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Abstract— Periodic Lyapunov, Sylvester and Riccati differ-
ential equations have many important applications in the
analysis and design of linear periodic control systems. For
the numerical solution of these equations efficient numerically
reliable algorithms based on the periodic Schur decomposition
are proposed. The new multi-shot type algorithms compute
periodic solutions in an arbitrary number of time moments
within one period by employing suitable discretizations of the
continuous-time problems. In contrast to traditionally used one-
shot periodic generator methods, the multi-shot type methods
have the advantage to be able to address problems with large
periods and/or unstable dynamics. Applications of the proposed
techniques to compute several system norms are presented.

I. INTRODUCTION

We consider the numerical computation of the periodic

solutions to three classes of periodic matrix differential

equations:

1) Periodic Lyapunov differential equations (PLDE) either

in the direct form

Ẋ(t) = A(t)X(t) + X(t)AT (t) + Q(t) (1)

or in the adjoint form

−Ẋ(t) = AT (t)X(t) + X(t)A(t) + Q̃(t) (2)

where Q(t) = QT (t), Q̃(t) = Q̃T (t) and A(t), Q(t), and

Q̃(t) are n × n T -periodic matrices (i.e., ∀t A(t+T ) = A(t),
Q(t+T ) = Q(t), Q̃(t+T ) = Q̃(t)). These equations play an

important role in the analysis of controllability/observability

of linear continuous-time periodic systems [1], in solving

periodic stabilization problems [2], computing Hankel- and

H2-norms of periodic systems [3], or in solving periodic dif-

ferential Riccati equations by employing Newtons’ method

[4].

2) Periodic Sylvester differential equation (PSDE) of the

form

Ẋ(t) = A(t)X(t) + X(t)B(t) + C(t) (3)

where A(t), B(t), and C(t) are respectively m × m, n × n,

and m × n T -periodic matrices. The PDSE (3) is useful in

solving periodic eigenvalue assignment problems [5], [6].

3) Periodic Riccati differential equation (PRDE) in the

filtering form

Ẋ(t)=A(t)X(t)+X(t)AT (t)+R(t)−X(t)Q(t)X(t) (4)
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or in the control form

−Ẋ(t)=AT (t)X(t)+X(t)A(t)+Q(t)−X(t)R(t)X(t) (5)

where Q(t) = QT (t) ≥ 0, R(t) = RT (t) ≥ 0, and A(t),
Q(t), R(t) are n × n T -periodic matrices. Solving these

equations for the stabilizing solution plays an important role

in periodic filtering or control problems [7], [4], [3].

In this paper we propose reliable numerical methods to

compute the periodic solution X(t) = X(t+T ) of equations

(1)-(5). Both one-shot periodic generator methods as well

as multi-shot type methods are discussed. The multi-shot
type methods rely on discretization techniques, which turn

the continuous-time problems into equivalent discrete-time

problems for which satisfactory numerical methods already

exist. The main appeal of these methods is that the periodic

solution X(t) is computed simultaneously in many time

moments within one period, so that the numerical difficulties

related to numerical integrations for large periods and/or

unstable dynamics are highly alleviated. The solution for

intermediary values of time t can be computed using special

numerical integration by initializing the solution in the near-

est time moment. Applications of the proposed techniques

to compute the Hankel-, H2- and H∞-norms of a periodic

system are presented.

The key numerical ingredient for solving the discrete-

time problems is the periodic real Schur form (PRSF) of

a periodic matrix sequence [8], [9]. The underlying com-

putational methods to solve discrete-time periodic Lyapunov

[10] and Sylvester equations [11] employ the PRSF to reduce

the problem matrices to condensed forms which allows an

easy solution of the reduced equations. In the case of the

solution of PRDEs, the main technique is the computation

of an ordered PRSF of a symplectic periodic matrix together

with the corresponding periodic basis of the stable invariant

subspace [8], [9].

II. SOLUTION OF PLDES

Let ΦA(t, τ) denote the transition matrix corresponding to

A(t) satisfying

∂ΦA(t, τ)
∂t

= A(t)ΦA(t, τ), ΦA(τ, τ) = I (6)

For a T -periodic A(t), ΨA(τ) := ΦA(τ + T, τ) is called

the monodromy matrix corresponding to A(t) and its eigen-

values, which are independent of τ , are called characteristic
multipliers. We say that A(t) is a stable periodic matrix if

all its characteristic multipliers have magnitudes less than 1.
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Existence conditions of periodic solutions of PLDEs have

been discussed in [12]. We recall the main result of [12].

