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Abstract— This paper studies the sampled-data H2 smoothing prob-
lem. Using the compact representation of the lifted transfer functions
introduced in the companion paper [12], a frequency-domain approach
is used to solve the problem in the lifted domain. The resulting estima-
tors have the structure of the cascade of a linear discrete time-invariant
smoother and a generalized hold D/A converter.

I. INTRODUCTION

Consider the sampled-data estimation setup in Fig. 1(a). Here G is
a continuous-time system, which generates signals v and y from an
exogenous signal w. The output y is sampled by the ideal sampler
Sh generating the measured discrete-time signal ȳ as ȳk = y(kh),
where h is the sampling period. The problem is to construct a
hybrid (having a discrete-time input and a continuous-time output)
estimator K so that its output ve be “close” to the unmeasured
signal v. The closeness of v and ve is conventionally measured by
either H2 or H∞ norm of the system from the exogenous input w

to the estimation error e = v − ve.
When K is constrained to be causal, the problem is called the

sampled-data filtering problem. This problem is currently fairly
well-understood both in the H2 [7] and in the H∞ [15], [18]
cases. Sampled-data estimation problems where the causality of K

is relaxed are noticeably less studied. Such problems fall into the
category of the sampled-data smoothing problems. In particular,
when no causality constraints are imposed on K, the problem is
called the fixed-interval smoothing, whereas when K has only a
finite-length preview, it is called the fixed-lag smoothing and the
length of the preview is said to be the smoothing lag. The fixed-
interval case may be motivated by off-line data processing problems
or situations where the “time” variable is a spatial coordinate (so
that no causality requirements exist). The fixed-lag case corresponds
to situations in which some amount of delay or latency between the
measurement and estimation generation can be tolerated.

The sampled-data smoothing proved to be a challenge. For
example, the sampled signal reconstruction problem in the the H∞
setting, which is a special case of the general smoothing setup in
Fig. 1(a), is stated as Open Problem 51 in [1]. To the best of our
knowledge, the only analysis of the achievable performance in the
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ȳ

(b) In the lifted domain

Fig. 1. General sampled-data estimation setup.

H∞ fixed-lag smoothing problem was carried out in [13], yet only
with a smoothing lag of one sampling period.

In this paper the sampled-data smoothing problem is studied in
the H2 setting. We derive the first solution to this problem and show
that the frequency-domain solution procedure can be successfully
carried out in the lifting domain by the use of the technique
proposed in [12]. The resulting smoother is of the form of the
cascade of a finite-dimensional LTI discrete part and a generalized
hold function. Although the H2 version of the problem is less
challenging than its H∞ counterpart, we believe that the solution
procedure adopted here can be extended to the H∞ case following
the continuous-time solution of [17]. Moreover, in the fixed-interval
case the H2 and H∞ solutions coincide [6], so that the proposed
solution partially addresses the H∞ smoothing as well.

The paper is organized as follows. In Section II the smoothing
problem is formulated and its solution in the lifted domain is
derived. As this solution is not readily implementable, the rest of
the paper is devoted to its peeling-off back to the time domain. To
this end, Section III addresses some underlying technical steps used
in both the fixed-interval and the fixed-lag versions of the problem.
The former is then completely solved in Section IV and the latter—
in Section V. Concluding remarks are provided in Secttion VI.
Appendix A contains some basic definitions related to STPBCs.

Notations: Some notations used throughout the paper are
based on those introduced in the companion paper [12]. The other
notations are fairly standard. L2(T), or just L2, denotes the space
of Hilbert-Schmidt functions, square integrable on the unit circle
T

.
= {z ∈ C : |z| = 1}. L∞(T), or simply L∞, stands for the space

of functions bounded on T (note that in the cases studied in this
paper L∞ ⊂ L2). The Hardy space Hp, where p is either 2 or ∞,
is the subspace of Lp comprised of functions analytic and bounded
in |z| > 1. Given an l ∈ Z+, the space of functions f(z) such
that z−lf(z) ∈ Hp is referred to as zlHp. It is readily seen that
zlHp ⊂ zl+1Hp ⊂ Lp for all l. Finally, by projzlH2 (·) we mean
the orthogonal projection operator L2 �→ zlH2.

