
On Two-Stage Portfolio Allocation Problems
with Affine Recourse

Giuseppe Calafiore and Marco C. Campi

Abstract— In this paper we propose an approach based on
affine parameterization of the recourse policy for the solution
of multi-stage optimization problems that arise in the context
of allocation of financial portfolios over multiple periods.
Such problems are typically dealt with using the multi-stage
stochastic programming paradigm, which has the drawback of
being computationally intractable. Here, we show that imposing
an affine structure to the recourse policy results in an explicit
and exact problem formulation, which is efficiently solvable by
means of interior point methods for convex second order cone
programs.

I. INTRODUCTION

The fundamental goal of portfolio theory is to help the
investor in allocating money among different securities in
an “optimal” way. In the classical Markowitz framework,
[11], the selection is guided by a quantitative criterion that
considers a tradeoff between the return of an investment and
its associated risk. Specifically, in the Markowitz approach,
each asset is described by means of its return over a fixed
period of time (e.g. one month), and the vector of asset
returns is assumed to be random, with known expectation and
covariance matrix. An optimal portfolio of assets is hence
selected by maximizing the expected return at the end of
the period, subject to the constraint that the total risk (as
expressed by the portfolio variance, or “volatility”) is below
some given level. From the computational side, this classical
paradigm results in a quadratic programming problem, which
may be efficiently solved numerically on a computer.

However, a drawback of this basic approach is that it is
tuned to a single period, and it can therefore provide short-
sighted strategies of investment, if applied repeatedly over
many subsequent periods. To overcome these difficulties,
one may formulate from the beginning the problem over a
horizon composed of multiple periods (T = # of periods >
1), with the ultimate goal of maximizing the portfolio return
at the final stage T , by rebalancing it at the intermediate
stages. The most widely applied and studied multi-period
allocation problems are those that consider only two periods.
In this paper we also concentrate on this case, but the
proposed technique can be extended to the general multi-
period case.

In a two-period investment setup, the investor takes some
action at the initial stage. Then, he holds the portfolio for
the first period of time, and at the end of this period the
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return of his investment is dictated by a random outcome.
A recourse decision can then be made in the second stage,
to compensate for any bad effects that might have been
experienced as a result of the first-stage decision. The
mainstream computational model to solve such kind of recur-
sive decision problems is provided by multi-stage stochastic
programming, see e.g. [3]. While stochastic programming
may provide a conceptually sound framework for posing
multi-stage decision problems, from the computational side it
results in numerical optimization problems that are very hard
to solve, see e.g. [12]. Various numerical techniques have
been proposed in the literature to approximately solve multi-
stage stochastic programs, which eventually require the use
of a large number of random samples of different possible
scenarios, [6]. In the specific context of portfolio allocation,
a classical solution method is based on Benders decompo-
sition, and it is proposed in [5]. One key difficulty in two-
stage optimization comes from the fact that the second stage
decision is actually a decision rule, or “policy,” that defines
which second-stage action should be taken in response to
each random outcome in the first period. These last random
outcomes are generally infinite (if the returns over the first
period are, as it is commonly assumed, continuous random
variables), and also the policy space is infinite dimensional.

In this paper, we propose to consider the second-stage
recourse action to be prescribed by a policy with fixed
structure. In particular, we shall consider recourse actions
that are affine functions of the first period returns, where the
coefficients of these functions become the decision variables
of our portfolio allocation problem. While with this position
we loose some generality, since the policy is now restricted to
the affine functions class, we also gain decisive advantages.
First, we show that it is possible to express explicitly the
expected value and variance of the portfolio at any stage,
as a function of the decision variables. Furthermore, the
optimization objective and constraints result to be convex
in these variables, and therefore the optimal strategy, under
the affine recourse hypothesis, can be found exactly and
numerically efficiently by means of standard codes for convex
second order cone (SOC) programming. Second, the optimal
recourse parameters returned by the algorithm have a simple
and insightful interpretation as nominal actions and sensitiv-
ities, as further discussed in Remark 1. Finally, the proposed
technique can be extended to the general case of problems
with an arbitrary number of stages.