Theorem 1: The PLDE (1) or (2) admits a unique T -

periodic solution X(t) if and only if ΨA(τ) does not have

reciprocal eigenvalues.

In what follows, we assume the above condition fulfilled.

A. Periodic generator method

The computation of the solution of (1) can be done in two

steps using the periodic generator method. First we solve for

a given time, say t = 0, the standard discrete-time Lyapunov

equation satisfied by X(0) (= X(T )) [1]

X(0) = ΨA(0)X(0)ΨT
A(0) + W (T, 0) (7)

where

W (t, t0) :=
∫ t

t0

ΦA(t, τ)Q(τ)ΦT
A(t, τ)dτ (8)

Then, we integrate from t = 0 to t = T the matrix differen-

tial equation (1) using any standard integration method for

ODEs. Observe that because of the symmetry of X(t), only
n(n+1)

2 equations must be integrated.

For the adjoint Lyapunov differential equation (2) a similar

approach can be used with obvious replacements. First we

solve the standard discrete-time Lyapunov equation satisfied

by X(T ) (= X(0))

X(T ) = ΨT
A(0)X(T )ΨA(0) + W̃ (T, 0) (9)

where

W̃ (tf , t) :=
∫ tf

t

ΦT
A(τ, t)Q̃(τ)ΦA(τ, t)dτ (10)

and then integrate (2) backward in time from t = T to t = 0.

The one-shot approach has several potential numerical

difficulties for long periods and/or unstable dynamics as-

sociated with A(t). For example, the computation of the

free term W (T, 0) in (7) using the methods described in

the next subsection can be hardly done with high accuracy

for long periods. The same is true for evaluating the mon-

odromy matrix ΦA(T, 0) for large values of T . Moreover,

for unstable A(t) (i.e., some eigenvalues of ΦA(T, 0) have

magnitudes larger than 1), the differential equations are ill-

conditioned and thus any numerical integration algorithm for

ODEs becomes numerically unstable. This is why, generally

the one-shot method is not recommended to solve periodic

differential Lyapunov equations.

B. Multi-shot approach

The values of the solution X(t) of the PDLE (1) at time

moments t and t + ∆ are related as [1]

X(t + ∆) = ΦA(t + ∆, t)X(t)ΦT
A(t + ∆, t) + W (t + ∆, t)

Let N ≥ 1 be an integer such that ∆ := T/N represents a

meaningful time increment to determine the solution X(t).
Then, the solution at successive time moments (k−1)∆ and

k∆ satisfies

Xk+1 = FkXkFT
k + Wk (11)

where Xk := X ((k − 1)∆), Fk := ΦA (k∆, (k − 1)∆), and

Wk := W (k∆, (k − 1)∆). By imposing XN+1 = X1, the

N coupled equations in (11) for k = 1, . . . , N represent a

discrete-time forward periodic Lyapunov equation. Thus, by

solving the N simultaneous equations (11), we determine

N values of the solution X(t) at equidistant time instants.

Since the time increment ∆ can be chosen arbitrary small,

this multi-shot approach certainly alleviates the numerical

difficulties associated with large periods and/or unstable

dynamics when evaluating Fk and Wk, k = 1, . . . , N .

A similar approach can be developed to solve the adjoint

PDLE (2). The solution X(t) at time moments t and t − ∆
are related as [1]

X(t − ∆) = ΦT
A(t, t − ∆)X(t)ΦA(t, t − ∆) + W̃ (t, t − ∆)

Thus, the solution at successive time moments (k−1)∆ and

k∆ satisfies

Xk = FT
k Xk+1Fk + W̃k (12)

where W̃k := W̃ (k∆, (k − 1)∆). By imposing XN+1 =
X1, the N coupled equations in (12) for k = 1, . . . , N rep-

resent a discrete-time backward periodic Lyapunov equation.

