
Rigidity and Persistence of Directed Graphs

Julien M. Hendrickx, Brian D.O. Anderson and Vincent D. Blondel

Abstract— Motivated by [1], [2] and [3], we consider here
formations of autonomous agents in a 2-dimensional space.
Each agent tries to maintain its distances toward a pre-specified
group of other agents constant, and the problem is to determine
if one can guarantee that the structure of the formation will
persist, i.e., if the distance between any pair of agents will
remain constant. A natural way to represent such a formation
is to use a directed graph. We provide a theoretical framework
for this problem, and give a formal definition of persistent
graphs (a graph is persistent if almost all corresponding agents
formations persist). Note that although persistence is related to
rigidity (concerning which much is known [4]), these are two
distinct notions. We then derive various properties of persistent
graphs, and give a combinatorial criterion to decide persistence.
We also define the notion of minimal persistence (persistence
with least number of edges), and eventually, we apply these
notion to the interesting special case of cycle-free graphs.

I. INTRODUCTION

From the recent increasing development of autonomous

agents systems arise new questions in graph theory. Consider

a formation of n agents able to move in a 2-dimensional

space. To each agent, one assigns a set of distance con-

straints: Agent i has to maintain its distance dij from agent

j. It is important to understand that this is a constraint

for i but not for j, which will a priori not be required to

do anything in order to maintain its distance from agent i
constant. Moreover, as long as a particular agent satisfies all

its distance constraints, no other hypothesis is made about its

movement. Agent 4 in Figure 1(a) can thus move freely on a

circle of radius d41 centered on agent 1. We are interested in

knowing if one can guarantee that, provided that each agent

is trying to satisfy all its distance constraints, the structure

of the formation will be conserved. In other words, we want

to know if the distance in either direction between any pair

of agents (whether or not there is a distance constraint in

either direction between the pair) will remain constant along

any continuous move. As shown in Figure 1, this kind of

system can be represented by a directed graph: To each agent

B. Anderson is with National ICT Australia , 216 Northbourne Ave, Can-
berra ACT 2601 Australia ; brian.anderson@nicta.com.au.
His work is supported by an Australian Research Council Discovery Projetc
GranT and by National ICT Australia, which is funded by the Australian
Government’s Department of Communications, Information Technology
and the Arts and the Australian Research Council through the Backing
Australia’s Ability Initiative.

V. Blondel and J. M. Hendrickx are with Department of Mathematical
Engineering, Université catholique de Louvain, Avenue Georges Lemaitre 4,
B-1348 Louvain-la-Neuve, Belgium; blondel@inma.ucl.ac.be
hendrickx@inma.ucl.ac.be. Their work is supported by the
Belgian Programme on Interuniversity Attraction Poles initiated by the
Belgian Federal Science Policy Office, and The Concerted Research Action
(ARC) “Large Graphs and Networks” of the French Community of Belgium.
The scientific responsibility rests with its authors. Julien Hendrickx holds a
FNRS fellowship (Belgian Fund for Scientific Research).

corresponds a vertex, and there is a directed edge from i to j
if i has a constraint on the distance it must maintain from j.

Note that double edges are allowed and represent a situation

where both i and j have to maintain the distance between

them constant.

3

1

2

4

3

1

2

4

3

1

2

4

(a) (b) (c)

Fig. 1. Examples of autonomous agents systems; each arrow represents a
distance constraint. In (a) for example, agents 2, 3 and 4 try to maintain
their respective distances toward agent 1 constant. We will show that only
(b) is persistent.

This issue is evidently related to the notion of rigidity

of frameworks and graphs: A framework is represented

by a graph G = (V,E), where V is the set of vertices

representing the articulations, and E is the set of undirected

edges representing the beams or any other type of links.