The idea of using affine recourse has been inspired by
a similar technique recently proposed in [2] in the context
of robust optimization (i.e. optimization problems where
the data is subject to deterministic unknown-but-bounded
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uncertainties), where the authors impose on some of the
variables an affine dependence on the data, so that they can
“tune themselves to varying data.” Also, the affine recourse
is reminiscent of the classical linear feedback laws used for
control of dynamical systems.

II. PRELIMINARIES

A. Basic definitions

Let pi(k) denote the price of a certain security “i” at time
k, where k denotes the time instant at the end of the k-th
period of time of fixed length ∆ (∆ may be for instance one
day, a month, or a year). The (simple) return of an investment
in security i over the period of time [k − 1, k] is defined as

ri(k) .=
pi(k) − pi(k − 1)

pi(k − 1)
=

pi(k)
pi(k − 1)

− 1.

The one-period gain (or factor return) of an investment in
security i is gi(k) .= pi(k)/pi(k − 1) = ri(k) + 1.

If p(k) denotes a collection of prices of n assets: p(k) =
[p1(k) p2(k) · · · pn(k)]T , the return and gain vectors are
defined accordingly. The asset gains g(k) are assumed to be
random quantities that follow a given stochastic process.

B. Portfolio dynamics

Let xi(k), i = 1, . . . , n denote the Euro value of an
investor’s holdings in asset i, at a certain time k. Vector
x(k) .= [x1(k) · · · xn(k)]T represents the investor portfolio
at time k. The total wealth at time k is w(k) = 1T x(k),
where 1 represents a vector of ones of suitable dimension.

Let x(0) be the portfolio composition at some initial
time k = 0. At k = 0, we have the opportunity of
conducting transactions on the market and therefore adjusting
the portfolio by increasing or decreasing the amount invested
in each asset. We denote by u(0) .= [u1(0) · · · un(0)]T the
Euro amount transacted in each asset, with ui > 0 for buying,
and ui < 0 for selling. Just after transactions, the adjusted
portfolio is x+(0) = x(0) + u(0). Clearly, constraints exist
on the portfolio holdings and on the adjustment vector u(0).
These constraints are dictated both by market regulations and
by the investor (exposure to risk, etc.). We shall discuss in
more detail portfolio constraints in Section III-A.

Suppose now that the portfolio is held unchanged for one
fixed period of time ∆. At the end of this first period, the
portfolio composition is

x(1) = G(1)x+(0) = G(1)x(0) + G(1)u(0),

where G(1) = diag(g1(1), . . . , gn(1)) is a diagonal matrix
of the asset gains over the period from time 0 to time ∆.
At the end of this first time period, we perform again an
adjustment of the portfolio: x+(1) = x(1) + u(1), and then
hold the updated portfolio for another period of duration ∆.
At time 2∆ the portfolio composition is hence

x(2) = G(2)x+(1) = G(2)x(1) + G(2)u(1).

Proceeding in this way for k = 0, 1, 2, . . ., we determine the
iterative dynamic equations of the portfolio composition at
the end of period (k + 1)∆

x(k + 1) = G(k + 1)x(k) + G(k + 1)u(k) (1)

as well as the equations for portfolio composition just after
the (k + 1)-th transaction

x+(k) = x(k) + u(k).

Notice that, since the asset gains over a given period are
random quantities, recursion (1) does not generate a de-
terministic sequence of portfolios, but it rather defines a
stochastic process.

III. MULTI-STAGE PORTFOLIO ALLOCATION

Given the initial portfolio composition x(0) and a final
horizon T , our objective is to determine an optimal sequence
of portfolio adjustments u(0), u(1), . . . , u(T − 1), in order
to maximize a utility function at the end of period k = T .
Specifically, we shall consider a classical Markowitz problem
of maximizing the expectation of the portfolio total gain
J(T ) .= E {w(T )/w(0)}, under a constraint on exposure
to risk, expressed in the form of a bound on the variance
of w(T ). Notice that, since w(0) is given and constant,
maximizing J(T ) is equivalent to minimizing −E {w(T )},
which is henceforth used as the optimization objective. Other
constraints are also typically included in the problem, as
discussed in the next section.

