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Abstract— This paper addresses the problem of robust sta-
bility analysis for a class of Markovian jump nonlinear systems
subject to polytopic-type parameter uncertainty. A condition for
robust local exponential mean square stability in terms of linear
matrix inequalities is developed. An estimate of a robust domain
of attraction of the origin is also provided. The approach
is based on a stochastic Lyapunov function with polynomial
dependence on the system state and uncertain parameters. A
numerical example illustrates the proposed result.

I. INTRODUCTION

Over the last decade, systems with Markovian jumps
have been attracting an increasing attention. This class of
systems is very appropriate to model plants whose structure
is subject to random abrupt changes due to, for instance,
changes of the operating point, random component failures,
abrupt environment disturbance, etc. A number of control
analysis and synthesis problems related to these systems has
been analysed by several authors (see, e.g. [1], [2], [4]-[8],
[11], [13]-[16], [18], [19], [21] and the references therein).
In particular, robust mean square stability of continuous-time
Markovian jump systems with uncertain parameters has been
studied in, e.g. [1], [2] and [4]. A common feature of the
existing methods of robust stability analysis is that they deal
with either linear systems, or linear systems with unknown
nonlinearities, such as Lipschitz-type and norm-bounded,
which are treated as fictitious uncertainties. In addition, they
are based on Lyapunov functions which are independent of
the system uncertain parameters. Note that, since a common
Lyapunov function is used to ensure stability for every
admissible parameters value, these methods, referred to as
uncertainty-independent, can be quite conservative. In spite
of these developments, to the authors’ knowledge, to-date
the theory of robust stability analysis of Markovian jump
nonlinear systems has not yet been fully addressed.

On the other hand, very recently a promising linear
matrix inequality (LMI) approach of robust stability analysis
and control for a class of nonlinear uncertain systems has
been developed in [9] and [10]. This approach is based
on a differential-algebraic representation of the system and
employs a Lyapunov function, which is polynomial on the
system state and uncertain parameters. In this paper, we
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extend the work of [10] to the context of Markovian jump
nonlinear systems.

The purpose of this paper is to investigate the robust
stability of a class of nonlinear systems with Markovian
jumping parameters and subject to polytopic-type parameter
uncertainty. An LMI method of robust local exponential
mean square stability analysis is developed based on a
stochastic Lyapunov function with polynomial dependence
on the system state and uncertain parameters. Moreover, an
estimate of a domain of attraction (DOA) inside a given
polytopic region of the state-space containing the origin is
also provided. The method can handle systems with rational
functions of the state and uncertain parameters.

This paper is organized as follows. Section II deals with
the class of systems considered in the paper and the problem
to be addressed. Section III presents some preliminary results
needed to obtain an LMI solution to the problem. Section
IV develops the stability analysis method, which is then
illustrated by a numerical example in Section V. Finally,
concluding remarks are presented in Section VI.

Notation. R
n denotes the n-dimensional Euclidean space,

R
n×m is the set of n×m real matrices, ‖ ·‖ is the Euclidean

vector norm, 0n and 0m×n are the n×n and m×n matrices
of zeros, In is the n×n identity matrix, diag{· · ·} denotes a
block-diagonal matrix, and Tr [· · · ] stands for matrix trace.
For a real matrix S, S′ denotes its transpose, and S > 0 (S < 0)
means that S is symmetric and positive-definite (negative-
definite). For two polytopes A ⊂ R

n and B ⊂ R
m, the

notation A ×B means that (A ×B) ⊂ R
(n+m) is a meta-

polytope obtained by the cartesian product and V (A ×B)
denotes the set of all vertices of A × B. Mathematical
expectation will be denoted by E[ · ].

