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Abstract— In this paper we design a steering control al-
gorithm for the Chaplygin sleigh with a moving mass. Our
strategy is to only use the controlled dynamics to initiate short-
time transitions between the various uncontrolled modes of the
system in order to achieve the desired direction of motion.

I. INTRODUCTION

The objective of this paper is to use a moving mass to

control the direction of motion of the Chaplygin sleigh—a

rigid body on a horizontal plane constrained by a blade. The

blade limits the velocity of the body-plane contact point to a

direction fixed in the body. This constraint is nonholonomic
as it imposes a velocity restriction on the system which is not

derivable from a position constraint. Rand and Ramani [13]

and Ruina [14] point out that blade constraints similar to this

have been used to model an underwater missile with fins.

In recent years much work has been done in using geomet-

ric structures to both formulate the equations and to address

aspects of control of constrained mechanical systems. We

summarize some such works. For a more complete list of

references on the dynamics and control of nonholonomic

systems see [1].

In the seminal paper by Bloch, Krishnaprasad, Marsden,

and Murray [2] (hereafter referred to as BKMM), nonholo-

nomic mechanical systems with symmetry are studied. For a

system with symmetry, it is natural to split the configuration

variables into the group variables g which describe the over-

all position (attitude) of the system and the shape variables
r which describe the positions of the system’s components

relative to each other. In the case of the Chaplygin sleigh

with a moving mass, the variable g is the element of the

group of Euclidean transformations of the two-dimensional

plane and the variable r is the position of the moving mass

relative to the contact point of the body and the plane.

The dynamics of a nonholonomic system with symmetry

are governed by the system of equations

r̈ = f(r, ṙ, p) + u, (1)

ṗ = 〈α(r)p, p〉 + 〈β(r)p, ṙ〉 + 〈γ(r)ṙ, ṙ〉, (2)

ġ = g(J(r)p − A(r)ṙ), (3)

where p is the nonholonomic momentum, which in general

is no longer conserved, and u represents control forces.1

Note that equations (1) and (2) decouple from the the group

1Observe that the controls appear only in the shape equation.

dynamics (3). See BKMM [2] for details and formulae that

define various coefficients in equations (1)–(3). Equations

(1), (2), and (3) are referred to as the shape equation, mo-
mentum equation, and reconstruction equation, respectively.

Utilizing the perturbation methods of [6] to study equa-

tions (1)–(3), Ostrowski [12] determines relations between

the cyclic control inputs u(t), resultant momentum genera-
tion, and ultimately, motion. These relations are critical in

designing momentum generating and steering algorithms.

In Lewis and Murray [8], a symmetric bracket is intro-

duced and used to formulate sufficient conditions for various

types of configuration controllability of simple mechanical

control systems. The general equations analyzed are of

geodesic type with both external forces and control input

terms.

Simple mechanical control systems with constraints are

treated in Lewis [7]. The symmetric bracket was shown

to address configuration controllability questions in this

constraint setting also.

In Bullo, Leonard, and Lewis [4], simple mechanical

control systems on a Lie group G are investigated. Here the

dynamics of interest are of the form

ṗ = 〈α p, p〉 + uaFa, (4)

ġ = g(Jp), (5)

where ua are the control inputs and Fa are the directions

in which they act. Implementing the perturbation approach

of [6] and using the symmetric bracket technique, Bullo,

Leonard, and Lewis [4] design steering control algorithms

for equations (5) and (4).

The physical system of particular interest to us is the

Chaplygin sleigh with a fully actuated moving mass. The

dynamics of this system are of the form (1)–(3) (details are

given in Section II).