To solve the periodic discrete-time Lyapunov equations

(11) and (12) the numerically reliable methods proposed in

[10] can be used. These methods are based on computing the

real Schur form (RSF) of the monodromy matrix ΨA(0) =
FN · · ·F2F1 via the PRSF of the periodic matrix Fk. For

the computation of PRSF numerically stable algorithms have

been proposed in [8], [9] and robust numerical software

implementations are available in the recently developed

PERIODIC SYSTEMS Toolbox for MATLAB [13]. For the

solution of the periodic Lyapunov equations (11) and (12)

robust numerical software is also available in this toolbox.

The computation of Fk, Wk and W̃k for k = 1, . . . , N
in the equations (11) and (12) can be done using numeri-

cal integration of appropriate ordinary differential equations

(ODEs). To compute Fk, the matrix differential equation

(6) must be integrated from τ = (k − 1)∆ to k∆ using

appropriate methods for ODEs. Since the time step ∆ can

be chosen arbitrarily small, the numerical integration even

for unstable A(t) will not raise any numerical difficulties.

To compute Wk observe that for given t0, Y (t) :=
W (t, t0) in (8) satisfies the Lyapunov differential equation

Ẏ (t) = A(t)Y (t) + Y (t)AT (t) + Q(t), Y (t0) = 0 (13)

Thus, Wk can be computed as Wk = Y (k∆) by integrating

the above equation from t0 = (k − 1)∆ to tf = k∆.

To compute W̃k observe similarly that for given tf ,

Ỹ (t) := W̃ (tf , t) in (10) satisfies the Lyapunov differential

equation

− ˙̃
Y (t) = A(t)Ỹ (t) + Ỹ (t)AT (t) + Q̃(t), Ỹ (tf ) = 0 (14)

Thus, W̃k can be computed as W̃k = Ỹ ((k − 1)∆) by

integrating the above equation backward in the time from

tf = k∆ to t0 = (k − 1)∆.

To integrate the PLDEs (13) and (14) it is important to

use methods which preserve the symmetry of the solution
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and if appropriate, also its positive definiteness. For example,

methods which are able to preserve positive definiteness have

been proposed in [14].

III. SOLUTION OF PSDES

Existence conditions similar to those for periodic solutions

of PLDEs can be easily stated. The following result is a

straightforward generalization of Theorem 1 and we give it

without proof.

Theorem 2: The PSDE (3) admits a unique T -periodic

solution X(t) if and only if ΨA(τ) and ΨB(τ) do not have

mutually reciprocal eigenvalues.

In this section, we assume the above condition is fulfilled.

A. Periodic generator method

The computation of the solution of the PSDE (3) can be

done similarly to solving the PLDE (1). First we solve for

a given time, say t = 0, the standard discrete-time Sylvester

equation satisfied by X(0) (= X(T )) [1]

X(0) = ΦA(T, 0)X(0)ΦT
BT (T, 0)+∫ T

0
ΦA(T, τ)C(τ)ΦT

BT (T, τ)dτ

Then, we integrate from t = 0 to t = T the matrix differen-

tial equation (3) using any standard integration method for

ODEs. This one-shot approach leads to the same numerical

difficulties as for PLDEs for long periods and/or unstable

dynamics associated with A(t) or B(t). Thus, generally the

one-shot methods are not recommended to solve periodic

differential Sylvester equations.

B. Multi-shot methods

The values of the solution X(t) of the PSDE (3) at time

moments t and t + ∆ are related as [1]

X(t + ∆) = ΦA(t + ∆, t)X(t)ΦT
BT (t + ∆, t)+∫ t+∆

t
ΦA(t + ∆, τ)C(τ)ΦT

BT (t + ∆, τ)dτ

Let N ≥ 1 be an integer such that ∆ := T/N represents

a meaningful time increment for the solution X(t). Then,

the solution at successive time moments (k − 1)∆ and k∆
satisfies

Xk+1 = FkXkGT
k + Wk (15)

where Xk := X ((k − 1)∆), Fk := ΦA (k∆, (k − 1)∆),
Gk := ΦBT (k∆, (k − 1)∆) and

Wk :=
∫ k∆

(k−1)∆

ΦA (k∆, τ) C(τ)ΦT
BT (k∆, τ) dτ

By imposing XN+1 = X1, the N coupled equations in (11)

for k = 1, . . . , N represent a discrete-time forward periodic

Sylvester equation. To solve this equation the numerically

reliable method proposed in [11] can be used. This method

is based on the PRSFs of the periodic matrices Fk and Gk.

