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Abstract— For optimal control problems with state space
constraints given by control-invariant manifolds of relative
degree 1, we describe a local field of extremals near junctions
between boundary and interior arcs. These results continue
earlier analysis by incorporating junctions of boundary arcs
with singular arcs and bang arcs not considered in before. The
problem of minimizing the base transit time in homojunction
bipolar transistors is used to illustrate the results.

I. INTRODUCTION

Optimal control problems with state space constraints
naturally arise in many practical problems of engineering or
scientific interest. Examples come from various disciplines
like the space shuttle re-entry problem considered in [2], the
problem of minimizing the base transit time in bipolar tran-
sistors [15], or simple models for optimal control problems in
cancer chemotherapy [4]. Because of the more complicated
structure of necessary conditions for optimality (due to the
presence of measures as multipliers when state constraints
are active,) naturally the theory of sufficient conditions for
optimality is less developed, still mostly at the stage of
results which in practice are difficult to apply (such as the
results in [17] or results related to the existence of viscosity
solutions to the dynamic programming equation [3], [16]).
In particular, no geometric theory of synthesis exists like
for problems without state space constraints [1], [11]. Given
the fact that state constraints often have strong geometric
properties in practical applications, for example, are given
by embedded submanifolds and intersections thereof, it does
not seem unreasonable to formulate geometric synthesis
type conditions for optimality for these cases. While these
are typically more cumbersome to formulate, simply since
geometric properties need to be described, once done, they
are easily applicable. In this spirit, for boundary arcs of order
or relative degree 1, (i.e. the state constraints are control-
invariant submanifolds of relative degree 1), under specific
generic assumptions in [7] a local field of extremals near
a reference trajectory that consisted of finite concatenations
of bang-bang and boundary arcs was constructed, and the
resulting sufficient conditions for strong local optimality
have been verified in [14]. In this paper we continue this
construction of a local field of extremals for problems with
state-space constraints near boundary arcs of order 1 by
incorporating a type of boundary-bang arc junction different
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from the one considered in [7]. But mostly the emphasis
here is on including junctions with singular arcs into a local
synthesis. These constructions are motivated by the problem
of minimizing the base transit time in bipolar transistors
[15] and we include a discussion of local fields of extremals
around reference trajectories for this problem.

II. MATHEMATICAL MODEL

As in [7] we consider an optimal control problem for a
fixed time interval [0, T ] and without terminal constraints:
(P) minimize

J(u) =

∫ T

0

(L0(t, x) + uL1(t, x)) dt + ϕ(x(T )) (1)

over all Lebesgue measurable functions u defined on [0, T ]
with values in a compact interval [a, b] ⊂ R, subject to the
dynamics

ẋ(t) = f(t, x) + ug(t, x), x(0) = x0, (2)

and state space constraints

hα(t, x) ≤ 0 for α = 1, . . . , r. (3)

The restriction to systems which are linear in the control
(both dynamics and objective) is not essential, but it simpli-
fies the presentation and this assumption is satisfied for many
realistic problems. Having a single-input system implies that
typically only one constraint will be active at a specific time,
but we want to allow for the fact that different constraints
may be active along a trajectory as, for example, it is the
case in the semiconductor problem considered below (see
also [15]).

We assume that the time-varying vector fields f and g,
[0, T ]×R

n → R
n, in the dynamics and the functions L0 and

L1, [0, T ]×R
n → R, in the objective are twice continuously

differentiable in all variables. The state-space constraints
are defined by twice continuously differentiable time-varying
vector fields,

hα : [0, T ] × R
n → R, (t, x) �→ hα(t, x),

α = 1, . . . , r, and we assume that the gradients ∇hα(t, x)
do not vanish on the sets

Mα = {(t, x) : hα(t, x) = 0}. (4)

In particular, each Mα is an embedded submanifold of
codimension 1 of (t, x)-space.
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Given a control u : [0, T ] → [a, b], the initial value
problem (2) has a unique solution defined on some maximal
open interval of definition I . For a control to be admissible
we require that I ⊃ [0, T ] and we call the solution the
trajectory corresponding to the control u; the pair (x, u) is a
controlled trajectory. Given an open subset P of R

n, let tin
and tf be two continuous functions satisfying tin(p) < tf (p)
for all p ∈ P and let D = {(t, p) : tin(p) ≤ t ≤ tf (p), p ∈
P}. If u = u(t, p) denotes some parameterized family of
admissible controls defined on D, let x = x(t, p) denote the
corresponding trajectories. Then we define the corresponding
flow as the map defined by the graphs of the trajectories, i.e.