Unlike Ostrowski, in this paper we are not concerned with

motion generation. We assume that the Chaplygin sleigh is

already in motion and concentrate on steering the system

using the movable mass. Since the mass is fully actuated,

we can assign its position relative to the sleigh as a function

of time. Therefore, the dynamics reduce to equations (2) and

(3), where the moving mass position r relative to the contact

point is interpreted as the control parameter. We emphasize

that the dependence of the right-hand sides of (2) and (3)

on r is inherently nonlinear, and thus the control design of

Bullo, Leonard, and Lewis [4] is not applicable.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoB13.5

0-7803-9568-9/05/$20.00 ©2005 IEEE 1114



The perturbation control techniques and associated algo-

rithm design of Ostrowski [12] and Bullo, Leonard, and

Lewis [4] mentioned above are extremely useful and have

a wide range of application. However, it is our philosophy

that the dynamics of the uncontrolled system, which are not

explicitly addressed in any of the above references, should

play a critical role in the design of control algorithms.

Our control philosophy can be outlined as follows: We

first study the variety of trajectories of equations (2) and (3)

in the uncontrolled setting (i.e., constant r). We then use the

controlled dynamics (i.e., equations (2) and (3) with non-

constant r) to switch between the various types of uncon-
trolled dynamics which then lead to the goal configuration.

This approach proved to be useful in various situations (see,

e.g., [3]). We emphasize that the transfer is very short in

duration and hence the system remains uncontrolled for most

of the steering procedure.

On a technical note, we assume that, except for the short

time that the actuators must implement the change in shape

configuration, they are at rest. That is, the actuators are

engineered to maintain the constancy of r when inactive.

For example, in the Chaplygin sleigh, we can view the mass

as sliding on a rod where the friction between the rod and

sliding mass, not the actuator, is applied to keep the mass

fixed.

The exposition is organized as follows: In Section II we

summarize the properties of the uncontrolled dynamics of the

Chaplygin sleigh. In particular, we list all possible types of

trajectories of the contact point of the sleigh on the plane. In

Section III we study “control primitives” which implement

the transitions between the uncontrolled trajectories of the

sleigh. These control primitives, when applied in the proper

order, result in the desired reorientation of the system.

Simulations are presented in Section IV.

II. THE DYNAMICS OF THE CHAPLYGIN SLEIGH

A. The Configuration Variables

The Chaplygin sleigh is a rigid body sliding on a hori-

zontal plane. The body is supported at three points, two of

which slide freely without friction while the third is a knife

edge, a constraint that allows no motion orthogonal to this

edge. This mechanical system was introduced and studied

in 1911 by Chaplygin [5] (although the work was actually

finished in 1906).

The configuration space of this system is the group of

Euclidean motions of the two-dimensional plane which we

parameterize with coordinates (θ, x, y). As Figure 1 indi-

cates, θ and (x, y) are the angular orientation of the blade

(shown as the bold segment in the Figure) and position of the

contact point of the blade on the plane, respectively. We view

the sleigh as a platform whose center of mass is at the contact

point. The mass and moment of inertia of the platform

relative to the contact point are M and I , respectively. There

is also a point mass m positioned at (a, b) relative to the

platform, see Figure 1. In the classical Chaplygin sleigh this

mass is motionless relative to the platform; in Section III we

will control its position in order to steer the sleigh on the

plane. The constraint imposed by the blade reads

e1

e2

(x, y)

θ

(a, b)

Fig. 1. The Chaplygin sleigh.

−ẋ sin θ + ẏ sin θ = 0. (6)

This constraint is nonholonomic, whereby we mean it is not

possible to derive the velocity constraint (6) from a position

constraint G(θ, x, y) = 0.

B. The Momentum Dynamics and Reconstruction

Let Ω1 be the angular velocity of the platform and Ω2,

Ω3 be the components of linear velocity of the contact point

along and orthogonal to the blade, respectively. Constraint

(6) implies Ω3 = 0.

Denote the nonholonomic momentum by (p1, p2). The

components p1 and p2 satisfy the equations

Ω1 =
(M + m)p1 + mbp2

(M + m)(I + ma2) + Mmb2
,

Ω2 =
mbp1 +

(
I + ma2 + mb2

)
p2

(M + m)(I + ma2) + Mmb2
,

see [2] and [16] for details and definitions. If b = 0, the

components p1 and p2 equal the angular momentum of

the sleigh relative to the contact point, and the projection

of the linear momentum along the direction of the blade,

respectively.