II. PROBLEM FORMULATION AND ABSTRACT SOLUTION

The estimation problem addressed in this paper is formulated
in the lifted domain. To this end, the hybrid (continuous/discrete)
periodically time-varying system in Fig. 1(a) is converted to an
equivalent purely discrete time-invariant system in Fig. 1(b) using
the lifting transformation [2]. The lifting of the combination of G

and Sh (the light gray box in Fig. 1(a)) is an LTI discrete signal
generator of the form1

Ğ(z) =

[
Ğv(z)

Ǵy(z)

]

1Hereinafter a bar, like Ō, indicates an operator whose input and output
spaces are both finite dimensional; a grave accent, Ò, indicates a finite-
dimensional input space and a distributed output space, like Kh; an acute
accent, Ó, indicates a finite-dimensional output space and a distributed input
space; finally, a breve accent, Ŏ, indicates that both the input and output
take distributed values.
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and the lifting of the estimator is K̀(z). The fixed-lag smoothing
problem for this system is formulated as follows:

SPĞ,l: Given Ğ(z) and l � 0, find K̀(z) ∈ zlH∞ such that

Ğe(z)
.
= Ğv(z) − K̀(z)Ǵy(z) ∈ zlH∞

and ‖Ğe(z)‖L2 is minimized.

The problem SPĞ,0, i.e., that for l = 0, corresponds to the filtering
problem (so that zlH∞ = H∞). The other extreme case, SPĞ,∞,
corresponds to the fixed-interval smoothing in which the estimator
has access to all future measurements (then zlH∞ = L∞).

Remark 2.1: The requirement on K̀ and Ğe to belong to zlH∞
is the stability requirement relaxed to allow the estimator to have
the l-step preview. When the preview is finite, the problem can be
reformulated in a more conventional form of minimizing the H2

norm of z−lĞe. This is the reason why we refer to SPĞ,l as the
H2 problem.

To guarantee the solvability and well-posedness of the estimation
problem we need to impose some constraints on the problem data.
First, we assume that

A 1: ∃K̀ ∈ H∞ such that Ğv − K̀Ǵy ∈ H∞.

This assumption might appear somewhat restrictive as we actually
need the existence of a K̀ ∈ zlH∞ such that Ğv−K̀Ǵy ∈ zlH∞. This
is clearly guaranteed by A 1, yet, in general, not vice versa. A 1,
however, rules out admissible solutions only in the case when Ğv(z)

is not proper, which is not considered in this paper. Hence, this
assumption does not impose any loss of generality for the problem
in Fig. 1(a). We also assume that

A 2: Ǵy(ejθ)Ǵy(ejθ)∗ is nonsingular ∀θ ∈ [0, 2π],

which guarantees the well-posedness of the optimization problem.
The solution of SPĞ,l in the fixed-lag smoothing case is sim-

plified when the following procedure from [11], [17] (it roots in
[10]), which we call the stabilification, is applied to transform the
original problem to that with stable normalized data. Toward this
end, the following result plays a key role.

Proposition 2.1: Let Ğ admit a left coprime factorization in H∞.
Then A 1 holds iff there exists a left coprime factorization of Ğ of
the form

Ğ(z) =

[
I M̀v(z)

0 M̄y(z)

]−1 [
N̆v(z)

Ńy(z)

]
(1)

for some M̀v, M̄y, N̆v, Ńy ∈ H∞.
Proof: (If) Assume that the factorization (1) exists. It is then

readily seen that K̀ = −M̀v satisfies A 1.
(Only if) Now assume that K̀ satisfies A 1. Let M̆−1N̆ be a left

coprime factorization of Ğ in H∞ and denote K̆α
.
=

[
I −K̀

]
M̆−1.

Then A 1 is equivalent to the condition

K̆α

[
M̆ N̆

]
∈ H∞

which, together with the left coprimeness of M̆ and N̆, implies that
K̆α ∈ H∞ as well. Partition now M̆ compatibly with the partitioning
of

[
I −K̀

]
, i.e., M̆ =

[
M̆1 M̀2

]
. Then

K̆α

[
M̆1 M̀2

]
=

[
I −K̀

]
⇒ K̆αM̆1 = I,

i.e., M̆1 is left invertible in H∞. This implies that there exists
a Ŭ, Ŭ−1 ∈ H∞ such that ŬM̆1 =