σ : D → R × R
n, (t, p) �→ (t, x(t, p)). (5)

If the time-varying equations are written as an autonomous
system, this exactly is the standard flow of the trajectories.
Similarly, if we set

F (t, x) =

(
1

f(t, x)

)
and G(t, x) =

(
0

g(t, x)

)
,

(6)
then for a continuously differentiable function k : R ×
R

n → R
n, the functions LF k : R × R

n → R
n, (t, x) �→

(LF k) (t, x), and LGk : R × R
n → R

n, (t, x) �→
(LGk) (t, x) defined by

(LF k) (t, x) =
∂k

∂t
(t, x) +

∂k

∂x
(t, x)f(t, x) (7)

and
(LGk) (t, x) =

∂k

∂x
(t, x)g(t, x) (8)

are the Lie-derivatives of the function k along the vector
fields F and G, respectively. In terms of this notation, the
derivative of the function hα (defining the manifold Mα)
along trajectories of the system is given by

ḣα(t, x(t)) = LF hα(t, x(t)) + u(t)LGhα(t, x(t)).

If the function LGhα does not vanish at a point (t̃, x̃) ∈
Mα, then there exists a neighborhood V of (t̃, x̃) such that
there exists a unique control uα = uα(t, x) which solves the
equation ḣα(t, x) = 0 on V and uα is given in feedback
form as

uα(t, x) = −
LF hα(t, x)

LGhα(t, x)
. (9)

We call the manifold Mα control-invariant of relative degree
1 for problem (P ) if the Lie derivative of hα with respect
to G does not vanish anywhere on Mα and if the function
uα(t, x) defined by (9) is admissible, i.e. takes values in
the control set [a, b]. Since we are dealing with a prob-
lem with control constraints, here we explicitly include the
requirement that the control uα satisfies these constraints
in the definition. Thus, for a control-invariant submanifold
of relative degree 1, the control that keeps the manifold
invariant is unique and the corresponding dynamics (2)
induces a unique flow on the constraint.

In this paper we assume throughout that:
(A) All constraint manifolds Mα are control-invariant

of relative degree 1.

This assumption corresponds to the least degenerate, or,
equivalently, most common scenario and is satisfied for many
practical problems like for example [2], [4], [15].

III. NECESSARY CONDITIONS FOR OPTIMALITY

First-order necessary conditions for optimality are given
by the Pontryagin maximum principle [12]. Mathematically
the presence of the state-space constraints complicates mat-
ters in that it brings in additional multipliers which a priori
are only known to be non-negative Radon measures. How-
ever, under condition (A) it can be shown that these measures
are absolutely continuous with respect to Lebesgue measure
on intervals where the state lies in one of the constraint
manifolds [14, Prop. 3.1]. Since admissible controls are only
Lebesgue-measurable, in principle the sets where a constraint
is active can be arbitrarily complicated sets. Nevertheless, in
most practical situations this set often is a union of intervals
and in this case more stringent necessary conditions for
optimality are valid which we will use to formulate suffi-
cient conditions for local optimality. Following the notation
introduced by Maurer [9] we call a piece Γ of the graph of
a trajectory defined over an open interval I which does not
intersect the boundary an interior arc and call Γ a boundary
arc if at least one constraint is active on all of I . More
specifically we call Γ an Mα-boundary arc over I if only
the constraint hα ≤ 0 is active on I . The times τ when
interior arcs and boundary arcs meet are called junction times
and the corresponding pairs (τ, x(τ)) junction points. The
necessary conditions for optimality for problem (P ) can then
be summarized as below:

Theorem 3.1: Suppose the state space constraints in prob-
lem (P ) are given by control-invariant submanifolds of
relative degree 1. Let u∗ : [0, T ] → [a, b] be an optimal
control for problem (P ) with corresponding trajectory x∗ and
assume x∗ is a finite concatenation of interior and boundary
arcs with junction times t∗i , i = 1, . . . , m, 0 = t∗0 < t∗1 <

. . . < t∗m < t∗m+1 = T , such that on each interval (t∗i , t
∗
i+1),

i = 0, . . . , m, at most one constraint is active and that the
boundary controls take values in the interior of the control
set. Then there exist a constant λ0 ≥ 0 and piecewise
continuous functions λ∗, λ∗ : [0, T ] → (Rn)∗, λ∗(T ) =
λ0

∂ϕ
∂x

(x∗(T )), and να, να : [0, T ] → R, α = 1, . . . , r,
which do not all vanish identically, such that the following
conditions (a)-(d) hold:
(a) λ∗ is continuously differentiable on each interval
(t∗i , t

∗
i+1), i = 0, . . . , m, and satisfies the adjoint equation

in the form

λ̇∗(t) = − λ0

(
∂L0

∂x
(t, x∗) + u∗

∂L1

∂x
(t, x∗)

)

− λ(t)∗

(
∂f

∂x
(t, x∗) + u∗

∂g

∂x
(t, x∗)

)
(10)

−

r∑
α=1

να

∂hα

∂x
(t, x∗).

(b) If the constraint Mα is not active, then να(t) = 0; if
(t∗i , t

∗
i+1) is the domain of an Mα-boundary arc, then να(t)
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is given by

1

LGhα(t, x∗)

{
λ0

(
∂L1

∂t
(t, x∗) (11)

+
∂L1

∂x
(t, x∗)f(t, x∗) −

∂L0

∂x
(t, x∗)g(t, x∗)

)

+λ∗

(
∂g

∂t
(t, x∗) + [f, g](t, x∗)

)}
.

(c) The multiplier λ∗ is continuous at interior junctions; it
is continuous at a junction between an interior arc and an
Mα-boundary arc if the graph t �→ (t, x∗(t)) is transversal
to Mα at the junction point (τ, x∗(τ)). This is the case if
and only if the control u∗ is discontinuous at τ .
(d) With Φ∗(t) = λ0L1(t, x∗(t)) + λ∗(t)g(t, x∗(t)) the
control satisfies

u∗(t) =

{
b if Φ∗(t) < 0
a if Φ∗(t) > 0

. (12)

Along an Mα-boundary arc the control u∗ is given by

u∗(t) = uα(t, x∗(t)) = −
LF hα(t, x∗(t))

LGhα(t, x∗(t))
. (13)

Condition (c) is a reformulation of Maurer’s well-known
junction conditions [9] and condition (d) is equivalent to the
more standard formulation that the optimal control minimizes
the Hamiltonian,

H = λ0 (L0(t, x) + uL1(t, x))+λf(t, x)+ug(t, x)), (14)

over the control set [a, b] along (λ0, λ∗(t), x∗(t)), i.e.

H(λ0, λ∗(t), x∗(t), u∗(t)) = min
a≤w≤b

H(λ0, λ∗(t), x∗(t), w).

(15)
We refer to the function Φ∗ as the switching function for the
problem.

We call control-trajectory pairs (x, u) for which there exist
multipliers such that these conditions are satisfied extremals.
For general control problems it cannot be excluded that λ0

vanishes and extremals with λ0 = 0 are called abnormal,
while those with λ0 > 0 are called normal. In this case we
can normalize λ0 = 1. There exist several results which can
be used to establish the normality of extremals, (for example,
see [13], [8]) and in our construction below we will also need
to assume that:

(B) The reference trajectory is normal.