A. Portfolio constraints

a) Budget constraints: Cash may be part of the portfo-
lio assets. Each time the portfolio is adjusted, money value
is transferred from one asset to another, but the net value
remains unchanged, except for possible loss due transaction
costs. This fact is expressed by the budget constraints

1T u(k) + c(u(k)) = 0, k = 0, 1, . . .

where c(u(k)) denotes all costs associated to the transac-
tions. Since the focus of this paper is on a new technique
for multi-stage problems, we shall assume for simplicity in
the sequel that no transaction costs are present. Under this
assumption, the budget constraints become 1T u(k) = 0,
k = 0, 1, . . .

b) Volatility constraint: A bound on the maximum
allowed volatility of the final wealth is imposed by constrain-
ing the variance of the final wealth w(T ) to be smaller than
a given value σ2

max: var{w(T )} ≤ σ2
max. Similar constraints

can also be imposed on any intermediate stage.
c) Portfolio composition constraints: At each period k

when the portfolio is rebalanced, we can impose constraints
ensuring that, with high probability 1 − δ, δ ∈ [0, 1], the
portfolio content x+

i (k) in each single security i is between
given minimum and maximum levels,

Prob{bi(k) ≤ x+
i (k)} ≥ 1 − δ, i = 1, . . . , n; k = 0, 1, . . .

Prob{x+
i (k) ≤ b̄i(k)} ≥ 1 − δ, i = 1, . . . , n; k = 0, 1, . . .

where bi(k), b̄i(k) are the given lower and upper bound on
portfolio holding in security i at time k, after rebalancing.
For instance, if no shortselling is allowed, we impose these
constraints by taking bi(k) = 0, b̄i(k) = ∞, i.e.

Prob{x+
i (k) ≥ 0} ≥ 1 − δ, i = 1, . . . , n; k = 0, 1, . . . (2)

To enforce this probabilistic constraint, one can exploit the
Chebychev inequality, which guarantees that (2) is satisfied
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with probability at least 1 − δ, irrespective of the actual
probability distribution of x+

i (k), if

E{x+
i (k)} ≥ ν

√
var{x+

i (k)}, (3)

where ν =
√

1/δ, see for instance [4].

B. The feedback action strategy

A key and well-known observation is now that in tack-
ling the described optimization problem, two strategies are
available: an “open loop” strategy and a “closed loop” one.

In the open loop strategy, the whole action sequence
u(0), u(1), . . . , u(T − 1) is determined at the decision time
k = 0. This setup fails to exploit the sequential nature of the
decision problem at hand. Indeed, we remark that at time
k = 0 the whole future sequence of asset gains is uncertain.
However, only action u(0) is actually applied to the portfolio
at k = 0. At the subsequent time k = 1, the actual outcome
of asset returns over the first period is revealed to the decision
maker, and therefore his next action u(1) should take into
account this knowledge. In other words, at the decision time
k = 1, only the future asset gains relative to period 2
are still uncertain. In general, at the decision stage k, the
past gains over periods 1, . . . , k have been observed, and
hence are exactly known, while the future gains of periods
k +1, . . . , T are still uncertain. Thus, uncertainty is reduced
as the decision stage moves forward.

In this dynamic optimization setting, one seeks for an
optimal action as a function of the information state of
the system, i.e. u(k) is given by a policy, or rule, πk that
associates an action to a given state of knowledge (closed
loop strategy). In the problem at hand, the information state
is the observed sequence (x(1), . . . , x(k)), so that u(k) =
πk(x(1), . . . , x(k)). We here show that we can equivalently
take (g(1), . . . , g(k)) as information state.