The computation of Fk, Gk, and Wk for k = 1, . . . , N
in the equation (15) can be done as follows. To compute

Fk, the matrix differential equation (6) must be integrated

from τ = (k − 1)∆ to k∆ using appropriate methods for

ODEs. Gk can be determined completely analogously with

the obvious replacement of A(t) by BT (t). To compute Wk

consider

W (t) :=
∫ t

t0

ΦA(t, τ)C(τ)ΦT
BT (t, τ)dτ

which satisfies the Sylvester differential equation

Ẇ (t) = A(t)W (t) + W (t)B(t) + C(t), W (t0) = 0

Thus, Wk can be computed as W (k∆) by integrating the

above equation between t0 = (k − 1)∆ and t = k∆.

IV. SOLUTION OF PRDES

We address the computation of the periodic stabilizing

solution X(t) of the PRDE (4) or (5) for which A(t) −
X(t)R(t) or, respectively, A(t) − Q(t)X(t) is stable. The

following result from [7] gives necessary and sufficient

conditions for the existence of a stabilizing solution:

Theorem 3: The PRDE (4) or (5) admits a unique T -

periodic stabilizing solution X(t) = XT (t) ≥ 0 if and

only if the pair (A(t), R(t)) is stabilizable and the pair

(A(t), Q(t)) is detectable.

In this section, we assume the above conditions are ful-

filled.

A. Periodic generator method

Let H(t) be the Hamiltonian matrix corresponding to the

filtering PRDE (4)

H(t) =
[ −AT (t) Q(t)

R(t) A(t)

]
or to the control PRDE (5)

H(t) =
[

A(t) −R(t)
−Q(t) −AT (t)

]
In both cases JH(t)+HT (t)J = O, where J =

[
0 I
−I 0

]
,

and thus H(t) is indeed a Hamiltonian matrix. The theorem

above ensures that the monodromy matrix ΨH(0) is di-

chotomic and this property is the key aspect of the following

approach to solve either the PRDEs (4) or (5) (see [15]):

1. Compute the symplectic transition matrix ΦH(T, 0) (i.e.,

ΦT
H(T, 0)JΦH(T, 0) = J) which has eigenvalues sym-

metric with respect to the unit circle.

2. Compute orthogonal Z to reduce ΦH(T, 0) to an ordered

RSF such that

ZT ΦH(T, 0)Z =
[

Θ11 Θ12

O Θ22

]
(16)

where Θ11 has n eigenvalues inside the unit circle and

Θ22 has n eigenvalues outside the unit circle.

3. Partition Z in n × n blocks

Z =
[

Z11 Z12

Z21 Z22

]
and integrate from t = 0 to t = T the matrix differential

equation

Ṡ(t) = H(t)S(t), S(0) =
[

Z11

Z21

]
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From the conformably partitioned solution

S(t) =
[

S1(t)
S2(t)

]
compute X(t) = S2(t)S−1

1 (t).
This approach is potentially numerically unreliable be-

cause it involves the numerical integration of two ODEs with

unstable dynamics: the first to compute ΦH(T, 0) and the

second to compute S(t). Therefore, for large periods, this

approach will almost certainly fail because of the uncon-

trolled accumulation of roundoff errors.

B. Multi-shot methods

To alleviate the numerical difficulties related to the peri-

odic generator method, we propose an alternative approach

which relies on determining the transition matrix ΦH(T, 0)
in a product form (recommended in [16])

ΦH(T, 0) = ΦH(T, T − ∆) · · ·ΦH(2∆,∆)ΦH(∆, 0) (17)

where ∆ = T/N for a suitably chosen integer period N . We

denote Hk := ΦH(k∆, (k − 1)∆) for k = 1, 2, . . . , which

is obviously an N -periodic matrix. Using the algorithm of

[8], we can determine an orthogonal N -periodic matrix Zk

to reduce Hk to an ordered PRSF such that

Zk+1HkZk =
[

Jk;11 Jk;12

O Jk;22

]
, (18)

