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Abstract— We consider different measures of nonlinearity
that quantify the modeling error of optimal linear models for
nonlinear systems. We show that linear dynamic approxima-
tions have no advantage over linear static approximations for
static nonlinear functions in any of the considered measures.
Simplified formulae for scalar nonlinearities are derived using
the notion of a sector nonlinearity. We show that the steady state
behaviour of a nonlinear system gives rise to a lower bound
on the nonlinearity measures. Furthermore, some results for
composite nonlinear systems are given.

Index Terms— Best linear approximation, Nonlinear system,
Nonlinearity measure, Sector nonlinearity.

I. Introduction

Linear techniques for systems analysis and control are well
developed. For many control-related engineering problems,
methods are available that are as well theoretically sound
as practically implementable. Due to the diverse qualitative
behaviour of nonlinear systems, tools for nonlinear systems
analysis and control will probably never reach the same
level of generality. To cope with nonlinear control problems,
there are two alternative approaches. For highly nonlinear
systems, special methods have to be developed that rely upon
certain physical properties of the application or upon math-
ematical properties of a certain system class, like energy-
shaping methods for mechanical control systems or feedback
linearization. For mildly nonlinear systems, one can attempt
to use a linear model and linear controller design methods,
hoping that the nonlinear distortion is too small to destabilize
the closed-loop system or to deteriorate the closed-loop
performance. In order to provide a rigorous justification to
this last approach, quantitative assessment of the nonlinearity
is necessary.

Nonlinearity measures appeared for the first time in [1],
where the induced gain of the difference between a nonlinear
system and its best linear model is considered. Approaches
to approximately compute such a measure are given in [2],
[3], and a simplified procedure to calculate a rigorous lower
bound is given in [3]. The idea of linear modeling for
nonlinear systems is further developed for the discrete-time
case in [4]. System gains for nonlinear systems are defined
and an upper bound on the modeling error

∥∥∥G̃ −G
∥∥∥

i,∞ for
discrete-time piecewise linear systems is given. In [5], the
best linear models for discrete-time bi-gain systems is given
with respect to the l∞-norm and the existence of a best linear
model for nonlinear finite impulse response filters is proven.
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The relative induced error
∥∥∥G̃ −G

∥∥∥
i,∞ / ‖G‖i,∞ as a measure

of nonlinearity is mentioned. In [6], a procedure is proposed
to approximately compute the L2-gain of the error system
defined as the difference between a nonlinear system and its
Jacobi-linearization (both in continuous time). Other ways to
measure the distance between two systems are given in [7].

There are also many approaches to nonlinearity assess-
ment, that use other concepts than error system gains. Still
close to the idea of induced norms is the relative error-like
measure given in [3], [8]. In [9] the curvature of the steady
state map is introduced as a measure of nonlinearity and
in [10] an extension of this approach to dynamic systems
is discussed. A different approach is presented in Ref. [11],
where controllability and observability Gramians are used
to quantify the degrees of input-to-state and state-to-output
nonlinearity.

In this paper, we will consider both the error system gain
from [1] and a version of the relative error-like measure from
[3]. To this end, these quantities are defined in Section II
together with some mathematical basics. In Section III, we
give all main results. First, the error system gain for static
nonlinearities is considered. An especially simple formula
is given for scalar functions. Next, we state similar results
for the relative error-like nonlinearity measure. The results
are then extended to dynamical systems possessing a unique
steady state output for a given steady state input. Finally,
some results on composite nonlinear systems are derived.
The paper ends with conclusions in Section IV.

II. Preliminaries

In this section we introduce the mathematical setup for
the following studies. By |·| we denote the Euclidean vector
norm in �n and by �+ we denote the set of non-negative real
numbers. The Lebesgue-spaces Ln

p are the sets of measurable

functions u : �+ → �n for which ‖u‖p =
(∫ ∞

0
|u|p dt

)1/p
< ∞

for 0 ≤ p < ∞ and ‖u‖∞ = ess supt≥0 |u(t)| < ∞ for p = ∞
respectively. For convenience we will most of the time drop
the subscript in ‖u‖p, well understood that for all calculations,
the number p has a fixed value. The truncation operator uT

is defined as

uT (t) =

{
u(t) for t ≤ T
0 for t > T

and the extended Lebesgue-spaces Ln
pe are defined as the sets

of all measurable functions u for which uT ∈ Ln
p for all T > 0.