To see this, note that substituting u(k) =
πk(x(1), . . . , x(k)) in (1) and solving onward up to
time j, x(j) is obtained as a function of (g(1), . . . , g(j))
(plus x(0), which is however a given deterministic quantity).
Thus, the information in (x(1), . . . , x(k)) is no larger than
the information in (g(1), . . . , g(k)). Viceversa, from (1)
we see that g(j) can be determined from x(j), x(j − 1)
and u(j − 1) = πj−1(x(1), . . . , x(j − 1)), so that the
information in (g(1), . . . , g(k)) is no larger than the
information in (x(1), . . . , x(k)). Thus, for any policy of
the form u(k) = πk(x(1), . . . , x(k)), (x(1), . . . , x(k)) and
(g(1), . . . , g(k)) are equivalent information states.

Let us ask now the following question: is it true that
the set of policies of the form u(k) = πk(x(1), . . . , x(k))
is equivalent to the set of policies of the form u(k) =
πk(g(1), . . . , g(k))? The answer is indeed positive. In
fact, if we take a policy u(k) = πk(x(1), . . . , x(k)),
from the argument developed in the previous paragraph,
the information state (x(1), . . . , x(k)) can be replaced
by the information state (g(1), . . . , g(k)) and, therefore,
u(k) = πk(x(1), . . . , x(k)) can be rewritten as u(k) =
πk(g(1), . . . , g(k)) (for some different πk). Conversely,
suppose we apply u(k) = πk(g(1), . . . , g(k)). If, by
inductive assumption, (g(1), . . . , g(k)) is equivalent to

(x(1), . . . , x(k)) up to a given time, say j, then for k ≤ j ac-
tion u(k) can be rewritten as u(k) = πk(x(1), . . . , x(k)). But
then, applying the usual argument of the previous pragraph
for k ≤ j +1, we see that (x(1), . . . , x(j +1)) is equivalent
to (g(1), . . . , g(j + 1)) so substaining induction to show
that u(j + 1) = πj+1(g(1), . . . , g(j + 1)) can be rewritten
as u(j + 1) = πj+1(x(1), . . . , x(j + 1)). Repeating on
subsequent steps, we obtain that u(k) = πk(g(1), . . . , g(k))
can be rewritten as u(k) = πk(x(1), . . . , x(k)) for any k. In
the sequel, we make reference to control policy in the form
u(k) = πk(g(1), . . . , g(k)).

Notice that in this setting our optimization problem is a
functional one, since we need to search over the infinite-
dimensional space of policies πk. An exact solution to this
problem is numerically unfeasible. Techniques such as (con-
strained) dynamic programming, or stochastic optimization
try to solve approximations of the problem, and invariably
result in NP-hard problem formulations, see, e.g., [3], [12].

We here propose a solution approach based on
parameterizations of the policies. Suppose that policy
πk is restricted to belong to a family Πk of functions
of g(1), . . . , g(k) of given structure, that are affinely
parameterized by a collection of parameters θk. Then, it can
be immediately verified that also the portfolio composition
x(k) is an affine function of the decision parameters θk.
Moreover, the expectation of x(k) will also be affine in the
θk’s, and the covariance matrix of x(k) will be a convex
quadratic function of the θk’s. These desirable properties
hold in general, for any stochastic model of the market
(i.e. for any stochastic description of the G(k)’s), and any
given functional dependence of πk on g(1), . . . , g(k − 1),
provided that the parameterization of the policy family Πk

is affine in θk. We now formally state this assumption.

Assumption 1: Each policy πk is assumed to be a function
of given structure of g(1), . . . , g(k), affinely parameterized
by a collection θk of free parameters. �

For example, the πk’s can be taken to be polynomials
of some fixed order in g(1), . . . , g(k), with coefficients
described by θk. A special case is given by polynomials
families of degree one, chosen as

πk(g(1), . . . , g(k)) = θ0(k) +
k∑

i=1

Θi(k)(g(i) − ḡ(i)) (4)

where θk = (θ0(k),Θ1(k), . . . ,Θk(k)), with θ0(k) ∈ R
n,

Θi(k) ∈ R
n,n, constitute the collection of parameters, and

ḡ(k) .= E{g(k)}. This particular choice leads to a simple
statistical set-up and is made in the specific two stage
problem discussed in Section IV.