where JN ;11 · · · J2;11J1;11 has n eigenvalues inside the unit

circle and JN ;22 · · · J2;22J1;22 has n eigenvalues outside the

unit circle. Since ΦH(T, 0) = HN · · ·H2H1, it follows that

ZT
1 ΦH(T, 0)Z1 is in the ordered RSF (16), where both

Θ11 = JN ;11 · · · J2;11J1;11 and Θ22 = JN ;22 · · · J2;22J1;22

are in RSF, and Z is simply Z1. If we partition Zk in n×n
blocks as

Zk =
[

Zk;11 Zk;12

Zk;21 Zk;22

]
we obtain the solution of PRDE at t = (k − 1)∆ as

X((k − 1)∆) = Zk;21Z
−1
k;11

Some computational aspects are relevant for a robust

implementation of this approach. Since each matrix Hk is

symplectic, it is important to employ numerical integrators

which are able to guarantee this property. Note that standard

methods (even the simple explicit Euler method) do not

ensure that Hk will be symplectic. Among methods able to

compute symplectic solutions are the Gauss-Legendre (diag-

onal Padé approximants) methods which belong to the class

of symplectic Runge-Kutta methods [15], [17]. MATLAB

software for symplectic integration is freely available [18].

To compute the values of the solution X(t) between two

discretization moments t0 = (k− 1)∆ and tf = k∆, special

ODE solvers as those proposed in [19], [14] can be used to

integrate (4) in forward time with X(t0) = X((k − 1)∆) or

(5) in backward time with X(tf ) = X(k∆). A distinctive

feature of solvers discussed in [14] is their capability to pre-

serve the positivity of the numerical solution of differential

Riccati equations and in particular of differential Lyapunov

equations.

V. APPLICATIONS: COMPUTATION OF SYSTEM NORMS

The proposed multi-shot techniques can be applied to

solve norm computation problems for continuous-time pe-

riodic systems of the form

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t) (19)

where A(t) ∈ IRn×n, B(t) ∈ IRn×m, C(t) ∈ IRp×n,

and D(t) ∈ IRp×m are periodic matrices of period T .

In this section we assume that the periodic system G =
(A(t), B(t), C(t),D(t)) is stable (i.e., A(t) is stable).

System norms are important in solving many computa-

tional problems. For example, Hankel-norm based bounds

appear in solving model reduction problems of continuous-

time periodic systems [20], while the H2-norm and H∞-

norm play an important role in solving the periodic H2- or

H∞-norm control synthesis problems [21], [22], [3].

All these system norms can be defined (see [21]) in terms

of the input-output operator Gop(τ) which relates the inputs

u(t) and outputs y(t) for zero initial conditions at t = τ ,

i.e.,

y(t) = [Gop(τ)u](t), t ≥ τ

Due to periodicity, the norms are defined to be independent

of τ and the definitions for constant systems are recovered.

A. Computation of Hankel-norm

Analogously to the discrete-time case [23], the computa-

tion of the Hankel-norm ‖Gop‖H relies on computing the

positive semidefinite periodic reachability and observability

Gramians P (t) and Q(t), respectively, defined as

P (t) =
∫ ∞

t

ΦA(t, τ)B(τ)BT (τ)ΦT
A(t, τ)dτ

Q(t) =
∫ t

−∞
ΦT

A(τ, t)CT (τ)C(τ)ΦA(τ, t)dτ

It is well-know that the periodic Gramians satisfy the PDLEs

Ṗ (t) = A(t)P (t) + P (t)AT (t) + B(t)BT (t) (20)

−Q̇(t) = AT (t)Q(t) + Q(t)A(t) + CT (t)C(t) (21)

The Hankel-norm of the system is defined from

‖Gop‖2
H = max

τ∈[0,T ]
λmax(P (τ)Q(τ))

When using the multi-shot approach to solve the PDLEs

(20) and (21), we have the values of P (t) and Q(t) in

the discrete time grid points 0 < ∆ < 2∆ < . . . <
(N − 1)∆. For practical Hankel-norm determination, we

can choose a sufficiently dense time grid and compute the

maximum eigenvalues only in the grid points. Furthermore,

interpolation can be employed to determine the norm to

higher accuracy.
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B. Computation of H2-norm