II. PROBLEM STATEMENT

Fix an underlying probability space (Ω,F , IP) and con-
sider the stochastic system:

ẋ(t) = f (x(t),δ ,st ), x(0) = x0 ∈ X (1)

where x(t) ∈ R
n is the state vector, δ ∈ R

nδ is a vector
of uncertain constant parameters, {st} is a homogeneous
Markov process with right continuous trajectories and taking
values on the finite set Ξ = {1,2, . . . ,σ}, and X ⊆ R

n is a
given polytopic region that contains the origin and represents
the domain of admissible initial states, x0, to be considered
in the stability analysis. f (x,δ ,st ) is a vector function that
for each possible value of st = i, i ∈ Ξ is given by

fi(x,δ ) := f (x,δ , i)
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where fi(x,δ ) is a continuous and bounded vector function of
(x,δ ) for all (x,δ ) of interest. Moreover, the Markov process
{st} is assumed to have a stationary transition rate matrix
Λ = [λi j], i, j = 1, . . . ,σ , such that

IP{st+h = j |st = i} =
{

λi jh + o(h), i �= j
1 + λiih + o(h), i = j

where h>0, limh↓0
o(h)

h = 0, λi j ≥ 0 is the transition rate from
the state i to j, i �= j, and

λii = −
σ

∑
j=1
j �=i

λi j. (2)

It is supposed that system (1) satisfies the following
assumptions:
A1 The uncertain parameter vector δ belongs to a given

polytopic domain ∆.
A2 The origin x = 0 is an equilibrium point for all st ∈ Ξ

and δ ∈ ∆.
In this paper it is assumed that system (1) can be described

by the following differential-algebraic representation (DAR):{
ẋ(t) = A1(st)x(t)+ A2(st)π(x(t),δ ,st )

0 = Ω1(x(t),δ ,st )x(t)+ Ω2(x(t),δ ,st )π(x(t),δ ,st )
(3)

where π(x,δ ,st )∈R
nπ is an auxiliary nonlinear vector func-

tion of (x,δ ) for each possible value of st ∈ Ξ representing
the nonlinear terms in f (x,δ ,st ), A1(st) and A2(st) are
constant matrices for each possible value of st = i, i ∈ Ξ,
denoted by A1i and A2i, respectively, and Ω1(x,δ ,st ) ∈R

m×n

and Ω2(x,δ ,st )∈ R
m×nπ are affine matrix functions of (x,δ )

for each possible value of st = i, i ∈ Ξ, which are denoted by

Ω1i(x,δ ) := Ω1(x,δ , i), Ω2i(x,δ ) := Ω2(x,δ , i)

where Ω1i(x,δ ) and Ω2i(x,δ ), i = 1, . . . ,σ are affine matrix
functions of (x,δ ).

Note that a broad class of Markovian jump nonlinear
systems can be represented in the form (3), such as systems
with rational nonlinearities as well as some trigonometric
nonlinearities. Indeed, it can be shown that (3) includes the
linear fractional representation of [12], and as such it can
model the whole class of systems with rational functions of
the state and uncertain parameters without singularities at the
origin; for further details see [9] and [10].

In addition to A1 and A2, we shall adopt the following
assumption to guarantee that the DAR (3) is well defined
and thus, the uniqueness of the solution x is ensured.
A3 The matrix function Ω2i(x,δ ), i = 1, . . . ,σ has full

column-rank for all (x,δ ) belonging to X ×∆.
To illustrate the DAR (3), consider a scalar system with

f1(x) = a0x + a1x3; f2(x) = − c0x
m(x)

, m(x) = c1 + x + c2x2.

The above system can be written in the DAR (3) with:

A11 = a0, A21 = [0 a1 ],

π(st =1) =
[

x2

x3

]
, Ω11 =

[
x
0

]
, Ω21 =

[−1 0
x −1

]
,

A12 = 0, A22 = [−c0 0 ]

π(st =2) =

⎡
⎣ x

m(x)

x2

m(x)

⎤
⎦, Ω12 =

[−1
0

]
, Ω22 =

[
c1 + x c2x
−x 1

]
.

Note that the matrix Ω21 is nonsingular for all x and the
Assumption A3 for Ω22 is equivalent to m(x) �= 0, which is
a regularity condition for f2(x).