IV. CONSTRUCTION OF A LOCAL FIELD OF EXTREMALS

NEAR A BOUNDARY-ARC SINGULAR-ARC JUNCTION

Our aim is to formulate sufficient conditions for strong
local optimality of an arc of a reference extremal (x∗, u∗)
which is a finite concatenation of interior arcs and Mα-
boundary arcs. In [7] we analyzed one generic type of
junctions between boundary arcs and interior arcs corre-
sponding to constant controls. Here we now consider the
case of junctions with interior singular arcs. While the local
synthesis around the boundary arc is identical to the one
in [7], (and thus is valid under the same conditions), the
synthesis is qualitatively different at the junction.

An interior arc Γ corresponding to a trajectory x∗ defined
over an open interval I is called singular if Φ∗ vanishes
identically on I . In this case all the derivatives of Φ∗ must
vanish as well. The first derivative Φ̇∗ does not depend on
the control and the second derivative Φ̈∗ is of the form

Φ̈(t) = Ψ(t) + u∗(t)Ξ(t) (16)

where the functions Ψ and Ξ only depend on the multiplier
λ∗ and the trajectory x∗, but not on the control. It is a
necessary condition for minimality of the singular control,
the so-called Legendre-Clebsch condition [5], that

Ξ(t) =
∂

∂u

d2

dt2
∂H

∂u
(t, λ∗(t), x∗(t), u) ≤ 0 (17)

and if this inequality is strict we say that the strengthened
Legendre-Clebsch condition is satisfied. In this case the
singular control is called of order 1 and the equation Φ̈∗ ≡ 0
can formally be solved to compute the singular control as a
function of t, x and λ. In order to be admissible, the values
need to lie in the control set [a, b].

Singular controls share many features with boundary con-
trols and, as will be seen below, at junctions between bound-
ary and singular controls in the non-degenerate scenario
the structure of the local synthesis does not change, unlike
for the more complicated type of exit junctions between
boundary arcs and interior bang arcs considered in [7]. We
now consider the following scenario:

(E-ref) Let Γα be an Mα-boundary arc of an extremal
input-trajectory pair Γ = (x∗, u∗) defined over an interval
[τ1, τ2] ⊂ (0, T ) with corresponding multipliers λ∗ and να.
Suppose τ1 and τ2 are the entry- and exit-times, respectively,
and assume there exists an ε > 0 such that the control u∗

is constant on the interval (τ1 − ε, τ1) and is singular on
(τ2, τ2 + ε). For sake of argument suppose u∗(t) ≡ a on
(τ1 − ε, τ1).

(E-boundary) For all times in the closed interval [τ1, τ2]
the boundary control u∗ which keeps Mα invariant, u∗(t) =
uα(t, x∗(t)), takes values in the interior of the control set
and the multiplier ν∗(t) is positive.

(E-singular) There exists a codimension 1 submanifold
S transversal to Mα at (τ2, x∗(τ2)) consisting of graphs
of extremal trajectories corresponding to singular controls
of order 1. The values of the singular controls lie in the
interior of the control set and the strengthened Legendre-
Clebsch condition is satisfied.

This last condition describes the typical scenario for
singular arcs in low dimensions. Under generic conditions,
in n = 2 there exists a single singular arc and for n = 3
there is a surface on which a singular feedback control
can be defined. But in dimensions n ≥ 4 there are more
degrees of freedom in defining the singular arcs. Also note
that by assuming the “singular surface” S is transversal to
Mα it follows that the controls are discontinuous at the
exit junctions and this holds by assumption (E-boundary)
also for the entry-junction. In particular, the multiplier λ∗

in the maximum principle remains continuous at entry and
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exit junctions [9], [14, Prop. 32]. We now construct a local
synthesis around the reference trajectory.

Lemma 4.1: If p∗ = (τ, x∗(τ)) is a point on the singular
surface S, the trajectories x±(t, p∗) corresponding to the
constant controls u+(t, p∗) ≡ b and u−(t, p∗) ≡ a, defined
for t < τ , t sufficiently close to τ , are extremals.