In this subsection we assume D(t) = 0. For the computa-

tion of the H2-norm of the system (19) we mention only

two recently proposed methods. The approximation-based

method of [24], [25] relies on finite truncation of infinite-

dimensional structured matrices. For this method the choice

of truncation order guaranteeing a given accuracy of the norm

is the most critical aspect. Closed-form formulas to compute

the H2-norm have been proposed in [26], [27]. The formula

in [27] involves the evaluation of a double matrix integral by

integrating a large system of ODEs which includes the com-

putation of the transition matrices corresponding to the stable

direct and unstable adjoint system dynamics. To circumvent

unstable integrations, the inversion of the direct transition

matrix at each time moment is necessary. Additionally, a

complex matrix integral must be evaluated via complex

residuals, which involves potentially sensitive computations

in the case of multiple characteristic multipliers.

The straightforward method which we propose relies on

the evaluation of the trace formula [3]

‖Gop‖2
2 = trace

[
1
T

∫ T

0

C(τ)P (τ)CT (τ)dτ

]
(22)

where P (t) is the unique T -periodic solution of the PDLE

(20). Let ∆ = T/N be an appropriate discretization interval

and let denote tk := (k − 1)∆ and Pk = P (tk) for

k = 1, . . . , N the values of the solution determined by the

proposed multi-shot method (to be always preferred over

the periodic generator method). Then, we can compute the

squared norm ‖Gop‖2
2 = µ(T )/T by integrating (20) with

initial condition P (0) = P1 jointly with the equation

µ̇(t) = trace
[
C(t)P (t)CT (t)

]
, µ(0) = 0

over the interval [0, T ]. This computation involves (provided

symmetry is exploited) the integration of n(n + 1)/2 + 1
differential equations. If the accuracy requirements are not

too high, the numerical integration of (20) can be completely

avoided by employing interpolation formulas to evaluate the

integral in (22) based on the available N discrete values

trace
[
C(tk)P (tk)CT (tk)

]
, k = 1, . . . , N .

If parallelization of computations is possible, the squared

norm can be evaluated as ‖Gop‖2
2 = 1

T

∑N
i=1 µk(k∆), where

each µk(t) for t ∈ [tk, tk+1] satisfies

µ̇k(t) = trace
[
C(t)P (t)CT (t)

]
, µk((k − 1)∆) = 0

which is integrated jointly with an equation of the form (20)
with initial condition P (tk) = Pk. Thus all N terms of the

sum can be evaluated in parallel.

C. Computation of H∞-norm

The approximate computation of H∞-norm of linear

continuous-time periodic systems has been addressed in fre-

quency domain in [24] relying on handling finite truncations

of infinite-dimensional matrices. In this paper we propose

a time-domain approach to the H∞-norm computation by

exploiting the characterization of the condition ‖Gop‖∞ < γ

for a given γ in terms of the characteristic multipliers of the

associated Hamiltonian matrix

Hγ(t) =

[
Â(t) −R̂(t)
−Q̂(t) −ÂT (t)

]
where

Â(t) = A(t) + B(t)(γ2I − DT (t)D(t))−1DT (t)C(t)
R̂(t) = −B(t)(γ2I − DT (t)D(t))−1BT (t)
Q̂(t) = CT (t)(I − D(t)DT (t)γ−2)−1C(t)

According to [21], for a stable system (19), the condition

‖Gop‖∞ < γ is equivalent to the fact that the associated

monodromy matrix ΦHγ
(T, 0) does not have eigenvalues on

the unit circle. This characterization can be used to compute

the H∞-norm using a standard bisection algorithm:

1. Select an upper bound γub and a lower bound γlb such

that γlb ≤ ‖Gop‖∞ ≤ γub and set γL = γlb, γU = γub.

2. If (γU − γL)/γL ≤ tol (a given tolerance), then set

‖Gop‖∞ ≈ (γU + γL)/2, stop; otherwise go to next step.

3. Set γ = (γU + γL)/2 and test ‖Gop‖∞ < γ by computing

the characteristic multipliers of the associated Hγ(t).

4. If Hγ(t) has characteristic multipliers on the unit circle,

set γL = γ; otherwise, set γU = γ; go to Step 2.