This paper addresses the problem of robust local stability
analysis of the equilibrium point x = 0 of the system (3).
The notion of stochastic stability used in this paper is in the
mean square sense. In the sequel we introduce the following
concepts of local exponential mean square stability for the
system (3).

Definition 1: System (3) with a known parameter vector
δ is locally exponentially mean square stable, if for any
initial condition x0 ∈ X and s0 ∈ Ξ, there exist positive
scalars α and β such that the solution x(t) to (3) satisfies

E[‖x(t)‖2 ] ≤ β‖x0‖e−αt , ∀t > 0.

Definition 2: System (3) with an uncertain δ ∈ ∆ is
robustly locally exponentially mean square stable, if (3) is
locally exponentially mean square stable for every δ ∈ ∆.

This paper is aimed at developing an LMI based condition
for robust local exponential mean square stability of the
system (3) as well as to provide an estimate of a robust
domain of attraction of the origin, Da, defined as a subset
of X such that for any x0 ∈ Da and s0 ∈ Ξ, then E[x(t) ]∈
Da,∀ t ≥ 0 and limt→∞ E[x(t) ] = 0 for every δ ∈ ∆.

We conclude this section by recalling a version of Finsler’s
lemma which will be used in this paper.

Lemma 1 (Finsler’s lemma): ([3]) Given matrices Ψi =
Ψ′

i ∈ R
n×n and Hi∈ R

m×n, i = 1, . . . ,ν , then

x′iΨixi > 0,∀xi∈ R
n : Hixi = 0, xi �=0; i = 1, . . . ,ν

if and only if there exist matrices Li ∈ R
n×m, i = 1, . . . ,ν ,

such that

Ψi + LiHi +(LiHi)′ > 0, i = 1, . . . ,ν.

III. PRELIMINARY RESULTS

This section presents some basic results needed to derive
an LMI based method of robust exponential mean square
stability analysis for the Markov jump nonlinear system
(3). We shall introduce a parameter-dependent stochastic
Lyapunov function candidate and some related properties.

Consider the following Lyapunov function candidate

V (x,δ ,st ) = x′P(x,δ ,st )x (4)

where P(x,δ ,st) is a positive definite matrix function of
(x,δ ) for each possible value of st = i, i ∈ Ξ, given by
Pi(x,δ ) = P(x,δ , i). In order to obtain an LMI based
stability condition, the following structure is adopted for the
matrix P(x,δ ,st ):

P(x,δ ,st ) =
[

Θ(x,δ ,st )
In

]′
P(st)

[
Θ(x,δ ,st )

In

]
(5)
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where Θ(x,δ ,st ) ∈ R
nθ×n, i = 1, . . . ,σ are given polynomial

matrix functions of (x,δ ) for each possible value of st =i, i∈
Ξ, denoted by Θi(x,δ ), and P(st) = Pi, when st = i, i ∈ Ξ,
with Pi = P′

i being constant matrices to be determined.
The matrices Θi(x,δ ) define the Lyapunov function com-

plexity. In general, as complex as these matrices are, less
conservative will be the results at the cost of extra computa-
tional effort. From the authors’ experience, a good compro-
mise between conservativeness and computational effort is
achieved by choosing Θi(x,δ ) as an affine matrix function1

of (x,δ ), namely

Θi(x,δ ) =
n

∑
k=1

Tik xk +
nδ

∑
k=1

Sik δk +Ui (6)

where Tik ,Sik and Ui are constant matrices having the same
dimensions as Θi(x,δ ), and xk and δk are the components of
x and δ , respectively.