Suppose now that we assign arbitrary positions in1 �2 to

all the vertices, and consider all the continuous moves such

that the distance between the positions of any two vertices

connected by an edge remains constant. The graph is called

rigid if for almost all positions assignments, every such

move preserves the distance between the positions of any

pair of vertices, as shown in the examples in Figures 2(a)

and 2(b). Note that Figures 1(a) and 2(c) present non rigid

graphs. A graph is said to be minimally rigid if it is rigid

and if there is no rigid graph having the same vertices but

less edges, as shown in the example in Figure 2(b) (we will

discuss this notion more extensively in Section IV). This

class of graphs is interesting to study, not only because it

provides an optimally efficient number of edges, but also

because every rigid graph contains a minimally rigid graph.

However, the graphs that represent our autonomous

agents-systems are directed. And although the definition

of rigidity can be applied to directed graphs, it essentially

remains an undirected notion and is thus inadequate to

handle our problem. Consider indeed the system represented

in Figure 1(c). Although the undirected graph is rigid, the

1This could be done in any other space, but in the sequel we will always
work in �2.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuA03.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 2176

(a) (b) (c)

Fig. 2. (a) is rigid, (b) is minimally rigid, and (c) is not rigid.

structure of the formation may not be preserved: Agent

4 has an out-degree 1 and has thus only one distance

constraint. If it moves on a circle of radius d43 centered on

the position of agent 3, this constraint will remain satisfied.

But, if agents 3 and 1 remain at the same position (and

none of their constraints would force them to move) there

will then (for almost all of the possible positions of agent

4) be no position for agent 2 where it could satisfy its three

distance constraints, which implies that the structure of the

formation is in some way ill-posed.

In the control literature, the characterization of such

autonomous agents-systems has started to be attempted using

the notion of rigidity of a directed graph [1], [2]: a directed

graph is called rigid if the structure of the corresponding

formation is conserved along any continuous move. Since

this does not correspond to a simple transposition of the

definition of rigidity for undirected graphs over to directed

graphs, we prefer here to call this notion persistence of
a graph in order to avoid confusion. Some results and

conjectures concerning persistence are already used in

the literature, especially for minimally persistent graphs

(these can be defined similarly to minimally rigid graphs,

see Section IV) or sufficient conditions for a graph to be

(minimally) persistent [1], [2]. We propose here a formal

definition of persistence that would provide a theoretical

framework for this issue and allow us to prove these results.

We will also derive some new properties of persistent graphs

and give an operational criterion to determine if a graph is

persistent.

The definition, which we provide in Section II, has

the following intuitive meaning: a graph is persistent if,

provided that all the agents are trying to satisfy their

distance constraints, the global structure of the agent

formation is preserved. We will see that rigidity of the
underlying undirected graph is a necessary but not sufficient
condition. This will lead us to the notion of constraint

consistence of a graph, which is the additional condition

for a rigid graph to be persistent. Intuitively, a graph is

constraint consistent if every agent is able to satisfy its

distance constraints provided that all the others are trying

to do so. We will then show that a graph is persistent

if and only if it is rigid and constraint consistent. So, in

Figure 1, (a) is not rigid and (c) is not constraint consistent.

The only persistent graph is thus (b). Note that all the

proofs are omitted due to space limitations; a fuller version

of the work is available in preprint form from the authors [5].

In Section III, we give some of the main properties of

persistent graphs and the following criterion: A graph is

persistent if and only if all those subgraphs are rigid which

are obtained by removing outgoing edges from vertices with

out-degree larger than 2 until all the vertices have an out-

degree smaller than or equal to 2. We define then in Section

IV minimal persistence analogously to minimal rigidity. We

discuss some differences and similarities between the two

notions, and give a characterization of minimally persistent

graphs. Finally, we turn our attention to cycle-free graphs in

Section V and give some more powerful results that exist

in this special case, such as a polynomial time criterion to

decide persistence.