After q iterations, we have γU − γL = 2−q(γub −
γlb). Thus, to increase the efficiency of computations it

is important to have good initial approximations for the

bounds. It is possible to start with a lower bound γlb >
maxt∈[0,T ] σ(D(t)), where σ(·) denotes the maximum singu-

lar value, and increase γlb until no characteristic multipliers

lie on the unit circle. The corresponding value can be taken

as γub. Alternatively, the lower bound can be taken such

that γlb > max{maxt∈[0,T ] σ(D(t)), ‖Gop‖H}, while for the

upper bound the value γub = maxt∈[0,T ] σ(D(t))+2‖Gop‖H

can be used.

In the above algorithm we do not need to solve any peri-

odic Riccati equation, but only to compute the eigenvalues of

the monodromy matrix ΦHγ
(T, 0) and check for values on

the unit circle. Similarly to the case when solving a PDRE,

we choose an appropriate discretization step ∆ = T/N ,

and compute ΦHγ
(k∆, (k − 1)∆) for k = 1, . . . , N by

numerical integration to obtain ΦHγ
(T, 0) in a product form

as in (17). As before, for numerical integrations the special

symplectic integration methods are appropriate [18]. For the

computation of the eigenvalues of ΦHγ
(T, 0) the PRSF based

algorithm can be used [8], [9].

VI. NUMERICAL EXAMPLE

To illustrate the capabilities of the multi-shot approach,

we consider the numerical solution of the PLDE (1), where

we consider

A(t) =
[

0 1
−10 cos (t) − 1 −24 − 10 sin (t)

]
and we choose Q(t) such that the exact solution of (1) is

X(t) =
[

1 + cos (t) 0
0 1 + sin (t)

]
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The period of the problem is T = 2π. The characteristic

multipliers of A(t) are e−0.046T and e−23.95T , thus the

problem is moderately stiff and moderately ill-conditioned.

We computed the unique periodic solution X(t) of (1) us-

ing sampling periods ∆ = T/N , for N = 1, 16, 64, 128, 256.

The value of N = 1 corresponds to the one-shot method.

For the discretization of the continuoous-time problem and

solution of the resulting discretized periodic Lyapunov equa-

tions tools available in the PERIODIC SYSTEMS Toolbox

[13] have been used. In Table 1 we present accuracy results

obtained using three MATLAB ODE solvers: the Dormand-

Prince Runge-Kutta (4,5) code ode45, the non-stiff variable

order Adams-Bashforth-Moulton solver ode113 and the

numerical differentiation formulas based stiff solver ode15s
all with both the relative and absolute tolerances set to 10−8.

The accuracy of solution is evaluated as ‖X(tk) − X(tk)‖2

in each point tk = (k − 1)∆, for k = 1, . . . , N .

TABLE I

ACCURACY RESULTS FOR max ‖X(tk) − X(tk)‖2

N ode45 ode113 ode15s
1 1.6 · 10−4 1.9 · 10−8 2.4 · 10−7

16 1.4 · 10−6 8.3 · 10−9 2.1 · 10−8

64 1.1 · 10−7 5.6 · 10−9 5.4 · 10−8

128 9.0 · 10−9 9.1 · 10−9 1.1 · 10−7

256 1.1 · 10−9 8.3 · 10−9 8.9 · 10−8

While the accuracy of the multi-shot method is always

better than that of the one-shot approach, the accuracy gains

obtained for the Runge-Kutta method are remarkable. Notice

that the more accurate multistep methods implemented in

ode113 and ode15s achieve their limiting accuracy al-

ready for N = 64 and N = 16, respectively.

VII. CONCLUSIONS

We proposed several multi-shot type algorithms for solving

various periodic matrix differential equations. These methods

compute the periodic solutions in an arbitrary number of

equidistant time instants within one period, by employing

suitable discretizations of the continuous-time problems. In

contrast to traditionally used one-shot periodic generator

methods, the multi-shot methods have the advantage to be

able to successfully tackle problems with large periods and/or

unstable dynamics. We presented straightforward applica-

tions of the developed techniques in computing various

periodic system norms.

All computational techniques involves as preprocessing

step and sometimes also as postprocessing step the numerical

integration of specific matrix differential equations. This

part of computations is usually the most computer intensive

processing and we assumed tacitly that existing standard

or symplectic techniques can be used to perform them. It

appears that in all cases these computations are ”embarrass-

ingly” parallelizable, which makes the multi-shot approach

very appealing on parallel machines.
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