In view of (5), V (x,δ ,st ) can be also written as

V (x,δ ,st ) = ξ ′P(st)ξ (7)

where ξ is an auxiliary vector defined by

ξ =
[

Θ(x,δ ,st )
In

]
x ∈ R

κ , κ = nθ + n . (8)

Note that in view of (6) and the DAR (3), it can be readily
established that ξ satisfies:

ξ̇ = Θ̂(x,δ ,st )[A1(st)x + A2(st) ]π (9)

0 = H1(x,δ ,st )ξ (10)

where
H1(x,δ ,st ) =

[
I −Θ(x,δ ,st)

]
(11)

Θ̂(x,δ ,st ) =
[

Θa(x,δ ,st )
In

]
(12)

Θa(x,δ , i) = Θ(x,δ , i)+
n

∑
k=1

Tik xek (13)

with ek denoting the k-th row of In.
It should be remarked that in (7), ξ is not an arbitrary

vector in R
κ . Indeed, ξ is required to satisfy the algebraic

constraints of (10).
Let A be the infinitesimal generator of the Markov process

{(x(t),st), t ≥ 0}. Considering (4), (5), (8) and (9), it can
be ready obtained that (see, e.g. [17]):

A ·V(x,δ ,st ) = 2ξ ′P(st)Θ̂(x,δ ,st )[A1(st )x + A2(st)π ]

+ ξ ′
σ

∑
j=1

λst jPjξ . (14)

Introducing the vector

ζ =
[

(Θ(x,δ ,st )x)′ x′ π ′ ]′
, (15)

it follows that (14) can be rewritten as

A ·V (x,δ ,st ) = ζ ′Γ(x,δ ,st )ζ (16)

1The reader can refer to [20] for the general case.

where

Γ(x,δ ,st ) = N′
1P(st)Θ̂(x,δ ,st )Â(st)N2

+ [N′
1P(st)Θ̂(x,δ ,st )Â(st )N2]′ +

σ

∑
j=1

λst jN
′
1PjN1 (17)

Â(st) =
[

A1(st ) A2(st )
]

(18)

N1 =
[

Iκ 0κ×nπ

]
, N2 =

[
0n×nθ In 0n×nπ
0nπ×nθ 0nπ×n Inπ

]
. (19)

Note that N1ζ = ξ and N2ζ = [x′ π ′ ]′.
Finally, observe that the vector ζ in (16) is not an arbitrary

vector in R
(κ+nπ ). In fact, ζ is coupled with Γ(x,δ ,st ) via

the vectors x and δ and is such that

H2(x,δ ,st )ζ = 0,

H2(x,δ ,st ) =
[

I −Θ(x,δ ,st) 0
0 Ω1(x,δ ,st ) Ω2(x,δ ,st )

]
.

IV. MAIN RESULTS

First, we shall develop LMI conditions to ensure that
V (x,δ ,st ) is positive definite and A ·V (x,δ ,st ) is negative
definite for each possible value of st ∈ Ξ. In view of (7) and
(16), the latter requirements lead to inequalities of the form

w(x,δ )′T (x,δ )w(x,δ ) > 0, ∀(x,δ ) ∈ X ×∆ (20)

where w(x,δ ) ∈R
q is affine in δ and quadratic in x, whereas

T (x,δ ) ∈R
q×q depends affinely on x and δ . Notice that (20)

could be tested via the following LMIs:

T (x,δ ) > 0, ∀(x,δ ) ∈ V (X ×∆).

However, the above is conservative because: (a) w is not an
arbitrary vector in R

q; (b) w and T are coupled.
A way to reduce the above conservatism is to use Finsler’s

lemma together with a linear annihilator of x, namely, a
matrix N (x) which is a linear function of x and such that
N (x)x = 0. More specifically, if Nw(x,δ ) is a full row-rank
matrix with affine dependence on x and δ and such that

Nw(x,δ )w(x,δ ) = 0, ∀(x,δ ) ∈ X ×∆

then by Lemma 1, (20) holds if

T (x,δ )+LNw(x,δ )+Nw(x,δ )′L′ > 0, ∀(x,δ ) ∈ V (X ×∆)

where L is a multiplier matrix to be determined.
It should be noted that the matrix representation of a linear

annihilator of x, N (x), is not unique. For instance, given
x = [x1 · · · xn ]′ ∈ R

n, a natural choice of N (x) ∈ R
(n−1)×n

is as below:

N (x)=

⎡
⎢⎢⎢⎣

x2 −x1 0 0 · · · 0 0
0 x3 −x2 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · xn −xn−1

⎤
⎥⎥⎥⎦.