Proof. This is a consequence of the strengthened Legendre-
Clebsch condition. Recall that λ∗ denotes the adjoint variable
along the singular arc and let λ± denote the solutions to the
adjoint equations corresponding to u± with terminal value
λ±(τ) = λ∗(τ). Also define switching functions Φ± using
the multipliers λ±. It then follows from the fact that the
reference arc is singular that Φ̇±(τ) = 0. For the second
derivatives we have that

Φ̈+(τ) = Ψ(τ) + bΞ(τ), Φ̈−(τ) = Ψ(τ) + aΞ(τ), (18)

while for the value u∗(τ) ∈ (a, b) we have

Φ̈∗(τ) = Ψ(τ) + u∗(τ)Ξ(τ) = 0. (19)

Since the strengthened Legendre-Clebsch condition holds,
we have Ξ(τ) < 0, and thus it follows that Φ̈+(τ) < 0
and Φ̈−(τ) > 0. Hence Φ+ is negative and Φ− is positive
for t < τ , t sufficiently close to τ . Thus these trajectories
satisfy the minimum condition (12) over these intervals. �

Since the singular control takes values in the open interval
(a, b), the graphs of the trajectories x±(t, ·) leave S to
opposite sides and thus define a local field of extremals near
the singular surface. As the points on the singular surface
come close to the constraint Mα, in line with our choice of
u− = a as the entry control in (E-ref), the trajectories x+

will need to be terminated as they hit Mα. As in the synthesis
described in [7] these trajectories will not be propagated
further backward, but they are needed to have a field near
the singular surface. The trajectories x− on the other hand
move away from the constraint when run backwards and can
be kept as long as Φ− is positive (and thus no additional
switchings become necessary).

The synthesis around the boundary arc is described in
detail in [7] and [14] and we therefore only briefly summarize
the construction: The synthesis on Mα is given by the flow
corresponding to the unique control uα which makes Mα

invariant. Since Mα and S are transversal, they intersect in a
codimension 1 submanifold Θ = Mα∩S of Mα. Integrating
the system and adjoint equations backward from Θ using
the boundary control uα generates a parameter dependent
multiplier να(t, p̃), p̃ ∈ Θ, which is positive and bounded
away from zero over a compact subset. The positivity of
να implies that the control u− = a satisfies the minimality
condition when integrating u ≡ a backward from (τ, p̃) ∈ D̃

and the corresponding trajectories will remain extremal for
some positive duration δ > 0 independent of the initial
condition. Thus the positivity of the multiplier ν guarantees
that we can integrate the system backward from points of
the constraint manifold Mα using the control u = a and get
extremals. Furthermore, the flow σ̃− consisting of the graphs
of solutions to the differential equation

ẋ = f(t, x) + ag(t, x), (20)

with initial conditions q = (t̃, x(t̃, p̃)), p̃ ∈ Θ, on the
manifold Mα, is everywhere transversal to Mα and thus
it follows from the uniqueness of solutions that the corre-
sponding graphs cannot intersect. This gives the required
local embedding of the arc of Γ defined over the interval
[τ1 − ε, τ1]. The qualitative structure of the synthesis is
summarized in Fig. 1.

