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Abstract— The problem of Finite Word Length (FWL) imple-
mentation of Linear Time Invariant (LTI) filters or controllers
is considered in this paper. A specialized implicit state-space
representation enabling a macroscopic description of the algo-
rithm to be implemented is exhibited. It constitutes a unifying
framework to encompass various implementation form, such
as q, δ, the observer-based and other realizations. This paper
formalizes especially the problem consisting to analyze the
parametric sensitivity of such realizations, and then to optimize
them in order to limit deteriorations along the process of FWL
implementation. The sensitivity of some structured realizations
with respect to the coefficients involved and the computation
effort are compared on an example.

I. INTRODUCTION

The majority of modern control systems are digitaly

implemented with general micro-controller or with specific

computing device, like DSP1. Since the processor cannot

compute with infinite precision (except in some special

cases), the Finite World Length (FWL) implementation of a

control algorithms leads to a deterioration of the input/output

relationship. The deterioration so induced has two separate

origins : the quantization of the coefficients involved and

the roundoff errors in the numerical computations[1]. They

can respectively be formalized as parametric errors and

numerical noises. Both depends on the realization, the

structure of the control algorithm and the software technics

used.

Numerous works in the filtering and control community

have studied ([2], [3], [4], [1]) the implementation problem.

They often look for the best realization, relatively to

different criteria : the computations saving, the parametric

sensitivity or roundoff noise gain.

The implementation problem is an important one in the

modern automotive industry. In a single car, hundreds of

filters and controllers are embedded in digital processors.

Most of them, for cost reason, are fixed-point processors

(in opposition to floating-point processors) and the
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Email: thibault.hilaire@irccyn.ec-nantes.fr and philippe.chevrel@emn.fr
1Digital Signal Processor

implementation of effective controllers (from engine control

to vehicule dynamics) requires a specific attention to avoid

numerical difficulties.

Even for more advanced processors, there is a real need for

a methodology in order to manage better the compromise

between the readability of the code, the on-line computation

effort (computation time, memory size, ...) and the quality of

the implementation (minimization of the FWL degradation).

This paper attempt to provide tools and a formalism allo-

wing to get, for a given system, a parametrization consistent

with the implementation stage. Precisely, the macroscopic

description of the algorithm to be implemented, represented

here within the implicit state-space framework, will be ana-

lysed and designed so as to prevent important deterioration

(due to FWL implementation).

The paper is organized as follows. Section II presents a

survey of classical optimal low-parametric sensitivity design.

Section III exhibits the way to use an implicit state-space

realization (first presented in [11]) in order to encapsulate,

in a single framework directly related to implementation,

various parametrizations usually studied separately (such as

q, δ or observer-based realizations). Section IV, the main

contribution of this paper, generalizes the use of the para-

metric sensitivity to this implicit description for the purpose

to design optimal sensitivity realizations, and section V

exhibits the generalized optimal realization design problem.

Finally, section VI presents the results obtained with different

realizations while section VII conclude.

II. THE CLASSICAL LOW SENSITIVITY REALIZATION

PROBLEM

In this paper, only the deterioration induced by the quanti-

zation of the coefficients, is considered. Pratically, during the

implementation process, the coefficients can be approximated

in different ways, depending on the wordlength and the

representation method : undoubtedly, a coefficient will be

truncated more using a 8-bits fixed point representation than

a 32-bits floating point one.

Moreover, the quantization may have different impact on the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB10.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 5192



deterioration of the control law. In this context, the theory of

parametric sensitivity[5] is very useful in order to evaluate

the deterioration caused when implementing LTI discrete

time systems ([6], [3]). Some works consider the zero-pole

sensitivity ([6], [7], [1]) of the filter considered or even of the

closed-loop when dealing with a controller. Others consider

the input/ouput parametric sensitivity defined by

∂H

∂ρ
(1)

where H is a transfer function and ρ one of the parameters

from which it is defined. ρ could also be a parameter matrix,

and the derivation of H with respect to a matrix ρ is then

defined by the matrix of the derivation with respect to each

element of ρ.

Let’s consider a transfer function H(z) and one of its

realization (A0
q, B

0
q , C0

q , D0
q) linked through (2) in the time

domain using the shift operator q.