II. PERSISTENCE OF DIRECTED GRAPHS

A representation of a graph G = (V,E) is a function

p : V → �2. We say that p(i) ∈ �2 is the position of the

vertex i, and define the distance between two representations

p1 and p2 of the same graph by

d(p1, p2) = max
i∈V

||p1(i) − p2(i)|| . (1)

A distance set d for G is a set of distances dij > 0,

defined for all edges (i, j) ∈ E. A distance set is

realizable if there exists a representation p of the graph

for which ||p(i) − p(j)|| = dij for all (i, j) ∈ E. Such

a representation is then called a realization. Note that

any representation p of a graph is always a realization

of the distance set defined by dij = ||p(i) − p(j)|| ,∀ij ∈ E.

A realization p of a distance set d is rigid if there

exists ε > 0 such that for all realizations p′ of d satisfying

d(p, p′) < ε, there holds ||p′(i) − p′(j)|| = ||p(i) − p(j)||
for all i, j ∈ V . (We say in this case that p and p′ are

congruent). A graph is said to be rigid2 if almost all its

realizations are rigid. Note that we could have said “almost

all representations”, since as explained above, a realization is

a representation and a representation is always a realization

of a certain distance set. Although this definition is given

here for directed graphs, rigidity is essentially an undirected

notion. It is indeed not affected by modification of the edges

directions.

Our definition of rigidity is slightly different from those

usually given in the literature, but we have the following

equivalence:

Theorem 1: The following conditions are equivalent for a

graph G = (V,E).
• G is (generically) rigid.

• There exists a realization of a certain distance set d
for which any continuous displacement of the positions

(such that at all time the positions of the vertices remain

a realization of d) is a rigid motion, i.e., is such that

all these realizations are congruent to each other. (This

2For simplicity we use the term rigidity but this notion is known in the
literature as generic rigidity [1], [4].

2177

3

4

1

c

2

3

c

4

c

1

2

(a) (b)

Fig. 3. Suppose that d41 = d42 = d43 = c. The position of 4 in (a) is not
fitting because it only makes (4, 1) active while there exists a position that
would make both (4, 1) and (4, 3) active. On the other hand, its position
in (b) is fitting because no point can be at the same time at a distance c
from 1, 2 and 3.

is equivalent to the usual definition of generic rigidity

[8]).

• Laman’s criterion: There is a subset E ′ ⊆ E satisfying

the following two conditions:

(1) |E′| = 2 |V | − 3.

(2) For all non empty E′′ ⊆ E′, the number |V (E′′)|
of vertices that are end-vertices of the edges in E ′′

satisfies |E′′| ≤ 2 |V (E′′)| − 3.

As already mentioned, rigidity is an undirected notion,

and is therefore insufficient to characterize persistence.

The rigidity of a realization only means that if an external

observer (or some physical properties) makes sure that

the distance between the positions of any pair of vertices

connected by an edge remains dij , then all the sufficiently

close realizations of the same graph are congruent to each

other. But, in our system of autonomous agents, there is

no such external observer. Each agent is only aware of its

own distance constraints, and can “move freely” as long as

these particular constraints are satisfied. In order to have

a more formal definition of persistence, we first need to

characterize the fact that each agent is trying to keep the

distances from its neighbors constant.

Let us thus fix a directed graph G, distances dij > 0
∀(i, j) ∈ E , and a representation p. We say that the edge

(i, j) ∈ E is active if ||p(i) − p(j)|| = dij . We also say

that the position of the vertex i ∈ V is fitting for d if it is

not possible to increase the set of active edges leaving i
by modifying the position of i while keeping the positions

of the other vertices unchanged. This condition intuitively

means that the agent i cannot satisfy additional distance

constraints without breaking some that it already satisfies,

as shown in the example in Figure 3. A representation of a

graph is a fitting representation for a certain distance set d
if all the vertices are at fitting positions for d. Note that any

realization is a fitting representation for its distance set.