[
I
0

]
, so that ŬM̆ and ŬN̆

constitute the desired left coprime factorization of Ğ.
Having the factorization (1), the problem SPĞ,l can be refor-

mulated as an equivalent problem with stable data by replacing K̀

with K̀a
.
= (K̀ − M̀v)M̄

−1
y . It can be shown [11, Lemma 5] that

the error transfer function is then equivalent to N̆v − K̀aŃy and,

provided Ğe ∈ zlH∞, K̀ ∈ zlH∞ iff so does K̀a. Thus, the original
smoothing problem can be equivalently formulated as SPN̆,l, in
which the “stability” of the error transfer function should not be
taken care of as it is redundant. The solution K̀a of SPN̆,l can then
be used to produce the solution K̀ of SPĞ,l according to

K̀(z) = K̀a(z)M̄y(z) − M̀v(z). (2)

Now, A 2 guarantees that the numerator in (1) can always be
chosen to satisfy [

N̆v(z)

Ńy(z)

]
Ń∼

y (z) =

[
V́∼(z)

I

]
(3)

for some strictly proper V́ ∈ H∞ (we show this by construction in
Section III). Then, standard completion of squares arguments yield:

ĞeĞ∼
e = (V́∼ − K̀a)(V́ − K̀∼

a ) + (N̆vN̆∼
v − V́∼V́).

Since2

‖Ğe‖
2
L2 =

1

2π
tr

(∫2π

0

Ğe(ejθ)Ğ∼
e (ejθ)dθ

)

and since tr(O1 + O2) = tr(O1) + tr(O2), SPN̆,l is equivalent to
the (one-block) problem of minimizing

‖V́∼(z) − K̀a(z)‖L2 .

The latter problem then amounts to a straightforward application of
the Projection Theorem and is thus solved by

K̀a = projzlH2 (V́∼)
.
= V́∼

+ (4)

with the optimal performance level of

γopt =

√
‖N̆v‖2

H2 − ‖V́+‖2
H2

(here the orthogonality of V́+ and V́−V́+ was used). As ‖N̆v‖H2 is
the achievable performance in the filtering case, ‖V́+‖H2 actually
quantifies the performance improvement due to smoothing.

When l is finite, V́+ is a strictly proper FIR (finite impulse
response) system, the (operator-valued) impulse response of which
is the truncation of that of V́(z) to the first l+1 steps (in the filtering
case, i.e., l = 0, V́+ = 0). In this case, the optimal estimator in (2) is
the cascade of an IIR (infinite impulse response) system comprised
of M̀v and M̄y and an FIR system.

When l = ∞ (fixed-interval smoothing), V́+ = V́ is an IIR
system. In this case, it might be more convenient to split the
resulting K̀ ∈ L∞ into causal and anti-causal parts. The former
corresponds to a part of K̀, analytic outside the unit disc, whereas
the latter—to its part, analytic in the unit disc.

III. STABILIFICATION WITH CO-INNER NUMERATOR

Bring in a minimal state-space realization of G in Fig. 1(a):

G(s) =

⎡
⎣ A B

Cv 0

Cy 0

⎤
⎦ .

Here, G(∞) is taken zero to guarantee the boundedness of the L2

norm (Dv = 0) and to reflect the presence of an anti-aliasing filter
in the measurement channel (Dy = 0), which is necessary for the
boundedness of the ideal sampler Sh, see [2]. We also impose the
following assumptions on the parameters of this realization:

A 3: the pair (Cy, eAh) is detectable;

A 4: Cy has full row rank.

2By tr() we understand the trace of a Hilbert-Schmidt operator [3].
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Assumption A 3 is a counterpart of A 1 and assumption A 4, which
actually rules out trivially redundant measurement channels, is
equivalent to A 2. Note that A 4 is milder than its counterpart in
the continuous-time case, which requires the absence of invariant
zeros on the jω-axis.

Making use of the developments and notations of [12], the factors
in (1) are of the form

[
N̆v(z)

Ńy(z)

]
=

[
I 0

0 1
z
I∗h

] ⎛
⎝ A zI�−(I+LCy) B

Cv 0

C̃y 0

⎞
⎠ (5a)

and

[
M̀v(z)

M̄y(z)

]
=

[
0

J

]
+

[
I 0

0 1
z
I∗h

] ⎛
⎝ A zI�−(I+LCy) L

Cv 0

C̃y 0

⎞
⎠I0, (5b)

where L is any matrix such that the matrix

ĀL
.
= (I + LCy)eAh (6)

is Schur (such an L exists by A 3), C̃y
.
= JCy, and J is any

nonsingular matrix.
The next step is to find L such that Ńy is co-inner. To this end,

note that

Ń∼
y (z) = z

(
−A ′

z(I+LCy)′ �−I C̃ ′
y

−B ′ 0

)
Ih,

so that

Ξ̄(z)
.
= J−1Ńy(z)Ń∼

y(z)J−′

= I∗h

⎛
⎝ A

0

−BB ′

−A ′ z

[
I 0
0 (I+LCy)′

]
�−

[
I+LCy 0

0 I

] 0

C ′
y

Cy 0 0

⎞
⎠ Ih.