H(z) = C0
q (zI − A0

q)
−1B0

q + D0
q (2)

The input/output relationship may be obtained, for zero

initial conditions, from{
qXk = A0

qXk + B0
qUk

Yk = C0
q Xk + D0

qUk
(3)

with qXk � Xk+1.

The realizations of the form

(T−1A0
qT, T−1B0

q , C0
q T,D0

q), with T a non-singular

matrix, are all equivalent in infinite precision. Obviously

they are no more in finite precision : different realizations

of the same system could lead to different performances

when implemented in finite wordlength.

The optimal FWL implementation problem is often associed

to the problem of finding, in the equivalent realizations set,

those that optimize the norm of the parametric sensitivity.

Tavşanoğlu and Thiele[8] have first proposed a L1/L2

sensitivity measure, that mixes L1 and L2 norms.

ML12 �
∥∥∥∥∂H

∂A

∥∥∥∥
2

1

+
∥∥∥∥∂H

∂B

∥∥∥∥
2

2

+
∥∥∥∥∂H

∂C

∥∥∥∥
2

2

(4)

Gevers and Li[3] have shown that the realizations minimizing

this measure are nothing else than the internally balanced2

realizations. They alternatively proposed to consider the

measure

ML2 �
∥∥∥∥∂H

∂A

∥∥∥∥
2

2

+
∥∥∥∥∂H

∂B

∥∥∥∥
2

2

+
∥∥∥∥∂H

∂C

∥∥∥∥
2

2

(5)

with some possible additionnal frequency weights. They also

show how to take into account sparsity constrains.

According to (5), one problem considered by Gevers and Li

consists in finding one realization that minimize ML2

min
(A,B,C,D)∈Ωq

ML2(A,B,C, D) (6)

2A realization is called internally balanced if its controllability and
observability Gramians are identical and diagonal

with

Ωq =
{
(T−1A0

qT, T−1B0
q , C0

q T,D0
q)\T non-singular

}
(7)

It is important at this stage to notice that Ωq, the set of

equivalent realizations, contains minimal3 realizations only.

This problem has also being considered when using the

δ-operator ([2], [9], [3], [10]) defined by

δ � q − 1
∆

(8)

where ∆ is a positive real constant4. The problem consists

then in finding the matrices (Aδ, Bδ, Cδ, Dδ) such that the

measure ML2 of H(δ) = Cδ(δI − Aδ)−1Bδ + Dδ is

minimized.

III. MACROSCOPIC REPRESENTATION OF ALGORITHM

THROUGH THE IMPLICIT STATE-SPACE FRAMEWORK

Various implementation forms have to be taken into con-

sideration (shift, δ-realization, observer-state-feedback, direct

form I or II, cascade realization, etc...), in order to evaluate

their parametric sensitivity.

[11] shows that a specialized implicit state-space form could

be used as a unifying framework, able to describe, in a single

equation, various classical implementation. This form is also

directly connected to the in-line calculations to be performed

and allow a more detailed (still macroscopic) description of

a FWL implementation.

Equation (9) recalls the specialized implicit form proposed

to make explicit the parametrization and the intermediate

variables used.

⎛
⎝ J 0 0
−K E 0
−L 0 I

⎞
⎠

⎛
⎝Tk+1

Xk+1

Yk

⎞
⎠ =

⎛
⎝0 M N

0 P Q
0 R S

⎞
⎠

⎛
⎝Tk

Xk

Uk

⎞
⎠ (9)

where

• J ∈ R
q×q, E ∈ R

n×n, K ∈ R
n×q, L ∈ R

p×q, M ∈
R

q×n, N ∈ R
q×m, P ∈ R

n×n, Q ∈ R
n×m, R ∈ R

p×n,

S ∈ R
p×m, Tk ∈ R

q, Xk ∈ R
n, Uk ∈ R

m and Yk ∈
R

p.

• the matrix J is lower triangular with 1 on the diagonal

• E is nonsingular, and, most often to be taken equal to

identity

• Tk+1 is the intermediate variable in the calculations of

step k (the column of 0 in the second matrix shows

that Tk is not used for the calculation at step k : that

characteizes the concept of intermediate variables)

• Xk+1 is the stored state-vector (Xk is effectively stored

from one step to the next, in order to compute Xk+1 at

step k)

Tk+1 and Xk+1 form the state-vector : Xk+1 is stored

from one step to the next, while Tk+1 is computed and used

3the term minimal refers to the fact that the transfer function H(z) cannot
be represented by a realization whose state vector X has a smaller dimension

4In [2], ∆ corresponds to the sampling period, but this contraint is
removed in [3]
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inside one time step.