0 1 2 3 4 5 6 7 8 9 10

3

4

5

6

7

8

Fig. 1. Local synthesis at a boundary-arc singular-arc junction

V. A QUALITATIVELY EQUIVALENT LOCAL FIELD OF

EXTREMALS NEAR A BOUNDARY-ARC BANG-ARC

JUNCTION

In [7] and [14] we considered the case when a bang arc
Γ that concatenates with a boundary arc at an exit junction
was embedded into a local field of extremals corresponding
to the same control [7, assumption (E3)]. While this is
a non-degenerate situation (for example, it is the typical
situation for problems that arise in mathematical models
for cancer chemotherapy like those considered in [4]), in
general this property need not hold and a situation exactly
as above is another typical scenario. (For example, consider
the standard time-optimal control problem to the origin for
the double integrator, but with constraints on the velocity).
In this simpler case, as in Lemma 4.1 above, a local field of
extremals is constructed which is transversal to the bang arc
Γ by integrating the other constant control backward from the
reference arc Γ. If Γ corresponds to the control u ≡ b, then,
as shown in [7], there exists a bang-bang trajectory which
switches from u ≡ a to u ≡ b at the exit-junction τ and thus
only has a contact point with the constraint. If Φ̇(τ) < 0,
then for a small time a family of bang-bang extremals can
be constructed by integrating u ≡ a backward from Γ by
adjusting the multiplier. The corresponding local synthesis
is qualitatively the same as for a junction with a singular arc
shown in Fig. 1.

Combining the local syntheses described here with the
results in [7] a local field of extremals can be constructed
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around a finite concatenation of interior bang-bang or sin-
gular and boundary arcs. The local optimality of the cor-
responding trajectories can then be shown with a regular
synthesis type argument similar as in [14], but the details
still need to be carried out. Instead, here we illustrate the
immediate applicability of these conditions for a realistic ex-
ample. In fact, this example has motivated the constructions
both here and in [7].

VI. EXAMPLE: MINIMIZATION OF THE BASE TRANSIT

TIME IN SEMICONDUCTOR DEVICES [15]

This construction of a local field of extremals was mo-
tivated by the structure of extremals for the problem of
minimizing the base transit time in bipolar transistors and
we briefly recall this particular application1 [15]. The active
area in bipolar transistors is called base region and the time
needed by the electric charges to cross the base region,
the base transit time τB , is one of the most important
parameters related to the speed of bipolar transistors. The
electric field which moves the charges is induced by tailoring
the distribution of dopants in the base region and this
so-called doping profile becomes a design parameter. The
resulting problem of optimizing the base doping profile is
one of the most well-studied problems in the electronics
literature (see, for example, [18], [19], [20].) It can naturally
be cast in the framework of optimal control theory. Assuming
low-level injunction and neglecting carrier recombination at
the base, two commonly made simplifying assumptions in
modelling, the base transit time τB in bipolar transistors can
be expressed as

τB =

∫ WB

0

1

Dn(x)n0(x)

(∫ x

0

n0(y) dy

)
dx

+
1

n0(WB)vsat

∫ WB

0

n0(x) dx. (21)

In this formula the variable x represents the coordinate for
the base with baselength WB , 0 ≤ x ≤ WB , n0(x) denotes
the minority carrier concentration at x in thermodynamic
equilibrium and Dn(x) denotes the carrier diffusion co-
efficient; vsat is a constant, the saturation velocity of the
electrons. This formula is based on the path-breaking work
of Kroemer [6] on his double-integral relation. The specific
expression (21) given here, which includes a saturation
velocity on the electrons, follows by integration by parts from
a formula which has been derived by Suzuki [18].

In homojunction transistors, the minority carrier concen-
tration n0 is related to the doping concentration NA by the
relation

n0 =
n2

i

NA

(22)

where ni, called the intrinsic carrier concentration, is a
function generally also depending on NA, which can be
determined experimentally. The doping concentration NA(x)
is constrained to lie between minimum and maximum levels,

1The material on semiconductor devices is based on joint work with Paolo
Rinaldi.

0 < NA,min ≤ NA(x) ≤ NA,max. Different models exist
for modelling the dependence of the diffusion coefficient
Dn and the intrinsic carrier concentration n2

i with respect
to the doping concentration NA. In [7] we considered the
case when Dn and n2

i do not depend explicitly on the
independent variable x, but only through their dependence
on the doping concentration NA, i.e. Dn(x) = Dn(NA(x))
and n2

i (x) = n2
i (NA(x)). Except for this and some basic

smoothness conditions, the forms for Dn and n2
i are arbi-

trary. Furthermore, a fixed base-resistance, expressed as an
integral constraint of the form∫ WB

0

C(NA(x))dx = G, (23)

where G denotes the inverse of the fixed base resistance to
be achieved, is added as extra constraint. The function C,
which only depends on the doping profile, generally needs
to be determined experimentally.