We can now give a formal definition of persistence: A

realization p of a distance set d is persistent if there exists

ε > 0 such that every representation p′ fitting for d and

satisfying d(p, p′) < ε is congruent to p. A graph is then

31

4

2 2

31

4

(a) (b)

Fig. 4. The graph represented in (a) is constraint consistent. Each of 1, 3
and 4 can indeed always satisfy its unique distance constraint. On the other
hand, the one represented in (b) is not constraint consistent because there
always exists a configuration of positions of 1, 2 and 3 such that 4 is unable
to satisfy its three distance constraints.

persistent if almost all its realizations are persistent.

This definition is similar to the one of rigidity, and it is

thus natural to ask if there is a relation between the two

notions. Actually, a persistent graph is always rigid, and we

will now define constraint consistence, which is a necessary

and sufficient condition for a rigid graph to be persistent.

A realization p of a distance set d is constraint consistent
if there exists ε > 0 such that any representation p′ fitting

for d and satisfying d(p, p′) < ε is a realization of d.

Intuitively, the constraint consistence of a realization means

that if each agent tries to satisfy its distance constraints

(i.e., is at a fitting position), then all the distance constraints

will be satisfied, or equivalently, no agent will be in a

situation where it cannot satisfy some constraint, as shown

in the example in Figure 4. Again, we say that a graph

is constraint consistent if almost all its realizations are

constraint consistent. We have then the following useful

equivalence:

Theorem 2: A graph is persistent if and only if it is rigid
and constraint consistent.

III. CHARACTERIZATION OF PERSISTENT GRAPHS

In this section, we discuss properties of persistent graphs

and give a combinatorial criterion to decide persistence.

We begin by giving a lower bound on the number of

active edges, and a first sufficient condition for a graph

to be constraint consistent. In the sequel, d−(i) and d+(i)
designate respectively the in- and out-degree of the vertex i.

Lemma 1: Let i be a vertex of a graph G = (V,E). For

almost all realizations p, there exists ε > 0 such that in every

representation p′ fitting for the distance set corresponding

to p and satisfying d(p, p′) < ε, the number of active edges

leaving i is at least min (2, d+(i)). Consequently, a graph

in which all the vertices have an out-degree smaller than or

equal to 2 is always constraint consistent.

The next proposition allows us to delete edges in a

persistence graph and maintain persistence.

2178

Fig. 5. All the vertices of this rigid graph have an out-degree 2. By Lemma
1 it is thus constraint consistent and therefore persistent, but the number of
degrees of freedom of each vertex is 0.

Proposition 1: A persistent (resp. constraint consistent)

graph remains persistent (resp. constraint consistent) after

deletion of any edge (i, j) for which d+(i) ≥ 3.

An interesting corollary of Proposition 1 concerns the

total number of degrees of freedom in the graph. The

number of degrees of freedom of a vertex is the maximal

dimension, over all representations of the graph, of the set of

possible fitting positions for this vertex. In a 2-dimensional

space, the vertices with zero out-degrees have 2 degrees of

freedom, the vertices with out-degrees 1 have one degree of

freedom, and the other have none. Note that a vertex with no

degree of freedom can have more than one possible fitting

position. Observe indeed that there is in almost all situations

two possible fitting positions for a vertex with out-degree 2.

However, since this set contains a finite number of points,

its dimension is still 0. The following result provides a

natural bound on their sum on a persistent graph.

Corollary 1: The sum of the degrees of freedom on all

the vertices of a persistent graph cannot exceed 3.

Note that the total of three degrees of freedom is an upper

bound. There are persistent graphs whose vertices do not

have any degree of freedom, as shown in Figure 5.

Proposition 1 guarantees that a persistent graph remains

persistent after deletion of any edge (i, j) for which

d+(i) ≥ 3. After successive deletions, we can thus reach

in this way a persistent graph whose vertices all have an

outgoing degree that is smaller than or equal to 2. The next

theorem states that a graph is persistent if and only if all

the graphs obtained in this way are rigid.

Theorem 3: A graph is persistent if and only if all those

subgraphs are rigid which are obtained by removing outgoing

edges from vertices with out-degree larger than 2 until

all the vertices have an out-degree smaller than or equal to 2.