The above procedure will be used to obtain a solution
to the robust local stability analysis problem in terms of
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state- and parameter-dependent LMIs as presented in the next
theorem. To this end, first introduce the following matrices:

N1i(x,δ ) =
[

Iκ −Θi(x,δ )
0 N (x)

]
, i = 1, . . . ,σ (21)

N2i(x,δ ) =

⎡
⎣ 0 N (x) 0

Iκ −Θi(x,δ ) 0
0 Ω1i(x,δ ) Ω2i(x,δ )

⎤
⎦, i = 1, . . . ,σ

(22)
where N (x) is a linear annihilator of x. Note that N1iξ = 0
and N2iζ = 0 whenever st = i. Moreover, the role of the
matrix N (x) is to decrease the conservatism of testing state-
dependent LMIs, and it was first used in [20].

Theorem 1: Consider the system (3) satisfying A1-A3 and
let X and ∆ be given polytopic regions. Let Θi(x,δ ), i =
1, . . . ,σ be given affine matrix functions of (x,δ ). Suppose
that there exist matrices Pi = P′

i , Li and Mi, i = 1, . . . ,σ
satisfying the following LMIs:

Pi + LiN1i(x,δ )+N1i(x,δ )′L′
i > 0, ∀(x,δ ) ∈ V (X ×∆),

i = 1, . . . ,σ (23)

Γi(x,δ )+ MiN2i(x,δ )+N2i(x,δ )′M′
i < 0,

∀(x,δ ) ∈ V (X ×∆), i = 1, . . . ,σ (24)
where

Γi(x,δ ) = N′
1PiΘ̂(x,δ , i)ÂiN2 +[N′

1PiΘ̂(x,δ , i)ÂiN2]′

+
σ

∑
j=1

λi jN
′
1PjN1 (25)

and Âi = Â(st) when st = i. Then, the system (3) is robustly
locally exponentially mean square stable.

Proof. First, note that if the LMIs (23) and (24) are
feasible, then, by convexity, they are also satisfied for all
(x,δ ) ∈ X ×∆.

Since the inequality (23) is strict, there exists a sufficiently
small scalar β > 0 such that

Pi + LiN1i(x,δ )+N1i(x,δ )′L′
i > β N′

3N3, ∀(x,δ ) ∈ X ×∆,

i = 1, . . . ,σ
where

N3 =
[

0n×nθ In
]
.

Note that for ξ as in (8), N3ξ = x. Hence, pre- and post-
multiplying the above inequality by ξ ′ and ξ , respectively,
and considering (7), leads to

V (x,δ , i) > β‖x‖2, ∀(x,δ ) ∈ X ×∆, i = 1, . . . ,σ .

On the other hand, since (x,δ ) belongs to a polytope, there
exist scalars γi > 0, i = 1, . . . ,σ such that

V (x,δ , i) ≤ γi‖x‖2, ∀(x,δ ) ∈ X ×∆, i = 1, . . . ,σ . (26)

Next, (24) implies that there exist sufficiently small scalars
εi > 0, i = 1, . . . ,σ such that

Γi(x,δ )+ MiN2i(x,δ )+N2i(x,δ )′M′
i < −εiN

′
4N4,

∀(x,δ ) ∈ X ×∆, i = 1, . . . ,σ
where

N4 =
[

0n×nθ In 0n×nπ

]
.