C. Stochastic market model

We shall make in the sequel the following standard
assumptions on the stochastic behavior of the asset gains.
These hypotheses are not necessary within our framework,
but their introduction simplifies calculations. Generalizations
are possible.
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Assumption 2:
1) gi(k1) is statistically independent of gj(k2), for all i, j

and for all k2 �= k1. In other words, the returns over
different periods are assumed to be independent.

2) The first two moments of the gain vectors g(k), k =
1, 2, . . ., are known.

�
These assumptions are compatible with the classical “effi-
cient market hypothesis” (EMH), see for example [10]. We
define

ḡ(k) .= E{g(k)}, k = 1, 2, . . .

M(k) .= E{g(k)gT (k)}, k = 1, 2, . . .

and the covariance matrices

Σ(k) .= var{g(k)} = M(k) − ḡ(k)ḡT (k), k = 1, 2, . . .

In order to convey our ideas in a clear way, in the rest of
this paper we concentrate on the simplest form of multi-stage
optimization problem, that is on a problem with two stages.
Whilst this setup is simple enough not to let the notation
obscure the main line of discourse, it contains the main
ingredients and difficulties of dynamic optimization under
uncertainty.

IV. A TWO-STAGE PORTFOLIO PROBLEM

Let the time horizon be of T = 2 periods (Figure 1). Our
objective is to determine an optimal sequence of portfolio
adjustments u(0), u(1) so to maximize E {w(T )}, under a
bound on risk and imposing that shortselling is avoided, with
high probability (and thus imposing constraints of type (3)
at each stage).

k=0 k=1 k=2

I period II period

x(0) x+(0) x+(1)x(1) x(2)

Fig. 1. Time axis and periods for two-stage portfolio optimization.

The open loop optimization strategy would require the
solution of the optimization problem

min
u(0),u(1)

−E{1T x(2)} subject to: (5)

var{1T x(2)} ≤ σ2
max (6)

1T u(k) = 0, k = 0, 1 (7)

E{x+
i (k)} ≥ ν

√
var{x+

i (k)}, (8)

i = 1, . . . , n; k = 0, 1

where the objective (5) is (minus) the expectation of the final
total wealth w(T ), (6) is a bound on the volatility of w(T ),
(7) are the budget constraints, and (8) enforce no shortselling,
with high probability.

However, we already discussed the fact that a closed loop
strategy is much preferable in this dynamic context. Hence,
in the following section we develop the explicit optimization
model for the two-stage problem in closed loop, assuming
that the recourse policies are affinely parameterized.

A. Affine recourse policy

In our specific problem with two periods, we have a
so-called “here-and-now” variable, which is the first port-
folio rebalancing vector u(0), and a “wait-and-see” vari-
able, which is the second portfolio adjustment u(1). We
parameterize the policy π1 by imposing an affine functional
dependence on u(1), according to the structure (4)

u(1) = θ + Θ(g(1) − ḡ(1)) (9)

where θ1 = (θ, Θ), with θ ∈ R
n, Θ ∈ R

n,n is the collection
of parameters. The new optimization variables are u(0) and
the “recourse” parameters θ ∈ R

n, Θ ∈ R
n,n, whose purpose

is to correct u(1) in function of the discrepancy between
the expectation on the first period gain ḡ(1), and its actual
outcome g(1).

B. The controlled portfolio

A key advantage in imposing the specific dependence (9)
for the wait-and-see variable is that the expected value and
variance of the portfolio can be simply expressed. These
expressions are derived next. First notice that we have

x+(0) = x(0) + u(0)
x(1) = G(1)(x(0) + u(0))

x+(1) = G(1)(x(0) + u(0)) + θ + Θ(g(1) − ḡ(1))
x(2) = G(2)G(1)(x(0) + u(0)) + G(2)θ +

+G(2)Θ(g(1) − ḡ(1)).