The above result provides a non-polynomial time algo-

rithm to check the persistence of a graph: it suffices to

check the rigidity of all subgraphs obtained by deleting edges

leaving vertices with out-degree larger or equal to 3 until all

vertices have an out-degree smaller to or equal to 2. An

algorithm with a smaller complexity would be useful in the

case of large graphs, especially if there is a high number

of vertices with a high out-degree, but no such algorithm

has been found yet and at the time of writing it is still

unclear if the problem of determining if a directed graph

is persistent can be solved in a polynomial time. Notice

that such an algorithm is known to determine if a graph

is rigid [9]. However, better results exist in some particular

cases. In Section V, we will see that for cycle-free graphs,

persistence can be checked in polynomial time, and in the

next section we introduce the related notion of minimal

persistence and give a decision criterion that can also be

checked in a polynomial time.

IV. MINIMAL PERSISTENCE

In this section we define the notion of minimal persistence,

analogously to minimal rigidity. We then discuss the main

properties of these minimally persistent graphs, and

show some similarities and difference between minimal

persistence and minimal rigidity.

But first, we recall a few facts about minimal rigidity.

One way to define it is to say that a graph is minimally rigid
if it is rigid and if there exists no rigid graph with the same

number of vertices and a smaller number of edges. Another

way is to say that a graph is minimally rigid if it is rigid and

if no single edge can be removed without losing rigidity.

These two definitions are provably equivalent and lead to

the following criterion: A graph G = (V,E) is minimally

rigid if it is rigid and if |E| = 2 |V | − 3 (with an exception

if |V | = 1). Moreover, a necessary and sufficient condition

for a graph to be rigid is the presence of a minimally rigid

(edge) subgraph. This can be seen using for example the

Laman’s criterion (Theorem 1). A Henneberg sequence is

a sequence of graphs G2, G3, . . . , G|V | such that G2 is the

complete (undirected) graph with two vertices, and Gi+1

(i ≥ 2) can be obtain from Gi by performing either a vertex

addition or an edge splitting (see [1], [7]). These operations

are defined in Figure 6, and one can show that they preserve

minimal rigidity. Moreover, every minimally rigid graph can

be obtained as the result of a Henneberg sequence [4].

We now define minimal persistence as follows: A

persistent graph is called minimally persistent if no edge

can be removed without losing persistence. Note that a

first important and surprising difference with the concept

of minimal rigidity is that a graph having a minimally

persistent (edge) subgraph is not necessarily persistent, as

shown in the example in Figure 7. More generally, unlike

the case of rigidity, it is possible to obtain a non-persistent

graph by adding edges to a persistent graph. A necessary

condition for a persistent graph to be minimally persistent

is immediate from Proposition 1: the absence of a vertex

with an out-degree exceeding 2. On the other hand, a

sufficient condition is minimal rigidity. Suppose indeed that

one removes an edge to a persistent minimally rigid graph.

The obtained graph would by definition not be rigid and

2179

kj kj

i

(a)

j

k

l

i

j

k

l

(b)

Fig. 6. (a) vertex addition: One adds a vertex and two incident edges. (b)
edge splitting: One replaces an edge (j, k) by a vertex i and three edges
(i, j), (i, k) and (i, l) where l is another vertex of the original graph. Both
operations preserve (minimal) rigidity [6], [4].

(a) (b) (c)

Fig. 7. The graph represented in (a) has a minimally persistent subgraph (b).
However, by Theorem 3, it is not persistent because the subgraph represented
in (c) is not rigid. In the corresponding multi-agent system, this could be
seen as arising from a combination of unfortunate selections among the
various possible information architectures available to the three agents of
the cycle.

therefore not persistent.

As explained above, every minimally rigid graph can

be obtained from an initial seed of two vertices and one

edge by a sequence of vertex additions and edge splittings.