Following the procedure in [20, §13.6], we split Ξ̄(z) to the sum of
stable and anti-stable transfer functions. This is accomplished by a
time-varying state transformation with the matrix T(t) =

[
I Q(t)
0 I

]
,

where Q(t) satisfies the differential Lyapunov equation

Q̇(t) = AQ(t) + Q(t)A ′ + BB ′, Q(0) = Q0 (7a)

(we also denote Qh
.
= Q(h)). This brings the “A” matrix of the

STPBC above to the diagonal form, diag{A,−A ′}, thus decoupling
the intersample dynamics, and the boundary conditions to the form

z

[
I −Q0

0 (I + LCy) ′

]
� −

[
I + LCy −(I + LCy)Qh

0 I

]
.

To decouple the boundary conditions, premultiply both sides by[
I (I+LCy)Qh

0 I

]
. We obtain equivalent boundary conditions

z

[
I (I + LCy)Qh(I + LCy) ′ − Q0

0 (I + LCy) ′

]
� −

[
I + LCy 0

0 I

]
.

Thus, the stipulation

Q0 = (I + LCy)Qh(I + LCy) ′ (7b)

would guarantee the decoupling of the boundary conditions and
result in the following representation:

Ξ̄(z) = I∗h

⎛
⎝ A

0

0

−A ′ z

[
I 0
0 (I+LCy)′

]
�−

[
I+LCy 0

0 I

] QC ′
y

C ′
y

Cy −CyQ 0

⎞
⎠ Ih.

To express the boundary solutions of (7) in a more conventional
form, introduce the matrix function

Σ(t) =

[
Σ11(t) Σ12(t)

0 Σ22(t)

]
.
= exp

([
A −BB ′

0 −A ′

]
t

)
(8)

(when t = h we omit the time argument and write simply Σ). It can
be shown [2, Lemma 10.5.1] that Σ11(t) = eAt, Σ22(t) = e−A′t,
and

Σ12(t) = −

∫ t

0

eAτBB ′eA′τdτ e−A′t.

It is also known [5] that the solution of (7a) is

Q(t) =
(
Σ11(t)Q0 − Σ12(t)

)
Σ−1

22 (t). (9)

This equation for t = h combined with (7b) leads to the following
equation for Qh:

Qh = Σ11(I + LCy)Qh(I + C ′
yL ′)Σ ′

11 − Σ12Σ ′
11. (10)

This is a discrete Lyapunov equation and since Σ12Σ ′
11 < 0

and Σ11(I + LCy) = Σ11ĀLΣ−1
11 is Schur, it is always solvable

with Qh > 0. It can also be easily shown that Q0 satisfies a
Lyapunov equation too and is actually the controllability Gramian
of the “natural” (the one having ĀL as its “A” matrix) state-space
realization of N̆(z).

Remark 3.1: As already mentioned, the technique for obtaining
the coprime factorization with a co-inner numerator presented above
follows the steps described in [20, §13.6]. The key difference
from the “standard” procedure applied to continuous-time transfer
matrices is that the similarity transformation splitting Ξ̄(z) into two
parts is time varying. The reason is that in order to split STPBCs
we need to decouple both the continuous-time dynamics and the
boundary conditions. A time-invariant transformation would not
offer enough freedom to affect both these components separately.

Now, denoting

Ξs(z)
.
= CyeAh(zI − ĀL)−1(I + LCy)QhC ′

y

and applying [12, Proposition A.1] to Ξ̄(z) above, we obtain:

Ξ̄(z) = Ξs(z) − CyQhe−A′h
(
z(I + LCy) ′ − e−A′h

)
−1C ′

y

= Ξs(z) + Ξ∼
s (z) + CyQhC ′

y.