To simplify the notation, let

ξ
.= x(0) + u(0)

g
.= [g1(1)g1(2) g2(1)g2(2) · · · gn(1)gn(2)]T

h
.= vec(Θ)

G
.= diag(g),

where vec(·) is the column vectorization operator, and define
also ḡ

.= E{g}, g̃(1) .= g(1)− ḡ(1), g̃(2) .= g(2)− ḡ(2), g̃
.=

g− ḡ, Ḡ(1) .= diag(ḡ(1)), Ḡ(2) .= diag(ḡ(2)), Ḡ
.= diag(ḡ).

Then, we rewrite

x+(0) = ξ

x(1) = G(1)ξ
x+(1) = G(1)ξ + θ + Θg̃(1)
x(2) = Gξ + G(2)θ + G(2)Θg̃(1).

The total wealth at final time T = 2 is

w(2) = 1T x(2) = gT ξ + gT (2)θ + gT (2)Θg̃(1).

1) Expectation and variance of w(2): For the expectation,
since g(1), g(2) are independent, we simply have

w̄
.= E{w(2)} = ḡT ξ + ḡT (2)θ

and hence

w̃
.= w(2) − E{w(2)} =

= g̃T ξ + g̃T (2)θ + gT (2)Θg̃(1)

= [ξT θT hT ]

⎡
⎣

g̃
g̃(2)

g̃(1) ⊗ g(2)

⎤
⎦
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where ⊗ denotes the Kronecker product: if X ∈ R
n,m, X ⊗

Y is a block matrix with n row-blocks and m column-blocks,
with the (i, j)-th block being Xi,jY . Also, in the sequel �
denotes the Hadamard product, i.e. the entry-wise product of
two matrices. The variance of w(2) is therefore given by

var{w(2)} = E{w̃2} =
[
ξT θT hT

]
Γ

[
ξT θT hT

]T

being

Γ
.
= E

⎧⎨
⎩

⎡
⎣

g̃g̃T g̃g̃T (2) g̃(g̃T (1) ⊗ gT (2))
∗ g̃(2)g̃T (2) g̃(2)(g̃T (1) ⊗ gT (2))
∗ ∗ (g̃(1) ⊗ g(2))(g̃T (1) ⊗ gT (2))

⎤
⎦

⎫⎬
⎭

where ∗ denotes elements whose value is inferred from
symmetry. The evaluation of the expectations for the six
blocks in the above matrix requires lengthy manipulations,
that are omitted for brevity. The result is the following:

Γ .=

⎡
⎣

Γ11 Γ12 Γ13

∗ Γ22 0
∗ ∗ Γ33

⎤
⎦

with

Γ11 = Σ(1) � Σ(2) + Σ(1) � [ḡ(2)ḡT (2)] +
+Σ(2) � [ḡ(1)ḡT (1)]

Γ22 = Σ(2)
Γ33 = Σ(1) ⊗ M(2)
Γ12 = Ḡ(1)Σ(2)

Γ13 =

⎡
⎢⎣

Σ1(1) ⊗ M1(2)
Σ2(1) ⊗ M2(2)

· · ·
Σn(1) ⊗ Mn(2)

⎤
⎥⎦

where Σi(1) denotes the i-th row of Σ(1), and Mi(2) denotes
the i-th row of the matrix of second order moments

M(2) = E{g(2)gT (2)} = Σ(2) + ḡ(2)ḡT (2).

The key remark at this point is that the expectation and
variance of the end-of-period wealth can be computed from
the available information. It then follows that the volatility
constraint (6) can be explicitly imposed as a convex quadratic
constraint on the decision variables ξ, θ, h:

[
ξT θT hT

]
Γ

[
ξT θT hT

]T ≤ σ2
max

(notice that this constraint is convex, since Γ is positive
semidefinite).