We define here the directed version of these operations as

in [1] by giving a direction to the added arrows in a way

such that the out-degrees of the already existing vertices

are not affected, as represented in Figure 8. To perform a

(directed) vertex addition on a graph G = (V,E), one adds

a vertex and two edges from this vertex to different vertices

of V . The (directed) edge splitting consists in removing

one edge (j, k) ∈ E and adding a vertex i and three edges

(j, i), (i, k) and (i, l) for some l ∈ V, l �= j, k. In the

sequel, these operations will always be considered with the

directed meaning. A Henneberg sequence (directed case)
is then a sequence of graphs G2, G3, ..., G|V |, such that

each graph Gi+1 (i ≥ 2) can be obtained by implementing

a vertex addition or an edge splitting on Gi, and G2 is a

graph of two vertices connected by one directed edge. As

in the undirected case, all the graphs of such a sequence

are minimally rigid. Moreover, since the out-degree of

each of their vertices is always smaller or equal to two,

Lemma 1 guarantees that they are also constraint consistent

and thus minimally persistent. This implies that one can

kj kj

i

(a)

j

k

l

j

k

l

i

(b)

Fig. 8. Directed version of the vertex addition (a) and the edge splitting
(b).

always assign a direction to all the edges of a minimally

rigid undirected graph such that the resulting graph is

minimally persistent. It is indeed possible to obtain every

minimally rigid undirected graph by performing a sequence

of (undirected) vertex additions and edge splitting on an

initial seed of two vertices and one edge. [In order to

obtain a minimally persistent graph, one can then simply

perform the same sequence of the directed version of these

operations]. However, it is still an open question as to

whether, given an undirected rigid graph, there exists an

assignment of directions to the edges such that the resulting

directed graph is persistent.

Since every undirected minimally rigid graph can be

obtained as the result of a Henneberg sequence, and since

there always exists a minimally persistent graph resulting

from the same sequence, it is natural to ask if every

minimally persistent graph can be obtained in that way.

Unfortunately, the existence of counterexamples force us

to answer negatively to this question. Consider indeed the

cycle of length 3 or any minimally persistent graph for

which all the vertices have a positive out-degree: Both

vertex addition and edge splitting conserve the out-degree

of all the already existing vertices, and the first graph (G2)

of a Henneberg sequence contains a vertex with a zero

out-degree. A graph having no vertex with a zero out-degree

can thus never result from a Henneberg sequence. Actually,

there also exist some graphs having a vertex with a zero

out-degree and that still cannot be built using a Henneberg

sequence.

As we already explained, minimal rigidity is a sufficient

condition for a persistent graph to be minimally persistent.

The next proposition states that it is also a necessary

condition.

Proposition 2: A graph G = (V,E) is minimally

persistent if and only if it is persistent and satisfies

|E| = 2 |V | − 3.

Using the criterion provided by Proposition 2 and

2180

1

2

3 4

5

6

Fig. 9. Example of cycle-free persistent graph. The numbers correspond
to an order in which the vertices can be added.

Corollary 1 about the number of degrees of freedom, it is

possible to give a more specific characterization of minimal

persistence that relies on the vertex out-degrees.

Theorem 4: A rigid graph with more than one vertex is

minimally persistent if and only if one of the following two

conditions is satisfied:

• Three vertices have an out-degree 1 and all the others

have an out-degree 2.

• One vertex has an out-degree 0, one vertex has an

out-degree 1, and all the others have an out-degree 2.

V. CYCLE-FREE GRAPHS

In this section, we provide a simple criterion to decide the

persistence of cycle-free graphs and an explicit way to build

all the persistent cycle-free graphs. Using the properties of

the undirected vertex additions (see [6]) and Theorem 3,

one can prove the following proposition.

Proposition 3: A graph obtained by adding one vertex

to a graph G = (V,E) and at least two edges leaving this

vertex is persistent if and only if G is persistent.