It is readily seen that if there exists L satisfying

(I + LCy)QhC ′
y = 0, (11)

then Ξs(z) = 0 and therefore Ξ̄(z) = CyQhC ′
y is static. Since

Qh > 0 and A 4 holds, the matrix CyQhC ′
y is nonsingular, so that

L = −QhC ′
y(CyQhC ′

y)−1 (12)

and the choice J = (CyQhC ′
y)−1/2 leads to the required equality

ŃyŃ∼
y = I. The substitution of L from (12) to (10) yields the

following equation for Qh:

Qh = Σ11

(
Qh −Σ−1

11 Σ12 −QhC ′
y(CyQhC ′

y)−1CyQh

)
Σ ′

11. (13)

This is actually the discrete H2 ARE associated with Ǵy [19] and
the existence of its stabilizing solution (i.e., such that Σ11(I+LCy)

is Schur) is guaranteed by A 1 and A 2.
Now, consider the first part of (3). Following the arguments

above, it can be shown that

N̆vŃ
∼
y = z

⎛
⎝ A

0

0

−A ′ z

[
I 0
0 (I+LCy)′

]
�−

[
I+LCy 0

0 I

] QC̃ ′
y

C̃ ′
y

Cv −CvQ 0

⎞
⎠ Ih

= z

(
−A ′

z(I+LCy)′ �−I C̃ ′
y

−CvQ 0

)
Ih,

so that

V́(z) = z−1I∗h

(
A zI�−(I+LCy) QC ′

v

C̃y 0

)
. (14)
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Summarizing the discussion above, the following result can be
formulated:

Lemma 3.1: Let assumptions A 3 and A 4 hold. Then the Riccati
equation (13) admits the stabilizing solution Qh > 0 and the left
coprime factorization (1) of Ğ(z) satisfying (3) exists and is given
by (5), where L is chosen according to (12) and C̃y = JCy for any
J satisfying J ′J = (CyQhC ′

y)−1.
Remark 3.2: It can be shown that Q0 is actually the stabilizing

solution of the discrete ARE associated with the extended symplec-
tic pencil

λ

⎡
⎣0 I 0

0 0 I

0 0 0

⎤
⎦ −

⎡
⎣ 0 Σ11 Σ12

C ′
y 0 Σ22

0 CyΣ11 CyΣ12

⎤
⎦

and it satisfies CyQ0 = 0. This is exactly the ARE obtained in [16]
(for the case γ → ∞).

IV. FIXED-INTERVAL SMOOTHING FORMULAE

We first consider the fixed-interval smoothing problem SPĞ,∞,
i.e., the problem where the estimator has all future measurements
of ȳ available. In §IV-A we derive the optimal estimator by
decomposing it into causal and anti-causal parts. The optimal
performance level is then calculated in §IV-B.

A. Optimal estimator

In this case the optimal estimator is

K̀(z) = K̀FIS(z)
.
= V́∼(z)M̄y(z) − M̀v(z).

As discussed at the end of Section II, we decompose this estimator
into two parts, analytical outside and inside the unit disc. The
former yields the causal part, while the latter—the anti-causal part
of K̀FIS(z).

We start with the decomposition of

Ψ̀
.
= V́∼(M̄y − J)

=

(
−A ′

z(I+LCy)′ �−I C̃ ′
y

−CvQ 0

)
IhI∗h

(
A zI�−(I+LCy) L

C̃y 0

)
I0

=

⎛
⎝A

0

0

−A ′ z

[
I 0
0 (I+LCy)′

]
�−

[
I+LCy 0

C̃′

yC̃y I

] L

0

0 −CvQ 0

⎞
⎠ I0,

where the last equality is obtained by Proposition A.1. Apply now
a time-varying state transformation with the matrix

[
I 0

P(t) I

]
, where

P(t) satisfies the differential Lyapunov equation

Ṗ(t) = −P(t)A − A ′P(t), P(0) = P0 (15a)

(we also denote Ph
.
= P(h)). This transformation does not alter the

“A” matrix, yet transforms the boundary conditions to

z

[
I 0

−(I + LCy) ′P0 (I + LCy) ′

]
� −

[
I + LCy 0

C̃ ′
yC̃y − Ph I

]
.

To decouple the boundary conditions, premultiply both sides by[
I 0

(I+LCy)′P0 I

]
, which results in

z

[
I 0

0 I + C ′
yL ′

]
� −

[
I + LCy 0

C̃ ′
yC̃y − Ph + (I + LCy) ′P0(I + LCy) I

]
.