The dynamics of the Chaplygin sleigh is governed by the

momentum equations

ṗ1 = −maΩ1Ω2, ṗ2 = ma(Ω1)2, (7)

coupled with the reconstruction equations

θ̇ = Ω1, ẋ = Ω2 cos θ, ẏ = Ω2 sin θ, (8)

(see, e.g., [16]). This representation of the equations of

motion allows one to first solve (7) and then find the

trajectory of the sleigh by integrating equations (8). We refer

the reader to BKMM [2] and Zenkov and Bloch [16] for the

details on the derivation of these equations.

The dynamics of the Chaplygin sleigh depends drastically

on the value of a. This dependence is critical in the design

of our control algorithm in Section III.

If a = 0, the momentum components p1 and p2 are

preserved. Equations (8) then imply that the trajectory of
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the contact point is either a circle or a straight line. In both

cases the contact point is moving at a constant rate. The

existence of circular trajectories is very important for our

steering control algorithm.

If a �= 0, the trajectories in the momentum plane are either

equilibria situated on the line (M + m)p1 + mbp2 = 0, or

elliptic arcs, as shown in Figure 2. Assuming a > 0, the

equilibria located in the upper half plane are asymptotically

stable (filled dots in Figure 2) whereas the equilibria in the

lower half plane are unstable (empty dots). The elliptic arcs

form heteroclinic connections between the pairs of equilibria.

The trajectories of the contact point that correspond to the

p2

p1

Fig. 2. The momentum dynamics of the unbalanced sleigh.

momentum equilibria are straight lines in the xy-plane. They

are stable if the mass m precedes the contact point and

unstable otherwise.

The trajectories of the contact point reconstructed from the

heteroclinic momentum trajectories should be regarded as the

transfer solutions from an unstable straight line motion to a

stable one. A typical transfer trajectory is shown in Figure 3.

The shape of these transfer trajectories is predetermined by

the inertia of the body and the position of the center of mass

relative to the contact point, and is independent of the initial

conditions. The angle between the asymptotic directions of

Fig. 3. A generic trajectory of the contact point.

a trajectory of the contact point in the xy-plane is evaluated

in [11] for the case b = 0.2

2The formula obtained in [11] stays correct in the general case b �= 0.

III. CONTROLLABILITY OF THE CHAPLYGIN SLEIGH

WITH A MOVING MASS

A. The Reduced Controlled Dynamics

We now allow the point mass to change its position

relative to the rigid body. That is, the quantities (a, b) are

now dynamic variables. Assuming that the mass degrees of

freedom are fully actuated, the system’s dynamics are given

by equations (2) and (3), where r = (a, b) is viewed as

the control parameter. Recall that the controller is active

only when ȧ2 + ḃ2 �= 0—see the discussion of the physical

implementation of controllers in the Introduction.

In order to write equations (2) and (3) for the Chaplygin

sleigh with a moving mass explicitly, let

ξ1 =
(M + m)(p1 − maḃ) + mb(p2 + Mȧ)

(M + m)(I + ma2) + Mmb2
,

ξ2 =
m[b(p1 − maḃ) − (I + ma2)ȧ] + [I + m(a2 + b2)]p2

(M + m)(I + ma2) + Mmb2
,

and define η by

[Mmb2 + I(M + m)]ḃ + a[(M + m)p1 + mb(p2 + Mȧ)]
(M + m)(I + ma2) + Mmb2

.

The momentum dynamics (2) for the Chaplygin sleigh with

a moving mass is computed to be

ṗ1 = −mηξ2, ṗ2 = mηξ1. (9)

Observe that for (a, b) = const, equations (9) reduce to (7).