We thus know that a cycle-free graph obtained by

successively adding vertices all with out-degree larger

than or equal to 2 to an initial seed of one directed edge

connecting two vertices is persistent. The next theorem states

that every persistent cycle-free graph can be obtained in such

a way as shown in Figure 9. It also gives a simple criterion to

decide persistence in the particular case of cycle-free graphs.

Theorem 5: A cycle-free graph having more than one

vertex is persistent if and only if

• One vertex (called the leader) has an out-degree 0;

• One vertex (called the first follower) has an out-degree

1 and the corresponding edge is incident to the leader;

• Every other vertex has an out-degree larger or equal to

2.

Moreover, every such graph can be obtained from an

original seed composed by the leader and first follower

by adding vertices one by one in the way described in

Proposition 3.

This result provides an algorithm with a low complexity

to decide the persistence of a cycle-free graph. Moreover,

if we apply it to a minimally persistent graph, we get the

following corollary.

Corollary 2: A minimally persistent cycle-free graph with

more than one vertex always has a leader-follower structure

(see Theorem 5) and is always the result of Henneberg

sequence containing only vertex additions.

VI. CONCLUSIONS AND FURTHER WORKS

As mentioned in the previous sections, several questions

remain open; namely, the existence of a polynomial time

criterion to decide if a graph is persistent, and an algorithm

to assign directions to the edges of rigid graph in order to

obtain a persistent graph. Among the possible extensions of

this work, one can remark that we always assumed that the

graph representations lie in �2. From a practical point of

view, it would be desirable to extend the results to �3. How-

ever, this could give rise to new difficulties. For undirected

graphs, there is no known equivalent of Laman’s theorem

in three dimensions, and not all minimally rigid graphs can

be obtained by Henneberg sequences. Since we showed in

Figure 7 that one cannot generally add edges indefinitely

to a persistent graph without losing persistence, we could

also define and characterize maximally persistent graphs.

Finally, another issue would be to consider the robustness

of a persistent graph. One could assign to each edge a

probability of breakdown and to each unconnected pair of

vertices a probability of parasite edge appearance. There

might be in this case a maximally robust persistent graph,

i.e., a graph for which the probability of losing persistence

is minimal. It is evident that if there is a finite probability of

losing an edge, it would be desirable to have persistence both

with and without it. This observation emphasizes the need to

understand better the circumstances under which edges can

be added to a persistent graph without losing the persistence

property.

REFERENCES

[1] T. Eren, B.D.O. Anderson, A.S. Morse, and P.N. Belhumeur. Informa-
tion structures to secure control of rigid formations with leader-follower
structure. In Proc. of the American Control Conference, pages 2966-
2971, Portland, Oregon, June 2005

[2] J. Baillieul and A. Suri. Information patterns and hedging brockett’s
theorem in controlling vehicle formations. In Proc. of the 42nd IEEE
Conf. on Decision and Control, volume 1, pages 556–563, Hawaii,
december 2003.

[3] A. Das, J. Spletzer, V. Kumar, and C. Taylor. Ad hoc networks for
localization and control. In Proc. of the 41st IEEE Conf. on Decision
and Control, Las Vegas, NV, 2002.

[4] T. Tay and W. Whiteley. Generating isostatic frameworks. Structural
Topology, (11):21–69, 1985.

[5] J.M. Hendrickx, B.D.O. Anderson, V.D. Blondel and J.-C. Delvenne
Rigidity and Persistence of directed graphs Preprint, 2005.

[6] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg.
Math., 4:331–340, 1970.

[7] L. Henneberg. Die graphische Statik der starren Systeme. Leipzig,
1911.

[8] W. Whiteley. Some matroids from discrete applied geometry. In Matroid
theory (Seattle, WA, 1995), volume 197 of Contemp. Math., pages 171–
311. Amer. Math. Soc., Providence, RI, 1996.

[9] D.J. Jacobs and B. Hendrickson. An algorithm for two-dimensional
rigidity percolation: the pebble game. J. Comput. Phys., 137(2):346–
365, 1997.

2181

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