It is implicitly considered throught the paper that the

computations associated to the realization (9) are ordered

from top to bottom. So the following algorithm is associated

in a one to one manner to (9) :

[1] J.Tk+1 = M.Xk + N.Uk :

calculation of the intermediate variables. J is lower

triangular, so T
(0)
k+1 is first calculated, and then T

(1)
k+1

using T
(0)
k+1 and so on ... (There’s no need to compute

J−1)

[2] EXk+1 = K.Tk+1 + P.Xk + Q.Uk

[3] Yk = L.Tk+1 + R.Xk + S.Uk

J and E beeing nonsingular, equation (9) is equivalent in

infinite precision to the classical state-space form :⎛
⎝Tk+1

Xk+1

Yk

⎞
⎠ =

⎛
⎝ 0 J−1M J−1N

0 A B
0 C D

⎞
⎠

⎛
⎝Tk

Xk

Uk

⎞
⎠ (10)

with

A = E−1KJ−1M + E−1P (11)

B = E−1KJ−1N + E−1Q (12)

C = LJ−1M + R (13)

D = LJ−1N + S (14)

However, (10) corresponds to a different parametrization than

the one in (9).

The transfer function considered may be then defined by

H(z) = C(zI − A)−1B + D (15)

Although Gevers and Li make no difference between

the terms realization, parametrization or representation, it

becomes important from now to distinguish and precise them.

It is also important, according to the unifying characteristic

of the implicit state-space framework, to define the common

terms of all specialized implementations.

Definition 1 A realization R is defined by the specific set
of matrices used for the internal description (see (9))

R � (E, J,K,L, M, N, P,Q,R, S) (16)

It is said singular if its matrices J or E are singular.
A non-singular realization is said to be a realization of
the transfer function H(z) if it has the same input-output
mapping (assuming null initial conditions)

Definition 2 RH denotes the set of all non-singular real-
izations of the transfer function H(z). These realizations are
said to be equivalent.

Definition 3 A structuration S is a subset of re-
alizations having a special structure : some coeffi-
cients or some dimensions of the realization matrices
(E, J,K, L, M, N, P,Q,R, S) are then a priori fixed.

For example, the δ-structuration, which is the set of realiza-
tions with the δ-operator, is defined by

Sδ �
{
R

∖ R = (I, I,∆I, 0, Aδ, Bδ, I, 0, Cδ, Dδ)
∀(∆, Aδ, Bδ, Cδ, Dδ)

}
(17)

Definition 4 A structured realization RS
H is the subset of

realizations of a transfer function H(z) according to a
structuration S

RS
H � RH ∩ S (18)

Different structured realizations (δ-operator, state-

feedback control, cascade realization, etc...) are considered

with more details in [11].

IV. THE TRANSFER FUNCTION SENSITIVITY MEASURE,

AND COMPUTATIONS VOLUME

One way to determine the impact of the coefficients’

quantization is to compute the sensitivity of the realization

considered according to each coefficient involved. The L2

"measure" (equation (5) ) considered by Gevers and Li may

be generalized by considering realization (9) as :

M1
L2

�
∑

X∈{E,J,K,L,M,N,P,Q,R,S}

∥∥∥∥∥∂H̃

∂X

∥∥∥∥∥
2

2

(19)

with H̃(z) � H(z) − D = C(zI − A)−1B.

It sums up the possible impact of the quantization of all

the coefficients involved in the implicit state-space form.

it is preferable to consider H̃(z) instead of H(z), because
∂H̃
∂X = ∂H

∂X − ∂D
∂X is strictly proper whatever X and have

always a L2-norm. Moreover, D is independent of the

state-space coordinate and have not to be consider here.

As seen in the different implicit structuration exam-

ples [11], for a given form (a realization with the δ-

operator for example) an important part of the coefficients

in (E, J,K, L, M, N, P,Q,R, S) are null or equal to unity.

They will not have to be quantized during the implementation

process. Therefore, they don’t contribute to deteriorate the

input/ouput relationship [12]. To take this into account, the

measure M1 may be enriched by introducing weighting
matrices, allowing to specify that a coefficient will be

implemented exactly or not.