Since for ζ as in (15), N4ζ = x and N2iζ = 0 when st = i,
pre- and post-multiplying the latter inequality by ζ ′ and ζ ,
respectively, and considering (16), implies that

A ·V (x,δ , i) <−εi‖x‖2, ∀(x,δ )∈X ×∆, i = 1, . . . ,σ . (27)

Therefore, considering (26) and (27), we have

A ·V (x,δ , i)
V (x,δ , i)

< −α, ∀(x,δ ) ∈ X ×∆, x �= 0, i = 1, . . . ,σ

where α := mini∈Ξ{εi/γi }.
Applying Dynkin’s formula [17] and the Gronwall-

Bellman’s lemma to the latter inequality, similarly as in the
proof of Theorem 1 in [16], it follows that for t ≥ 0:

E[V (x,δ ,st )|x0,s0 ] ≤V (x0,δ ,s0)e−αt, ∀x0 ∈ X , ∀s0 ∈ Ξ
(28)

and for every δ ∈ ∆, which implies that the system (3) is
robustly locally exponentially mean square stable. ∇∇∇

Theorem 1 provides an LMI condition for robust local
exponential mean square stability of the origin of uncertain
Markovian jump systems with rational nonlinearities, over a
given polytopic region of the state-space. The proposed con-
dition is based on a parametric stochastic Lyapunov function
which is a 4th-order polynomial in the state variables and
depends quadratically on the system uncertain parameters.

In the case of a completely known Markov jump linear
system, namely for a system described by

ẋ(t) = A(st)x(t) (29)

where {st} is a Markov process as in system (1) and A(st) is a
known constant matrix for each possible value of st =i, i∈Ξ,
denoted by Ai, Theorem 1 turns out to be equivalent to a well
known necessary and sufficient condition for exponential
mean square stability as below:

Lemma 2: ([16]) System (29) is exponentially mean
square stable if and only if there exist matrices Xi >0, i=
1, . . . , σ satisfying the following LMIs:

XiAi + A′
iXi +

σ

∑
j=1

λi jXj < 0, i = 1, . . . ,σ . (30)

Let the system (29) be rewritten in the DAR form (3) with:

π = x, A1i = Ai, A2i = 0n, Ω1i = In, Ω2i =−In, i = 1, . . . ,σ .
(31)

Then, we have the following result.

Lemma 3: The system (29) together with the DAR form
(3) with (31) is exponentially mean square stable if and
only if there exist matrices Pi = P′

i , Li and Mi, i = 1, . . . ,σ
satisfying the LMIs (23) and (24) with Θi = 01×n and

Li =
[

εi 0
0 0n

]
, Mi =

⎡
⎣ 0 −αi 0

0 0 0
0 0 βiIn

⎤
⎦, Pi =

[
0 0
0 Qi

]
,

i = 1, . . . ,σ (32)

where Qi ∈R
n×n, εi and αi are arbitrary positive scalars, and

βi is a sufficiently small positive scalar.
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Proof. With the matrices Li, Mi, Pi and Θi as above and
the DAR of (31), it can be readily verified that the left-hand
side of (23) and (24), denoted by Φi and Ψi, respectively,
become:

Φi =
[

2εi 0
0 Qi

]
, Ψi = J′

⎡
⎣ −2αi 0 0

0 −2βiIn βiIn

0 βiIn ϒi

⎤
⎦J (33)

where

ϒi = QiAi + A′
iQi +

σ

∑
j=1

λi jQ j, J =

⎡
⎣ 1 0 0

0 0 In

0 In 0

⎤
⎦ .

Finally, applying Schur’s complement and considering that
βi is arbitrary small, it follows from (33) that the conditions
Φi > 0 and Ψi < 0, i = 1, . . . ,σ are equivalent to

Qi > 0, ϒi < 0, i = 1, . . . ,σ
which concludes the proof. ∇∇∇

A. DOA Estimate
In the sequel, we shall introduce an estimate of the domain

of attraction Da, which can be obtained by solving an LMI
problem. First, under the assumption that V (x,δ ,st ) proves
the local stability of system (3) over X ×∆, let the regions

Ri = {x ∈ R
n : V (x,δ , i) ≤ 1, ∀δ ∈ ∆} , i = 1, . . . ,σ (34)

subject to the constraint Ri ⊂ X , ∀δ ∈ ∆. Note that in view
of (28), to obtain an estimate of the DOA, one could consider
the intersection R of all Ri, namely

R :=
⋂
i∈Ξ

Ri.