2) Expectation and variance of x+
i (1): We proceed in a

similar way for the computation of the expectation and vari-
ance of x+

i (1), which are needed in (8). For the expectation,
we have

x+(1) .= E{x+(1)} = Ḡ(1)ξ + θ

and therefore x+
i (1) .= E{x+

i (1)} = ḡi(1)ξi + θi. For the
variance, it can be easily checked that

var{x+
i (1)} = (ξie

T
i + Θi)Σ(1)(ξie

T
i + Θi)T

where ei ∈ R
n has all zero entries, except for the i-th entry,

which is equal to one, and Θi denotes the i-th row of matrix
Θ. It follows that constraint (8) can be explicitly imposed as

ν‖Σ1/2(1)(ξie
T
i + Θi)T ‖ ≤ ḡi(1)ξi + θi

where Σ1/2(1) denotes the symmetric matrix-square-root of
Σ(1). This latter is a convex second order cone constraint
(SOC) on the decision variables, see [1] for further details
on second order cone programming.

We finally remark that the no-shortselling constraint (8) at
k = 0 is simply enforced by the entry-wise linear inequality
x+(0) ≥ 0, i.e. ξ ≥ 0. Also, the budget constraint (7) for
k = 0 writes 1T u(0) = 0, which is enforced by the linear
equality 1T ξ = 1T x(0), whereas, for k = 1, the budget
constraint can be enforced by imposing 1T θ = 0, 1T Θ =
0.

C. The explicit two-period program

Collecting our previous results, we can write the two-
stage portfolio optimization problem in the explicit form of
a convex optimization program on the variables ξ, θ ∈ R

n

and Θ ∈ R
n,n (or, equivalently, h = vec(Θ) ∈ R

n2
):

minξ,θ,Θ −ḡT ξ − ḡT (2)θ subject to:[
ξT θT hT

]
Γ

[
ξT θT hT

]T ≤ σ2
max

1T ξ = 1T x(0)
1T θ = 0
1T Θ = 0
ξ ≥ 0
ν‖Σ1/2(1)(ξie

T
i + Θi)T ‖ ≤ ḡi(1)ξi + θi, i = 1, . . . , n.

D. Numerical example

To exemplify our approach, we consider next a portfolio
composed of six blue chips from the Milan stock exchange
(tickers: AUTS.MI, CPTA.MI, ENI.MI, GASI.MI, PG.MI,
SPMI.MI), plus cash. Cash is considered to be a riskless
asset, having unit gain over each period. The mean return
and covariance matrix of the risky assets have instead been
estimated via standard methods, using historical data for
closing prices, from 03-May-2004 to 17-Jan-2005, with an
exponential forgetting factor of .99. We here assume that
the system is stationary, i.e. that its statistics do not change
from period to period. The expected gain over each period
(assuming a period of 20 trading days) results to be

ḡ(1) = ḡ(2) =

[1.0535 1.0473 1.0139 1.0183 1.0170 1.0268 1]T

and the covariance is
Σ(1) = Σ(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.3058 0.4628 0.3996 0.2589 0.5024 0.1886 0
0.4628 4.1217 0.6221 0.7037 1.2662 0.1857 0
0.3996 0.6221 1.9690 0.4737 0.5141 1.4340 0
0.2589 0.7037 0.4737 0.8004 0.5493 0.2300 0
0.5024 1.2662 0.5141 0.5493 10.6348 0.0551 0
0.1886 0.1857 1.4340 0.2300 0.0551 3.7108 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3
.

We considered an initial portfolio holding of a unit in cash,
i.e. x(0) = [0 0 · · · 0 1]T , and we fixed ν = 3.16, which
ensures satisfaction of the no-shortselling constraints at the
second stage, with probability at least 0.9, regardless of the
data distribution. We conducted the numerical experiment
with the objective of evaluating the improvement brought
by the recourse action (9), with respect to the “open loop”
strategy that one would obtain from the solution of problem
(5). Therefore, we repeatedly solved both problem (IV-C)
and problem (5), for 14 increasing values of σmax, and
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we plotted, for each problem, the optimal portfolio return
at the final stage, versus the associated variance. These
results are graphically reported in Figure 2(a). The numerical
computations have been performed on a Windows machine
under Matlab, using the YALMIP parser and the SeDuMi
solver, see [9].