Consider X one of the realization matrices (E, J , K, L, M ,

N , P , Q, R or S). The associated weighting matrice WX is

then defined as :

(WX)i,j =

{
0 if Xi,j could be exactly implemented

1 if not

(20)

The following new sensitivity measure, more consistent with

FWL implementation analysis, will be used from now :

MW
L2

�
∑

X∈{E,J,K,L,M,N,P,Q,R,S}

∥∥∥∥∥∂H̃

∂X
× WX

∥∥∥∥∥
2

2

(21)

where × denotes the Schur (or Hadamard) product.
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For clarity of the presentation, the SISO transfer function

sensitivity measure is considered next (without loss of ge-

nerality).

Proposition 1 The sensitivity function of H(z) with respect
to each matrix of the considered realization are given by

∂H̃

∂S
= 0 (22)

∂H̃

∂R
=

(
(zI − A)−1B

)�
(23)

∂H̃

∂Q
=

(
C(zI − A)−1E−1

)�
(24)

∂H̃

∂P
=

∂H̃

∂Q

∂H̃

∂R
(25)

∂H̃

∂L
=

(
J−1M(zI − A)−1B

)�
(26)

∂H̃

∂N
=

(
C(zI − A)−1E−1KJ−1

)�
(27)

∂H̃

∂M
=

(
∂H̃

∂N
+

(
LJ−1

)�)
∂H̃

∂R
(28)

∂H̃

∂K
=

∂H̃

∂Q

(
∂H̃

∂L
+

(
J−1N

)�)
(29)

∂H̃

∂E
= −∂H

∂Q

(
A(zI − A)−1B + B

)�
(30)

∂H̃

∂J
= − (

LJ−1
)� ∂H̃

∂L
− ∂H̃

∂N

(
J−1N

)�
(31)

−∂H̃

∂N

∂H̃

∂L
(32)

Proof: The demonstrations are omitted for lack of

place, but these expressions derive from equations (15) and

(11) to (14).

This measure is applied to some various realizations in

section VI, equations (37), (38), (40) and (41).

Other criteria may be used in order to evaluate and

compare the pertinence of a realization over another : com-

putation time, roundoff noise gain, and the readibility of the

code (physical meaning associated to coefficients and state

variable, which make the code easier to maintain and adopt).

Concerning the first point, we will focus on the number

of additions and multiplications rather than the computation

time, wich depends also on hardware and the way to perform

the operations. For example, the number of operations de-

pends on the coefficients representation (fixed-point, integer,

choice of the wordlength and scaling adjustment, ...) and the

software tricks used (integer error feedback[13], quantization

method during the calculations, ...).

As the specialized implicit state-space realization (9) allows

a judicious (although macroscopic) way to describe the code

to be implemented, it makes the number of additions and

multiplications to be generically performed easy to evaluate.

Proposition 2 Assuming that E is equal to identity, and n0
R

and n1
R being respectively the number of null elements of the

matrix J , K, L, M , N , P , Q, R, S and the number of trivial
elements (0, 1 or −1) of these matrices, then the associated
algorithm requires (m + n + q)(m + n + p − 1) − m − n0

R
additions and (m+n+ q)(m+n+p)−n1

R multiplications.

Proof: If Y is a constant in R
a×b and Z some value

R
1×b, the product Y.Z needs at least a(b−1)−n0

Y additions

and ab − n1
Y multiplications where n0

Y denotes the number

of the matrix Y ’s null elements and n1
Y the number of trivial

elements of Y .

V. GENERALIZED OPTIMAL REALIZATION DESIGN

It is now important to construct and characterize, for a

given transfer function H(z), some subsets of RH .

Proposition 3 Let’s consider a realization R and a transfer
function H(z).
R ∈ RH iff H(z) = C(zI − A)−1B + D with A,B,C and
D defined by equations (11) to (14)

Proposition 4 Let’s give us a transfer function H(z) and
one of its realizations R = (E, J,K, L, M, N, P,Q,R, S)
with sizes m, n, p and q (m is the size of the inputs, n the
dimension of the stored state, p the size of the outputs and
q the dimension of the intermediate variable).
Let’s now consider the realization R̄ =
(Ē, J̄ , K̄, L̄, M̄ , N̄ , P̄ , Q̄, R̄, S̄) with same sizes m, n,
p and q and with

Ē = WET J̄ = UJV
K̄ = WKV L̄ = LV
M̄ = UMT N̄ = UN
P̄ = WPT Q̄ = WQ
R̄ = RT S̄ = S

(33)

where T ∈ R
n×n, U ∈ R

q×q, V ∈ R
q×q and W ∈ R

n×n

are non-singular matrices.