The motivation for this estimate is that R is a posi-
tively invariant set, in the sense that if x0 ∈ R, then
E[V (x(t),δ , i)|x0,s0 ] ≤ 1, for all t > 0, δ ∈ ∆ and s0, i ∈ Ξ.

As the set R is, in general, non-convex, its computation
may be intractable. To overcome this problem, we consider
the following DOA estimate

R̃ := {x ∈ R
n : Ṽ (x,δ ) ≤ 1, ∀ δ ∈ ∆} (35)

where Ṽ (x,δ ) is chosen such that R̃ ⊆ Ri, ∀ i ∈ Ξ and R̃
can be obtained in a convex way. It this paper, we shall adopt

Ṽ (x,δ ) = x′P̃(x,δ )x = ξ̃ ′P̃ξ̃ (36)

with P̃ = P̃′ ∈ R
(κσ)×(κσ) and

P̃(x,δ ) = Θ̃(x,δ )′P̃Θ̃(x,δ ), ξ̃ =
[

ξ ′
1 . . . ξ ′

σ
]′

Θ̃(x,δ ) =
[

(Θ̃1(x,δ ))′ . . . (Θ̃σ (x,δ ))′
]′

Θ̃i(x,δ ) =
[

Θi(x,δ )′ I
]′
, ξi = Θ̃i(x,δ )x, i = 1, . . . ,σ

and subject to the constraints:

ξ̃ ′P̃ξ̃ − ξ ′
i Piξi > 0, ∀(x,δ ) ∈ X ×∆, i = 1, . . . ,σ . (37)

Note that (37) ensures that R̃ ⊆ Ri, i = 1, . . . ,σ .
Next, the inclusion Ri ⊂X will be expressed in terms of

matrix inequalities (see [3] for further details). To this end,
first the polytopic region X is recast as a set of LMIs:

X =
{

x ∈ R
n : c′kx ≤ 1, i = 1, . . . ,ne

}
(38)

where ck are given constant vectors defining the ne edges of
X . Hence, Ri ⊂ X can be described by the conditions:

2−2c′kx ≥ 0, ∀ x ∈ R
n : x′P i(x,δ )x−1 ≤ 0, ∀δ ∈ ∆. (39)

Since x′P i(x,δ )x = ξ ′Piξ , by applying the S -procedure
[3] to (39) leads to the following sufficient conditions for
(39) to hold, or equivalently, Ri ⊂ X :

ξ ′
a Πik ξa ≥ 0, k = 1, . . . ,ne, i = 1, . . . ,σ (40)

where

ξa =
[

1
ξ

]
, Πik =

[
1 c′ak

cak Pi

]
, cak =

[
0nθ×1

−ck

]
. (41)

The next theorem deals with the DOA estimate R̃. A way
to maximize the size of R̃ is to minimize Tr{P̃(x,δ )},
which is a non-convex problem. Alternatively, by considering
(36) and Lemma 1, we shall minimize Tr{P̃+F ˜N + ˜N ′F ′},
where F is a multiplier matrix to be determined and ˜N is
such that ˜N ξ̃ = 0 and given by:

˜N (x,δ ) = diag{N11(x,δ ), . . . ,N1σ (x,δ )}. (42)

Theorem 2: Consider the system (3) satisfying A1-A3 and
let X and ∆ be given polytopic regions. Let Θi(x,δ ) be given
affine matrix functions of (x,δ ). Suppose that there exist
matrices P̃=P̃′, F , Pi=P′

i, Li, Mi, Gi and Ki j, i=1, . . . ,σ , j =
1, . . . ,ne, and a scalar η solving the following LMI problem:

minimize η , subject to (23), (24) and

η −Tr{P̃+ F ˜N + ˜N ′F ′} > 0 (43)

P̃+ F ˜N + ˜N ′F ′ > 0 (44)

P̃− Ñ′
i PiÑi + Gi ˜N + ˜N ′G′

i > 0, ∀ i ∈ Ξ (45)

Πik + Ki jN3i +N ′
3iK

′
i j > 0, ∀ i ∈ Ξ, j = 1, . . . ,ne (46)

for all (x,δ )∈ V (X×∆), where Ñi is such that Ñiξ̃ = ξi and

N3i(x,δ ) =
[

x I
0 N1i(x,δ )

]
, I =

[
0n×nθ −In

]
. (47)

Then, the set R̃ defined by (35)-(37) is such that for any
initial state x0 ∈ R̃ and s0 ∈ Ξ, we have that E[x(t) ]∈ R̃,
∀t > 0 and limt→∞ E[x(t) ] = 0, for every δ ∈ ∆.