Formulating the problem as an optimal control problem,
we take as the control in the problem, u, the space derivative
of the doping profile,

u(x) =
d

dx
NA(x) = N ′

A(x). (24)

Henceforth we use a prime to denote x derivatives. We
assume that u takes values in a compact interval [Umin, Umax]
where −∞ < Umin < 0 < Umax < ∞ and define the states
ξ1, ξ2 and ξ3 as

ξ1(x) =

∫ x

0

n2
i (NA(y))

NA(y)
dy, (25)

ξ2(x) = NA(x), (26)

ξ3(x) =

∫ x

0

C(NA(y))dy. (27)

With this notation the problem of minimizing the base transit
time τB for a fixed base resistance can be reformulated as
to: (T) minimize

τ(u) =

∫ WB

0

ξ1ξ2

Dn(ξ2)n2
i (ξ2)

dx +
ξ1ξ2

vsatn
2
i (ξ2) |(WB)

over all locally bounded Lebesgue measurable functions u :
[0, WB ] → [Umin, Umax] subject to the differential equations

ξ′1(x) =
n2

i (ξ2)

ξ2
, ξ′2(x) = u, ξ′3(x) = C(ξ2) (28)

with initial conditions ξ1(0) = 0, ξ2(0) = NA(0), and
ξ3(0) = 0, prescribed terminal conditions ξ2(WB) and
ξ3(WB) = G, and state-space constraints

0 < ξmin
2 = NA,min ≤ ξ2 ≤ NA,max = ξmax

2 . (29)

It is clear that the constraints are control-invariant sub-
manifolds of relative degree 1 and the invariant controls
are given by uα ≡ 0. In [15] normal extremals given by
concatenations of bang, boundary and singular arcs have
been computed that have the following general structure: (1)
a bang arc corresponding to u = Umax which steers the
system from its initial condition to the upper saturation limit
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NA,max followed by (2) a boundary arc, (3) a singular arc
that steers the system from its upper limit NA,max to the
lower limit NA,min, (4) another boundary arc and (5) a final
portion corresponding to u = Umax which steers the system
to its desired terminal condition. Some of the pieces in this
description may not be present. For example, in practical
situations often ξ2(0) = NA,max and ξ2(WB) = NA(WB)
are taken so that the first and last piece are not present. On the
other hand, it is possible that the singular arc in (3) saturates
at its lower value Umin (this is only possible at the upper
limit NA,max) and then the singular arc needs to be replaced
by a concatenation of a trajectory for u = Umin followed
by the singular arc. In [15] explicit analytical formulas are
given for the singular arc and a system of linear equations
is formulated for the junction times allowing the explicit
determination of extremal trajectories.

Our results above and in [7] provide a complete geometric
analysis of a local field of extremals near such a trajectory
implying its strong local optimality. In this case, it can
be shown that this analysis is globally valid and thus the
extremals computed in [15] are indeed the globally optimal
solutions. We illustrate the synthesis along a typical reference
extremal with saturating singular arc (but only for the base
doping profile NA) in Fig. 2 below. The saturation point is
indicated in the graph with a ‘*’.
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Fig. 2. Example of local synthesis for (T)

VII. CONCLUSION

In many practical problems of engineering or scientific
interest problems with state space constraints arise where
the constraints have strong geometric properties and typi-
cally have boundaries which are manifolds or intersections
of manifolds. Examples include the space shuttle re-entry
problem considered in [2], the problem of minimizing the
base transit time in bipolar transistors [15], or simple models
for optimal control problems in cancer chemotherapy [4].
If the constraints are control-invariant manifolds of relative
degree 1 - in our view a very natural condition - the results

formulated here in conjunction with [7] allow to imbed
a wide class of reference trajectories that have boundary
segments into a local field of extremals. Our assumptions
on the singular surface, however, make this realistic only in
small dimensions. Based on these embeddings the optimality
of the corresponding solutions in the strong sense, i.e. in
C([0, T ]), can in fact be proven.
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