A mapping N : Lm
pe → Ln

pe is said to be causal if (Nu)T =

(N(uT ))T , it is said to be (Lp-)stable if for every u ∈ Lm
p the

output satisfies y = Nu ∈ Ln
p and it is said to be Lp-stable with
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finite gain (or short: to have finite gain) if there exists a finite
constant γ such that ‖Nu‖ ≤ γ ‖u‖ for all u, or, equivalently,
if the induced operator norm ‖N‖i = supu∈Lm

p \{0}
‖Nu‖
‖u‖ is finite.

When modeling nonlinear systems N by linear models G,
one promising approach is to look at the induced norm of the
error system ‖N −G‖i. A linear model is called a best linear
approximation if it minimizes this error system gain [5]. For
a signal set U ⊆ Lm

p let Ue = {u|uT ∈ U for all T > 0}. For
any causal, Lp-stable mapping N : Ue → Ln

pe we define the
gain of the associated error system by1

γUN
�
= inf

G∈G
sup
u∈U
‖Nu −Gu‖
‖u‖ (1)

and call this expression the error gain nonlinearity measure
of N on U. This quantity has been called nonlinearity
measure in [1], [3], but we want to make clear that its origin
is the error system gain. Here, G is the set of causal linear
time-invariant (LTI) delay-free transfer operators (Gu)(t) =
Gh f u(t)+

∫ t

0
g(t−τ)u(τ)dτ with the high frequency gain Gh f ∈

�n×m and a measurable kernel g : �+ → �n×m. Note that all
results of the present paper apply also to the case when we
restrict G to a suitable subset of the above definition, like
the set of operators which correspond to proper real-rational
transfer matrices. For notational convenience we henceforth
understand that the supremum is taken for u � 0 without
explicitly mentioning, and we define γUN = ∞ if N0 � 0.
The expression γUN can also be finite when calculated for
unstable N (consider the case of an unstable linear system).
In this paper, however, we will restrict ourselves to (stable)
systems with finite gain. Observe that (along the lines of
[12]) for causal, finite gain Lp-stable P : Ue → Ln

pe

sup
u∈Ue ,T>0

‖(Pu)T‖
‖uT ‖ = sup

u∈U
‖Pu‖
‖u‖ (2)

and thus the following expressions are equivalent whenever
they are finite

inf
G∈G

sup
u∈Ue ,T>0

‖(Nu −Gu)T‖
‖uT ‖ = inf

G∈G
sup
u∈Ue

lim sup
T→∞

‖(Nu −Gu)T‖
‖uT ‖

= inf
G∈G

sup
u∈U
‖Nu −Gu‖
‖u‖ .

Thus we can consider persistent signals even for p < ∞
by using the extended spaces. Note that the extended signal
spaces are no normed linear spaces. To operate with normed
spaces for persistent signals, bounded-power like signal
spaces can be used [13], [4], but we will not need them
in the ensuing analysis. The error gain nonlinearity measure
is an important and useful quantity, because it defines the
modeling uncertainty associated with the best linear model
for a nonlinear system.

But there are two reasons why it is not the only quantity
we are interested in. Firstly, the error gain nonlinearity
measure is not bounded by definition. For different systems,
different gains indicate a “high degree of nonlinearity”. For

1The symbol
�
= denotes definition of the left-hand term by the right-hand

term.

example, an additional scalar gain in the I/O-behaviour of
a system results in a different measure, though the type
and qualitative behaviour of the nonlinear system do not
change. Secondly, the error gain nonlinearity measure can
only be computed for stable systems in general while we
might want to quantify the degree of nonlinear distortion
also for unstable systems. Thus, for the analysis of nonlinear
systems we want to introduce a second quantity.

Let therefore N : Ue → Ln
pe be a causal, not necessarily

stable mapping satisfying ‖(Nu)T ‖ < ∞ for all T > 0 and
u ∈ Ue (“stability in finite time” or “no escape in finite
time w.r.t. the Lp-norm”). We define the relative nonlinearity
measure of N on Ue by

ϕUe
N
�
= inf

G∈G
sup
u∈Ue

lim sup
T→∞

‖(Nu −Gu)T ‖
‖(Nu)T ‖ (3)

where the definitions of G and Ue are as above. We will
understand the expression (3) in the sense of

ϕUe
N = inf

{
ϕ ∈ �|∃G ∈ G :

lim sup
T→∞

‖(Nu −Gu)T ‖ − ϕ ‖(Nu)T ‖ ≤ 0∀u ∈ Ue

}
.

