Using the candidate ISS-Lyapunov function Vq := b1y
4
q +

b2y
2
q + a

∑
p �=q,
p∈P

y2
p, it can be checked that for each fixed

controller indexed by q ∈ P , the injected system is ISS:

V̇q = −4b1y
4
q − 2b2y

2
q + 2a

∑
p�=q,p∈P

yp(−yp + κpqy + κpqy
2)

� −λ◦Vq + γ(|eq|),
with y2 := |yq − eq|2 � 2(y2

q + e2
q) and y4 � 8(y4

q + e4
q) for

some 0 < λ◦ < 2, a1, a2 > 0, such that a1 + a2 = 2 − λ◦,

where κpq := (1 − p/q), κmax := max{|κpq| : p, q ∈ P},

b3 := a(m − 1)κ2
max, γ(r) := b3(2r2/a1 + 8r4/a2), and

b1, b2, a such that b3 < min{(4−λ◦)b1a2/8, (2−λ◦)b2a1/2}.

The ISS-Lyapunov function Vq has the property (7), (8) for

all ξ ∈ R
m; however, there is no global µ as in (9) because

Vq is quartic in yq whilst Vp, p 	= q, are quadratic in yq .
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Fig. 2. Example 2

Nevertheless, we can obtain a stability result using Theorem

IV.4.

We can choose α1(r) := min{b2, a}r2 =: η1r
2 and

α2(r) := max{(b1r
2
2 + b2), a}r2 =: η2r

2. Then µ := η2/η1.

The error dynamics for p = p� is ėp� = −ep� −d and hence,

the bound on ep� is |ep�(t)| � |ep�(0)| + d̄ � x̄0 + d̄ since

|ep�(0)| = |yp�(0)−y(0)| � x̄0 by virtue of yp(0) = 0 ∀ p ∈
P . Now, c2 =

(
µ1+N◦(η2r

2
1 + m(1 + h)κ)/η1

)1/2
< r2 if r1

and d̄ are small enough. Choosing the hysteresis constant h
to satisfy the average dwell-time condition, we conclude that

all the continuous states x, xCE are bounded.

Numerically, for P = {−2,−1, 1, 2}, p� = 1, we have

m = 4, κmax = 3. Let r2 = 0.1, r1 = 10−8, b1 = 2.96 ×
10−9, b2 = 1.3 × 10−10, a = 8 × 10−12, a1 = 1.75, a2 =
0.15, λ◦ = 0.1. Then µ = 19.95. Choose h = 0.05 and

λ = 0.0003; the condition on average dwell-time is satisfied.

Choose ε = 3.2914× 10−21, then N◦ = 4.0819. If |x(0)| <
10−9 and d̄ < 10−9, then all the states are bounded by

c2 = 0.0836 for all time. Simulation results are in Fig. 2. �

On the one hand, when ISS-Lyapunov functions satisfy-

ing (9) are not available, Theorem IV.4 can provide a way

to achieve local boundedness of the plant state. There are

more choices of ISS-Lyapunov functions, which can lead to

simpler controller and multi-estimator designs, but it may

be difficult to find the positive numbers in hypothesis (iv)

in Theorem IV.4. Also, the hysteresis constant h cannot be

chosen arbitrarily small since λ cannot be arbitrarily small

(c2 increases when λ decreases). On the other hand, if we can

find ISS-Lyapunov functions satisfying (9), Theorem IV.3

provides a global boundedness result. It also provides the

flexibility to choose a small hysteresis constant h, which

can be made arbitrarily small by reducing λ (see (21)), and

a smaller h possibly leads to a better performance.

V. CONCLUSIONS

In this paper, we have shown that under switching signals

with large enough average dwell-time, a switched system

is ISS, eλt-weighted ISS, and eλt-weighted iISS, if the

individual subsystems are ISS. We applied this result to

show that the states of a nonlinear uncertain plant can be

kept bounded for arbitrary initial conditions and bounded

disturbances using switching supervisory control with the

scale-independent hysteresis switching logic, provided that

the injected systems are ISS with respect to the estimation

errors and there is a global constant µ as in (9). We relaxed

the requirement of a global µ and achieved local boundedness

of the plant state in the presence of bounded disturbances. We

illustrated our results on a plant where it may be difficult to

apply traditional adaptive control tools. Future research is to

study the scenario with measurement noises and unmodeled

dynamics, as well as the case of a continuum P .
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2003.

[13] D. Liberzon, E. D. Sontag, and Y. Wang. Universal construction of
feedback laws achieving ISS and integral-ISS disturbance attenuation.
Systems and Control Lett., 4(2):111–127, 2002.

[14] J. L. Mancilla-Aguilar and R. A. Garcia. On the existence of common
Lyapunov triples for ISS and iISS switched systems. In Proc. 39th
IEEE Conf. on Decision and Control, pages 3507–3512, 2000.

[15] A. S. Morse. Supervisory control of families of linear set-point
controllers-part I: exact matching. IEEE Trans. Automat. Control,
41:1413–1431, 1996.

[16] A. S. Morse. Supervisory control of families of linear set-point
controllers-part II: robustness. IEEE Trans. Automat. Control,
42:1500–1515, 1997.

[17] L. Praly and Y. Wang. Stabilization in spite of matched unmodeled
dynamics and an equivalent definition of input to state stability.
Mathematics of Control, Signals and Systems, 9:1–33, 1996.

[18] E. D. Sontag. Comments on integral variants of ISS. Systems and
Control Lett., 34:93–100, 1998.

[19] E. D. Sontag and Y. Wang. On characterizations of the input-to-state
stability property. Systems and Control Lett., 24:351–359, 1995.

[20] E. D. Sontag and Y. Wang. Output-to-state stability and detectability
of nonlinear systems. Systems and Control Lett., 29:279–290, 1997.

[21] W. Xie, C. Wen, and Z. Li. Input-to-state stabilization of switched
nonlinear systems. IEEE Trans. Automat. Control, 46:1111–1116,
2001.

125


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