Proof. First, (23) and (24) imply that V (x,δ ,st ) is a
Lyapunov function for the system (3) inside X ×∆.

Since N3iξa = 0 when st = i, pre- and post-multiplying
(46) by ξ ′

a and ξa, respectively, leads to (40), which implies
Ri ⊂X , ∀ i ∈ Ξ. Next, as ˜N ξ̃ =0, pre- and post-multiplying
(45) by ξ̃ ′ and ξ̃ , respectively, leads to (37) and thus R̃ ⊆
Ri, ∀ i ∈Ξ. Therefore, R̃ is a positively invariant set. Finally,
the above optimization minimizes Tr{P̃+ F ˜N + ˜N ′F ′}.

V. AN ILLUSTRATIVE EXAMPLE

Consider a Markovian jump system as in (1) with two
operating modes described by:

f1(x) =
[−x1 + x3

1 + 0.5x2

−0.5x1 − x2 + x3
2

]
, f2(x) =

[
x1 + 0.5x3

1
x1 −2.3x2 + 0.5x3

2

]
,

Λ =
[ −3 3

6 −6

]
. (48)
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Notice that the system (48) becomes unstable as the mag-
nitude of the initial state x1(0) or/and x2(0) increases. Thus,
the equilibrium point x = 0 is not globally exponentially
mean square stable. Hence, we shall bound the state-space
by the following parameterized polytope:

X (ρ) = {x : |xi| ≤ ρ , i = 1,2} .

System (48) can be rewritten in the differential-algebraic
form (3) with π = [x2

1 x2
2 x3

1 x3
2 ]′ and

A11 =
[ −1 0.5
−0.5 −1

]
, A12 =

[
1 0
1 −2.3

]
,

A21 =
[

0 0 1 0
0 0 0 1

]
, A21 =

[
0 0 0.5 0
0 0 0 0.5

]
,

Ω1i(x)=

⎡
⎢⎢⎣

x1 0
0 x2

0 0
0 0

⎤
⎥⎥⎦, Ω2i(x)=

⎡
⎢⎢⎣
−1 0 0 0
0 −1 0 0
x1 0 −1 0
0 x2 0 −1

⎤
⎥⎥⎦, i=1,2

Theorem 1 is applied to the above system with

N (x) =
[

x2 −x1
]
, Θi(x) =

[
x1 0 0
0 x1 x2

]′
, i=1,2.

By a linear search on ρ , we get from Theorem 1 that the
maximum ρ that ensures the local exponential mean square
stability of the origin over X is ρ = 1.10. For the same
ρ , Theorem 2 is then applied leading to the DOA estimate
shown in Figure 1.
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Fig. 1. Domain of Attraction Estimate.

VI. CONCLUSIONS

This paper has investigated the robust stability of a class
Markovian jump nonlinear systems subject to polytopic-
type parametric uncertainty. The system is assumed to be
described by a differential-algebraic representation, which
can model a broad class of Markovian jump nonlinear
systems, such as the whole class of systems with rational
functions of the state and uncertain parameters as well as
some trigonometric nonlinearities. An LMI method has been

developed for assessing the robust local exponential mean
square stability of the origin over a given polytopic region
X of the state-space and to obtain an estimate of a domain
of attraction of the origin inside X . The proposed method is
based on a stochastic Lyapunov function which is a 4th-order
polynomial in the state variables and depends quadratically
on the system uncertain parameters.
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