We will discuss some consequences of this formulation in
Section III-B. If we restrict the set of considered inputs to
U we obtain for stable N the equivalent definition

ϕUN = θ
U
N
�
= inf

G∈G
sup
u∈U
‖Nu −Gu‖
‖Nu‖ (4)

which is well-known from [3], [8], [14]. Note that no
analogous relationship like (2) exists and in general

ϕ̃Ue
N
�
= inf

G∈G
sup

u∈Ue ,T>0

‖(Nu −Gu)T‖
‖(Nu)T ‖ � ϕUN (5)

but we trivially have the inequality ϕ̃UN ≥ ϕUN . By definition,
all nonlinearity measures are bounded below by zero. On
the other hand, as the zero operator Z : u 
→ 0 is in
G, we have ϕ ≤ 1. The value of the relative nonlinearity
measures can be interpreted as the maximal relative deviation
of the nonlinear system output from the output of the best
linear approximation. Thus we can compare the degree of
nonlinearity of different systems.

III. Main Results

A. Error gain nonlinearity measures of static functions

First of all, we want to consider the error gain nonlinearity
measure of static nonlinear mappings f : V ⊆ �m → �n.
The following theorem about the gain of static nonlinear
functions will turn out to be useful later. This fact is probably
well known to experts but the authors do not know a
reference and so we state it for the sake of completeness.

Theorem 1: (Gain of static nonlinear operators) Let the
operator N f : u ∈ Lm

pe 
→ y ∈ Ln
pe be given by

y(t) = (Nf u)(t)
�
= f (u(t)) ∀t (6)

where f : V ⊆ �m → �n is a function satisfying | f (v)| <
∞ (not necessarily uniformly) for all v ∈ V. We require
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that V contains at least an ε-ball around the origin. Let
Ue(V) ⊆ Lm

pe be the set of functions (time signals) defined
on �+ having values in V. Then the following equivalence
holds

sup
u∈Ue(V)

lim sup
T→∞

∥∥∥(Nf u)T

∥∥∥
‖uT‖ = sup

v∈V
| f (v)|
|v| . (7)

Note that this equality holds regardless of the value of p ∈
[1,∞], and so all gains for N f are equal.

Proof: Let γ
�
= supv∈V | f (v)| / |v| ≥ 0 and note that the

inequality | f (v)| ≤ γ |v| holds for any v ∈ V. For p = ∞∥∥∥(Nf u)T

∥∥∥∞
‖uT ‖∞ =

ess sup0≤t≤T | f (u(t))|
ess sup0≤t≤T |u(t)| ≤ γ

and similarly for p < ∞
∥∥∥(Nf u)T

∥∥∥
‖uT‖ =

(∫ T

0
| f (u(t))|p dt

) 1
p

(∫ T

0
|u(t)|p dt

) 1
p

≤ γ

for all u ∈ Ue(V) and thus

sup
u∈Ue(V)

lim sup
T→∞

∥∥∥(Nf u)T

∥∥∥
‖uT ‖ ≤ γ = sup

v∈V
| f (v)|
|v| . (8)

Define the set U1 ⊂ Ue(V) that contains all the functions

u(t) =

{
v 0 ≤ t ≤ 1
0 1 < t

, v ∈ V.

The relations

sup
u∈U1

lim sup
T→∞

∥∥∥(Nf u)T

∥∥∥
‖uT ‖ = sup

v∈V

(∫ 1

0
| f (v)|p dt

) 1
p

(∫ 1

0
|v|p dt

) 1
p

= γ

for p < ∞ and

sup
u∈U1

lim sup
T→∞

∥∥∥(Nf u)T

∥∥∥∞
‖uT‖∞ = γ

show that the equality in (8) must hold and the proof is
complete.
We now turn to the first main result, that states that a
dynamic linear approximation is never better than a static
linear approximation in terms of the error gain nonlinearity
measure, and the minimax problem over function spaces is
reduced to a minimax problem over real numbers.