With this construction, R̄ is equivalent to R.

Proof: According to equations (15), (11) to (14) and

(33), the realizations R and R̄ share the same transfer

function H(z).
It is important to notice that R̄ is computed from the

transformation matrices T , U , V and W and is the expression

of R in different bases (there is a base transformation for the

intermediate variables and for the stored state-vector).

Remark : Thanks to proposition 4, it is possible to charac-

terize a subset of equivalent realizations of a given transfer,

but not all equivalent realizations according to (9). Greater

subset may be obtained by generalizing conditions (33) in

using non-square matrices (rectangular matrices T1 ∈ R
n×n̄

and T2 ∈ R
n̄×n with T1T2 = In remplace transformation

matrices T and T−1) or extending the Inclusion principle
[14], [15] to the case of implicit systems. This will be done

later.
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The optimal realization problem originated by Gevers and

Li (see equation (6) and [3]) and those defined in [3], [1],

[7], [13], [16], [?] may be generalized as follows.

Problem 1 (Optimal design of a realization) Let’s
consider a transfer function H(z) and a measure M of
a realization (it could be the transfer function sensitivity
measure MW

L2
of the section IV).

The optimal design problem consits to find the best
realization Ropt for the transfer function H according to
the measure M

Ropt = arg min
R∈RH

M(R) (34)

Remark : This problem is a very difficult one (due to the size

of RH ). That’s the reason why the problem 2 is introduced.

Problem 2 (Optimal design of a structured realization)
In addition to the previous problem, a structuration S is
also considered. The problem is then to find the optimal
structured realization Ropt.

Ropt = arg min
R∈RS

H

M(R) (35)

Indeed, the solution of problem 2 is a suboptimal solution

of problem 1. The solution of problem 1 may be approached

by considering simultanneously several structurations (e.g.

of different order), when no particular structurations are

specified a priori.
Since the measure M could be non-smooth and/or

non-convex (like the pole-sensitivity proposed in [1], [7]),

the optimizing algorithm should be an efficient global

optimization one. The Adaptive Simulated Annealing (ASA)

([17], [18]) has been adopted here to search for the best

realization.

VI. EXAMPLES

To apply the transfer function sensitivity measure MW
L2

,

the example choosen is the following :

H(z) =
0.01594(z + 1)3

z3 − 1.9749z2 + 1.5562z − 0.4538
(36)

It is a low pass filter (see [3], [19]), and has a triple zero

at z = −1, so the zero positions are very sensitive to the

coefficients when realized directly.

In the following results, all the computations are done with

double floating-point precision, and the results are quoted

only to 4 significant digits for the fractional part. Bold font

is used to exhibit parameters that risk to be approximated

during the quantization process toward implementation. The

others, zeros or ones, will not be deteriorated. The weighting

matrices are build accordingly.

Let us now consider different realizations for H(z) (null

initial conditions assumed)

1) Realizations with q-operator : it corresponds to the

structuration (I, I, 0, 0, 0, 0, Aq, Bq, Cq, Dq)

• Canonical form :

A0
q =

⎛
⎝1.9749 −1.5562 0.4538

1 0 0
0 1 0

⎞
⎠

B0
q =

(
1 0 0

)�
C0

q =
(
0.0793 0.0230 0.0232

)
D0

q = 0.0159

(37)

According to (21), the parametric sensitivity ob-

tain is high : MW
L2

= 93.7200
• an internally balanced realization :

A1
q =

⎛
⎝0.8327 −0.3999 0.0164

0.3999 0.5935 0.3425
0.0164 −0.3425 0.5578

⎞
⎠

B1
q =

(−0.4424 0.3799 0.1671
)�

C1
q =

(−0.4424 −0.3799 0.1671
)

D1
q = 0.0159

(38)

In this case, and despite more coefficients are

potentially deteriorated during quantization, the

parametric sensitivity measure is much lower :