Taking into account the definition of C̃y, the boundary conditions
are then decoupled if

Ph = (I + LCy) ′P0(I + LCy) + C ′
y(CyQhC ′

y)−1Cy. (15b)

It is readily verifiable that the solution of (15a) is

P(t) = Σ22(t)P0Σ−1
11 (t), (16)

which yields the relation Ph = Σ−′
11P0Σ−1

11 . Thus, equations (15)
result in the following discrete Lyapunov equation for P0:

P0 = Ā ′
LP0ĀL + Σ ′

11C
′
y(CyQhC ′

y)−1CyΣ11, (17)

which is the observability Gramian of the “natural” realizations of
Ńy(z) and V́(z) (those having ĀL as their “A” matrix).

Thus, the transfer matrix Ψ̀(z) is decoupled as

Ψ̀(z) =

(
A zI�−(I+LCy) L

CvQP 0

)
I0

+

(
−A ′

z(I+LCy)′ �−I PL

−CvQ 0

)
I0.

Therefore, the causal part of the optimal estimator is

K̀c(z) =

(
A zI�−(I+LCy) L

CvQP 0

)
I0 − M̀v(z)

=

(
A zI�−(I+LCy) L

Cv(QP − I) 0

)
I0

(note that it contains the feedthrough term Cy(I + QP)eAtL) and,
taking into account the equalities(

−A ′
z(I+LCy)′ �−I PL

−CvQ 0

)
I0

= z

(
−A ′

z(I+LCy)′ �−I (I + LCy) ′P0L

−CvQ 0

)
Ih

and C ′
yJJ ′ = −PhL, the strictly anti-causal part of the estimator is

K̀ac(z) = V́∼(z) J + z

(
−A ′

z(I+LCy)′ �−I PL

−CvQ 0

)
I0

= z

(
−A ′

z(I+LCy)′ �−I (Ph − (I + LCy) ′P0)L

CvQ 0

)
Ih.

It is readily seen that both K̀c and K̀ac can be implemented as a
combination of finite-dimensional discrete systems and zero-order
generalized hold functions. Indeed, it follows from the solution of
the corresponding STPBCs that K̀c is the cascade of

K̄c(z) = −z

[
ĀL L

I 0

]
(18a)

(with ĀL defined by (6)) and the generalized hold having the
following hold function, defined for t ∈ [0, h]:

φc(t) = Cv

(
I − Q(t)P(t)

)
eAt

=
[
Cv 0

]
Σ(t)

[
I−Q0P0

P0

]
, (19a)

where (9) and (16) are used to obtain the last expression. Similarly,
K̀ac is the cascade of

K̄ac(z
−1) = −

[
Ā ′

L eA′h(Ph − (I + LCy) ′P0)L

I 0

]
(18b)

(mind the inverse of z) and the generalized hold having the
following hold function, defined for t ∈ [0, h]:

φac(t) = CvQ(t)e−A′t

=
[
Cv 0

]
Σ(t)

[
Q0
−I

]
(19b)

(in fact, φc(t) = CveAt −φac(t)P0 and CveAt is the hold function
in the filtering case).

Remark 4.1: It is known [6] that the solution of the L2(T)

estimation (fixed-interval smoothing) problem coincides with that
of the L∞(T) problem. Hence, the optimal estimator derived above
also solves the sampled-data H∞ fixed-interval smoothing problem.
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B. Optimal performance

To complete the solution, we only need to calculate the (optimal)
performance level γopt achievable with K̀c + K̀ac. It follows from the
analysis in Section II that the optimal performance for SPĞ,∞ is

γopt =

√
‖N̆v‖2

H2 − ‖V́‖2
H2 .

We calculate each of the terms in the right-hand side above
separately. To this end, introduce the matrix exponential

[
Σ ∆

0 Σ

]
.
= exp

⎛
⎜⎜⎝

⎡
⎢⎢⎣

A −BB ′ 0 0

0 −A ′ −C ′
vCv 0

0 0 A −BB ′

0 0 0 −A ′

⎤
⎥⎥⎦ h

⎞
⎟⎟⎠ (20)

The result for ‖N̆v‖ is then as follows.
Lemma 4.1: Let N̆v(z) be as defined in Lemma 3.1. Then,

‖N̆v‖H2 =

√
1

h
tr

([
0 I

]
Σ−1∆

[
−Q0

I

])
.