As it should be expected, the linear recourse action
provides portfolios that always dominate those obtained by
the open loop strategy. Moreover, the improvement in the
achievable expected return is not negligible, peaking at about
30% in the low variance zone, see Figure 2(b).
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Fig. 2. (a) Each point on the plot represents the maximum portfolio return
at the final stage, achievable for the corresponding variance limit in abscissa.
Bold line is the frontier obtained solving problem (IV-C), while the light line
is obtained via problem (5). (b) Percent improvement in expected return,
upon the no-recourse strategy.

For a specific value of σ2
max, say σ2

max = 0.001, the so-
lutions of problems (5) and (IV-C) look as follows. Problem
(5) yields the a-priori portfolio adjustments

u(0) = [0.484 0.083 0.000 0.063 0.000 0.066 − 0.696]T

u(1) = [0.030 0.006 0.000 − 0.009 0.000 0.002 − 0.029]T

to which it corresponds a maximum portfolio return at end
of second period equal to 0.069. In the same setup, problem
(IV-C) yields instead the here-and-now adjustment

u(0) = [0.759 0.157 0.000 0.000 0.000 0.084 − 1]T

and the recourse parameters

θ=[−0.325 −0.094 0.000 0.036 0.000 −0.040 0.424]T

Θ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4.048 −0.805 −0.543 −0.808 −0.104 −0.381 0
0.252 −0.149 −0.193 −0.287 −0.037 0.021 0
0.000 0.000 0.000 0.000 0.000 0.000 0
0.269 0.067 0.052 0.077 0.01 0.031 0
0.000 0.000 0.000 0.000 −0.000 0.000 0
0.363 0.082 0.044 0.061 0.007 −0.049 0
3.164 0.805 0.641 0.957 0.124 0.378 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

providing a maximum portfolio return at end of second
period equal to 0.081.

Remark 1 (Interpretation of the recourse parameters):
Looking at (9) it is natural to give the following interpretation
to the optimal recourse parameters θ, Θ returned by problem
(IV-C). Vector θ represents the adjustment actions that the
investor would perform on the portfolio at k = 1, if the
gains over the first period were exactly as expected (i.e. if
the outcome of g(1) were equal to ḡ(1)). If this is not the
case, the actual portfolio adjustment u(1) is corrected by the
term Θ(g(1)− ḡ(1)), and hence the element Θij in position

row i and column j of Θ is interpreted as the sensitivity of
ui(1) to deviations of gj(1) from its expectation.

For instance, referring to the previous numerical example,
by observing θ and Θ we may conclude that the second stage
decision u(1) is rather sensitive to the deviation of the first
period gain of AUTS.MI (the first asset) from its expectation.
Indeed, if this gain is much higher than expected, (i.e.
g1(1) − ḡ1(1) 
 0), the recourse policy (9) will prescribe
to aggressively sell this asset, and safeguard the profits by
essentially putting them all into cash (notice the first and last
coefficients in θ and in the first column of Θ).

V. CONCLUSIONS

In this paper, we proposed a technique for two-stage
portfolio allocation based on affine parameterization of the
recourse policy. In this setting, the sub-optimal portfolio
adjustments can be found exactly and in a numerically
efficient way, by solving an appropriate convex second
order program. Several research issues are now open. First,
we are elaborating the method in order to extend it to
the general multi-period case. Second, while our method
appears to be more simple, insightful and scalable than multi-
stage stochastic programming, yet it has to be compared
in performance, at least numerically, with some of the
implementations of stochastic programming. Finally, since
a major issue in Markowitz portfolio optimization is that of
sensitivity to uncertainty in the data (for instance, in reality,
the expected returns and covariances are not exactly known,
see e.g. [7], [8]), a promising research direction is that of
adding robustness to uncertainty in the multi-stage allocation
problem.
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