After solving equations (9), the group configuration vari-

ables (θ, x, y) are obtained from the reconstruction equations

θ̇ = ξ1, ẋ = ξ2 cos θ, ẏ = ξ2 sin θ.

B. Controllability of Asymptotic Directions

Recall that if (p1, p2) is constant and p2 �= 0, there are

three types of motions for the uncontrolled (ȧ2 + ḃ2 = 0)

dynamics:

1. If a �= 0 and (M + m)p1 + mbp2 �= 0, then the

system’s trajectory is a curve that approaches straight-

line motions as t → ±∞ (see Figure 3).

2. If a = 0 and (M +m)p1 +mbp2 �= 0, then the system

moves along a circle in the xy-plane at a constant rate.

3. If (M + m)p1 + mbp2 = 0, the system moves along a

straight line in the xy-plane at a constant speed.

We remark that the first type is generic (i.e., observed with

probability one when the initial conditions are randomly

generated) whereas the second and the third types are not.

The objective of this paper is: Assuming that the sleigh

is sliding (that is, ξ2 �= 0), find the control inputs that put

the system on a trajectory which asymptotically approaches

a straight line with the desired direction in the xy-plane. In

the theorems below we prove that it is possible to change

the trajectory type by controlling parameters a and b. The

existence of the desired steering control algorithm follows

immediately from these theorems.

Theorem 1: Assume that the initial motion of the system is
circular, i.e., a = 0, b = const, and (M +m)p1 +mbp2 �= 0.
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Then there exist a continuously-differentiable function a(t)
and constants A, T1, and T2 with properties

• a(t) = 0 when t ≤ T1 and a(t) = A when t ≥ T2,
• a(t) is increasing when T1 < t < T2,

such that the trajectory of the system with a = a(t), b =
const asymptotically approaches a straight line motion with
a given direction in the xy-plane.

Proof: Without loss of generality assume that θ = 0 at

t = 0. Choose positive constants A and T and consider a

continuously-differentiable function f(t) such that f(t) = 0
for t ≤ 0, f(t) = A for t ≥ T and f(t) is increasing

on 0 < t < T . The actual shape of f(t) on the interval

0 < t < T is not important. For instance, one can define

f(t) as

FA,T (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t ≤ 0
2A

T 2
t2 if 0 < t ≤ T/2

A − 2A

T 2
(t − T )2 if T/2 < t ≤ T

A if t > T

(this will be our default choice).

Set a = f(t). At the end of transition interval 0 < t < T
the value of a becomes A. According to the classification of

motions given above, the trajectory of the system for t > T
is either of type 1 or type 3. Let φ be the angle between

the asymptotic direction of this trajectory as t → ∞ (or

the trajectory itself if it is a straight line) and the positive

direction of the x-axis. Let ψ be the angle between the

desired (asymptotic) direction of motion and the positive

direction of the x-axis.

For the initial circular trajectory, let T1 ∈ R be such

that θ(T1) = ψ − φ. Set a(t) equal to f(t − T1). Then

the trajectory of the system with a = a(t) and b = const

satisfies the statement of the theorem. Indeed, this trajectory

is obtained from the one corresponding to a = f(t) by

rotation about the center of the initial circular trajectory by

the angle ψ − φ. Therefore, the asymptotic direction of the

trajectory forms the angle ψ with the positive direction of

the x-axis.

Theorem 2: Assume that the system is moving along a
trajectory of type 1, i.e., a = A �= 0 and (M + m)p1 +
mbp2 �= 0.3 Then there exist a continuously-differentiable
function a(t) and constants T1 and T2 with properties

• a(t) = A when t ≤ T1 and a(t) = 0 when t ≥ T2,
• a(t) is decreasing when T1 < t < T2,

such that the trajectory of the system with a = a(t), b =
const becomes a circle for t > T2.