Proof: Since ‖N̆v‖H2 is the achievable performance of the
sampled-data H2 filtering problem (see Section II), the formula
follows from [16, Lemma 5.5].

Lemma 4.2: Let V́(z) be as in (14). Then,

‖V́‖H2 =

√
1

h
tr

(
P0

[
I Q0

]
Σ−1∆

[
−Q0

I

])
.

Proof: Omitted because of space limitations.

V. FIXED-LAG SMOOTHING FORMULAE

The solution in this case requires the construction of the orthog-
onal projection transfer function V́+ from V́ as defined by (4).
This is an FIR system, the impulse response of which has support
in [h, (l + 1)h] (so that the impulse response of V́∼

+ has support
in [−lh, 0]). It can be verified that this projection is of the form
V́+ = V́ − z−lV́l, where

V́l(z) = z−1I∗h

(
A zI�−(I+LCy) QC ′

v

C̃yΦl 0

)
(21)

is the truncated “tail” and Φ
.
= eAh(I + LCy) = eAhĀLe−Ah is

Schur. Hence,

V́∼
+(z) = z

(
−A ′

z(I+LCy)′ �−I (I − zl(Φ ′)l)C̃ ′
y

−CvQ 0

)
Ih (22)

is the required projection.

A. Optimal estimator

The optimal estimator in the fixed-lag case is

K̀(z) = K̀FLS(z)
.
= V́∼

+(z)M̄y(z) − M̀v(z).

Our aim is to convert this lifted transfer function back to the time
domain (peeling-off procedure).

To this end, define the following two discrete-time systems:

V̄FIR(z) = z I∗0

(
−A ′

z(I+LCy)′ �−I (I − zl(Φ ′)l)C̃ ′
yJ

I 0

)
Ih

=

( l∑
i=1

zi(Ā ′
L)i−1

)
eA′hC ′

y(CyQhC ′
y)−1,

which belongs to zlH∞, and

M̄x(z) = 1
z
I∗h

(
A zI�−(I+LCy) −L

I 0

)
I0 ∈ H∞,

which, in fact, is the discrete-time Kalman filter for the sampled
state vector of G(s), so that M̄y = J(I−CyM̄x) generates a scaled
estimation error, J(ȳk − Cyx̂(kh)). It can now be shown that

K̀FLS(z) = H̀h

[
M̄x(z)

V̄FIR(z)(I − CyM̄x(z))

]
,

where H̀h : R �→ L2[0, h] is a static gain in the lifted domain cor-
responding to a generalized hold with the following hold function:

φFIS(t) =
[
Cv 0

]
Σ(t)

[
I −Q0

0 I

]
. (23)

Thus, the optimal fixed-lag smoother is a cascade of a discrete-
time system comprised of a Kalman filter and an FIR part and a
generalized hold with the hold function (23). This cascade can be
described as the following system, generating the continuous-time
estimated signal ve(t) (the details are omitted because of space
limitations):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂k+1 = eAhx̂k − Lε̄k

ve(kh + τ) = CveAτx̂k + CvΣ(τ)
[

−Q0
I

]
×

l∑
i=1

(Ā ′
L)i−1eA′hC ′

y(CyQhC ′
y)−1ε̄k+i

(24)

where ε̄k = ȳk − CyeAhx̂k.
Remark 5.1: It is worth emphasizing that the causality constraint

arises in our treatment as part of the optimization problem. This is
a clear advantage over the conventional approach in digital signal
processing, where causality constraints are imposed after the fixed-
interval solution is calculated by truncating the impulse response of
the latter. The performance of the resulting solution depends then
on the decay properties of the fixed-interval solution. In this respect,
it is of interest to compare the optimal fixed-lag smoother above
with its fixed-interval counterpart in Section IV. It can be shown
that the former solution is the sum of the truncated fixed-interval
estimator and the IIR system

zl+1

(
A zI�−(I+LCy) L

CvQPl 0

)
I0 ∈ zlH∞,

where Pl(t) is the solution of the Lyapunov equation (15a) with the
initial condition (Āl

L) ′P0. This system is thus the correction term
with respect to the truncated non-causal solution.

Remark 5.2: One of the motivations of the sampled-data smooth-
ing problem is the problem of reconstructing a continuous-time sig-
nal from its sampled measurements [8]. This problem corresponds
to Cv = Cy. It can be shown that in this case the impulse response
of the optimal estimator (interpolator) in (24) is a continuous
function for every l > 0 (this is not true when l = 0). Moreover,
the impulse response is zero at almost all sampling points, namely,
at t = kh for k 	= 0 (it is the identity at k = 0). This means that
ve(kh) = ȳk, ∀k ∈ Z, i.e., the reconstruction is consistent.