MW
L2

= 7.9431
2) δ-structuration : it corresponds to the structuration

(I, I,∆I, 0, Aδ, Bδ, I, 0, Cδ, Dδ). ∆ is choosen as in

[3] : ∆ = 2−1.

q-structuration and δ-structuration are equivalent ([9],

[2]) in infinite precision for

Aδ =
Aq − I

∆
, Bδ =

Bq

∆
, Cδ = Cq, Dδ = Dq (39)

It is important to notice that the sensitivity measure,

takes into account all the involved coefficients and

include the sensitivity of the transfer function with

respect to ∆, contrary to [3] (in this example, ∆
is taken into account, despite it could be exactly be

implemented in fixed point representation; moreover,

it exists examples where the H(z) is very sensitive

with respect to ∆, so that a non exact implementation

of ∆ leads to a very large degradation).

• Canonical form

A0
δ =

⎛
⎝−2.0502 −2.4256 −1.0200

1 0 0
0 1 0

⎞
⎠

B0
δ =

(
1 0 0

)�
C0

δ =
(
0.1586 0.7265 1.0039

)
D0

δ = 0.0159
(40)

MW
L2

= 9.0171
• From the balanced q-form

A1
δ =

⎛
⎝−0.3527 −0.7998 0.0329

0.7998 −0.8130 0.6850
0.0329 −0.6850 −0.8845

⎞
⎠

B1
δ =

(−0.8848 0.7598 0.3341
)�

C1
δ =

(−0.4424 −0.3799 0.1671
)

D1
δ = 0.0159

(41)
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Here, MW
L2

= 6.0943
ASA is used to solve Problem 2 and find the optimal

structured realization (according to the transfer function

sensitivity measure) for the q and δ-structuration of the

previous example :

• Optimal realization with q-structuration

Aopt
q =

⎛
⎝ 0.8173 0.5439 −0.0483
−0.4718 0.5373 0.1256
0.1476 −0.1042 0.6203

⎞
⎠

Bopt
q =

(−0.2718 −0.4674 −0.3215
)�

Copt
q =

(−0.3210 0.3189 −0.4389
)

Dopt
q = 0.0159

(42)

M opt
2 = 7.8704

• Optimal realization with δ-structuration

Aopt
δ =

⎛
⎝−0.7254 −0.5211 −0.5718

0.2399 −0.4314 −0.7084
0.3830 1.0377 −0.8933

⎞
⎠

Bopt
δ =

(
0.2110 −0.8189 0.0981

)�
Copt

δ =
(
0.8098 −0.0173 −0.2696

)
Dopt

δ = 0.0159

(43)

M opt
2 = 4.5671

These results are summarized in table I, with the evalu-

ation of the corresponding computational effort (number of

additions and multiplications).

TABLE I

TRANSFER FUNCTION SENSITIVITY MEASURE OF VARIOUS

REALIZATIONS

realization M2 add. mul.
canonical form q 93.7200 6 7

balanced q 7.9431 12 16

optimal q 7.8704 12 16

canonical form δ 9.0171 10 9

δ from balanced q 6.0943 15 19

δ optimal 4.5671 15 19

The results obtained are not surprising and are coherent

with existing ones. The δ-structuration is less sensitive than

the q-one and requires more operations for comparable

realization. The q-structuration may have an admissible

sensitivity when choosing an adequate realization (e.g. a

balanced one), and the canonical δ-structuration may achieve

a good compromise.

VII. CONCLUSION

The implicit state-space framework has been proposed

in order to give a macroscopic view on the algorithm to

be implemented. It allows to encapsulate different classical

realizations such as q or δ-realization for digital filter and

even the observer-based. These realizations are traditionally

considered separately. The parametric sensitivity measure

introduced in the paper applies to all of them. The char-

acterization of equivalent realizations allows to search for

optimal realization over an enlarged set of realizations than

in the past. Some realizations have been compared in the

case of a particular potentially sensitive transfer function.

The results obtained confirm some previous one. Our future

works will concern more original structuration such as the

generalized delta transform, the observer-based realization,

and other unexpected ones. Some interesting results have

already been obtained in practical situation in the context

of the automotive domain. Our present work focus on the

roundoff noise gain estimation thanks to the generalized

realisation propose.
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