Proof: Choose the values T1, T2 and set T = T2 − T1,

a(t) = A−f(t−T1), where f(t) is the function introduced in

Theorem 1. Then at the end of the transition period the value

of a equals 0. Therefore, the trajectory of the system for t >
T2 is either a circle, or a straight line. Adjusting the initial

and terminal moments T1 and T2 of the transition period if

3We assume, without loss of generality, that A > 0.

necessary, it is possible to have (M + m)p1 + mbp2 �= 0.

Therefore, the trajectory becomes circular for t > T2.

Theorem 3: Assume that the system is moving along a
straight line, i.e., b = B1 = const and (M +m)p1+mbp2 =
0. Assume that a = A > 0. Then there exist a continuously-
differentiable function b(t) and constants B2 �= B1, T1, and
T2 with properties

• b(t) = B1 when t ≤ T1 and b(t) = B2 when t ≥ T2,
• b(t) is monotonic when T1 < t < T2,

such that the trajectory of the system with a = A, b = b(t)
becomes type 1 for t > T2.

Proof: Define b(t) by the formula

B1 + FB2−B1,T2−T1(t).

By adjusting the values of T1, T2, and B2, it is possible to

satisfy the condition

(M + m)p1(T2) + mb(T2)p2(T2) �= 0.

Since the value of a has not changed, the trajectory of the

system becomes type 1 for t > T2.

Remark: The statement of the last theorem can be extended

to the case of an initial straight line motion with a = 0. One

just needs to change the value of a from 0 to A and then

apply the algorithm of Theorem 3.

The reorientation algorithm can now be stated in the

following steps:

1. Check if the trajectory of the sleigh is a straight line. If

no, go to step 2. If yes, use Theorem 3 to transfer the

sleigh to a generic trajectory and then go to step 2.

2. Check if the trajectory is circular. If yes, go to step 3.

If no, use the control from Theorem 2 to transfer the

sleigh to a circular trajectory and then go to step 3.

3. Using Theorem 1, exit the circular trajectory at an

appropriate moment.

Remark: By Theorem 1, any point outside a circular

trajectory in the plane belongs to an “exit” trajectory. It is

now evident that the above three reorientation algorithm steps

can be used to steer the Chaplygin sleigh through any point

in the plane.

IV. SIMULATIONS

In this section we illustrate the control primitives obtained

in Theorems 1–3. We assume that the numerical values of the

parameters of the system are I = 10, M = 2, and m = 1.

In all simulations the initial value of b is set to 0.

Figure 4 illustrates the steering algorithm of Theorem 1.

The value of a on the circular trajectory equals 0, and f(t)
is chosen to be F1,4(t). If a = f(t), the system’s trajectory

leaves the circle along the dashed curve in Figure 4, right.

The trajectory corresponding to a = a(t) = f(t− 30) is the

solid curve in Figure 4, right.

Figure 5 illustrates the control input that steers the system

from a generic trajectory to a circular one. The initial value

of a is 1, and a(t) is set to 1 − F1,4(t − 2).
Figure 6 illustrates the transfer from a straight line to a

generic trajectory. The initial value of a is 0.1 and b(t) equals

F2,4(t).
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a(t)

f(t)

Fig. 4. Transition form a circle to the trajectory with desired direction.

0 10 20 30 40
�0.5

0

0.5

1

1.5

a(t)

Fig. 5. Transition from a generic trajectory to a circle.

0 2 4 6 8
0

0.5

1

1.5

2

b(t)

Fig. 6. Transition from a straight line to a generic trajectory.

V. CONCLUSIONS

In this paper we have developed a dynamical system

approach to controlling the asymptotic dynamics of the

Chaplygin sleigh. The key feature of our algorithm is the

use of the controlled dynamics only for switching to and

from circular trajectories. As a consequence, the controller

remains unpowered most of the time.

While our control algorithm design is problem specific (the

uncontrolled dynamics change for each mechanical system

chosen) as a philosophy it is a general principle. Whether it

is applicable to a given situation depends of course on the

nature of both the uncontrolled dynamics and controllers. We

intend to extend this approach to a wider class of systems

in a future publication.
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