B. Optimal performance

Since V́+ and z−l−1V́l are orthogonal in H2, the optimal perfor-
mance level is

γopt =

√
‖N̆v‖2

H2 − ‖V́‖2
H2 + ‖V́l‖2

H2 .

The first two terms in the right-hand side above are already
calculated in Lemmas 4.1 and 4.2. The third term is given by the
following result.

Lemma 5.1: Let V́l(z) be as in (21). Then

‖V́l‖H2 =

√
1

h
tr

(
(Āl

L) ′P0Ā
l
L

[
I Q0

]
Σ−1∆

[
−Q0

I

])
,
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which vanishes as l → ∞.
Proof: Follows the proof of Lemma 4.2 and the fact that the

observability Gramian of V́l is (Āl
L) ′P0Ā

l
L.

In other words, the quantity

1

h
tr

(
−

(
P0 − (Āl

L) ′P0Āl
L

) [
I Q0

]
Σ−1∆

[
−Q0

I

])
determines the performance improvement offered by the smoothing.

VI. CONCLUDING REMARKS

In this paper the sampled-data H2 smoothing problem has been
studied. Complete solutions to both the fixed-interval and fixed-
lag versions of the problem have been derived. In both cases the
solution has the form of the cascade of a finite-dimensional discrete
estimator and a generalized hold. While the discrete parts of the
optimal sampled-data smoothers are quite similar to their filtering
counterparts, the optimal hold functions are more complicated than
those appearing in sampled-data filtering.

APPENDIX A
SYSTEMS WITH TWO-POINT BOUNDARY CONDITIONS

Systems with two-point boundary conditions (STPBCs) utilized
throughout this paper are systems operating over the interval [0, h]

and driven by the following dynamics [4], [9]:{
ẋ(t) = Ax(t) + B(t)u(t), Ωx(0) + Υx(h) = 0,

y(t) = C(t)x(t),

where the square matrices Ω and Υ shape the boundary conditions
of the state vector x and the matrix functions B(t) and C(t) are
assumed to be continuous in [0, h]. The boundary conditions are
said to be well-posed if det(Ω + ΥeAh) 	= 0. If this condition
holds, the mapping y = Ŏu is well defined ∀u ∈ L2[0, h] with

y(t) = −C(t)

∫h

t

eA(t−θ)B(θ)u(θ)dθ

+ C(t)eAt(Ω + ΥeAh)−1Ω

∫h

0

e−AθB(θ)u(θ)dθ (25)

STPBC’s are denoted by the following compact block notation:(
A Ω�Υ B

C 0

)
,

where the time dependence of B(t) and C(t) is omitted for brevity.
Much like in the case of systems operating over an infinite horizon,
similarity transformation does not change STPBCs, i.e.,(

A Ω�Υ B

C 0

)
=

(
TAT−1 + ṪT−1

SΩT(0)−1
�SΥT(h)−1 TB

CT−1 0

)

for any non-singular T(t) and S.
To make the STPBC formalism applicable to the representation

of sampled-data systems in the lifted domain, the following two
operators are also required:

• The impulse operator Iθ, which transforms a vector η ∈ Rn

into a modulated δ-impulse as follows:(
Iθη

)
(t) = δ(t − θ)η.

• The sampling operator I∗θ, which transforms a continuous
function ζ ∈ Kh into a vector from R

n:

I∗θζ = ζ(θ).

The manipulations over STPBC can be performed in the state
space, much like the manipulations over standard finite-dimensional
state-space systems [4]. Moreover, as shown in [14], the sampling

and impulse operators fit well into the STPBC formalism. Espe-
cially important for the developments in this paper is the following
proposition:

Proposition A.1: Let det(Ω + ΥeAh) 	= 0. Then the systems{
ẋ1 = Ax1 + Buu + BηIhη̄, Ωx1(0) + Υx1(h) = 0

y1 = Cx1

and {
ẋ2 = Ax2 + Buu, Ωx2(0) + Υ

(
x2(h) + Bηη̄

)
= 0

y2 = Cx2

are equivalent as mappings from L2[0, h] × R to L2[0, h].
Proof: Similar to the proof of [12, Proposition A.2].
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