Theorem 2: (Equivalence of static formulation for error
gain nonlinearity measure) Let the operator N f : u ∈ Lm

pe 
→
y ∈ Ln

pe be given as in Theorem 1. Then the following
equivalence holds

inf
G∈G

sup
u∈Ue(V)

lim sup
T→∞

∥∥∥(Nf u −Gu)T

∥∥∥
‖uT ‖ = inf

K∈�n×m
sup
v∈V
| f (v) − Kv|
|v| .

(9)
Again, this equality holds regardless of the value of p ∈
[1,∞] and the value of the nonlinearity measure of N f does
not depend on p.

Proof: We have to prove that there is no difference
in considering all dynamic LTI operators in G or just the

subset of static operators G0. The principle used in the proof
is as follows: By taking signals that remain constant for an
arbitrarily large time interval, the dynamic response of the
linear system will die out and the steady state response will
dominate the error gain. We thus can restrict ourselves to
only consider the steady state response in the first place,
being equivalent to a static linear system described by a gain
matrix. The rest follows by Theorem 1.

Clearly, the infimum on the left side of (9) will not
be approached by unstable G as we otherwise can always
find a bounded u ∈ Ue(V) that results in an unbounded∥∥∥Nf u −Gu

∥∥∥. We may thus restrict ourselves to stable linear
systems with

∫ t

0
|g(τ)|dτ < ∞. We split up the response of the

linear system by Gu = G0u+Gdu into a static part (G0u)(t) =
Gh f u(t) +

∫ ∞
0

g(τ)u(t)dτ = Ku(t) for some K ∈ �n×m and
into a dynamic part (Gdu)(t) =

∫ ∞
0

g(τ) (u(t − τ) − u(t)) dτ.
Now, whenever u(t) = u0 = const. for t ≥ 0 we have
that u(t − τ) − u(t) = 0 for τ < t and u(t − τ) = 0 for
τ > t and thus by stability of the linear system (Gdu)(t) =
−
(∫ ∞

t
g(τ)dτ

)
u0 → 0 for t → ∞. Consider the set of

functions U∗ = {uv|uv(t) ≡ v, v ∈ V} ⊂ Ue(V) and note that
‖(uv)T ‖ = |v| T 1

p . As the response of the dynamic part Gd

tends to zero, for any ε > 0 there exists a T1 ≥ 0 such that
|(Gdu)(t)| < ε for all t > T1 and⎛⎜⎜⎜⎜⎜⎝ lim

T→∞
‖(Gduv)T ‖∥∥∥uv

T

∥∥∥
⎞⎟⎟⎟⎟⎟⎠

p

≤ lim
T→∞

∥∥∥(Gduv)T1

∥∥∥p
+ εp(T − T1)

|v|p T

=

(
ε

|v|
)p
.

As ε was chosen arbitrarily it must be true that
limT→∞ ‖(Gd uv)T ‖

‖(uv)T ‖ = 0. We have the following sequence of
(in)equalities

inf
G∈G

sup
u∈Ue(V)

lim sup
T→∞

∥∥∥(Nf u −Gu)T

∥∥∥
‖uT ‖

≥ inf
G∈G

sup
uv∈U∗

lim
T→∞

∥∥∥(Nf uv −Guv)T

∥∥∥
‖(uv)T ‖

= inf
G0∈G0

sup
uv∈U∗

lim
T→∞

∥∥∥(Nf uv −G0uv)T

∥∥∥
‖(uv)T ‖

= inf
K∈�n×m

sup
v∈V
| f (v) − Kv|
|v|

where the first inequality follows from U∗ ⊂ Ue(V),
the second equality is justified by

∥∥∥(Nf u −G0u)T

∥∥∥ −
‖(Gdu)T‖ ≤

∥∥∥(Nf u −Gu)T

∥∥∥ ≤ ∥∥∥(Nf u −G0u)T

∥∥∥+‖(Gdu)T‖ and
limT→∞ ‖(Gduv)T ‖ / ‖(uv)T ‖ = 0 and the last equality can be
obtained by straightforward calculation. On the other hand,
as G0 ⊂ G and by Theorem 1

inf
G∈G

sup
u∈Ue(V)

lim sup
T→∞

∥∥∥(Nf u −Gu)T

∥∥∥
‖uT ‖

≤ inf
G0∈G0

sup
u∈Ue(V)

lim
T→∞

∥∥∥(Nf u −G0u)T

∥∥∥
‖uT ‖

= inf
K∈�n×m

sup
v∈V
| f (v) − Kv|
|v|
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and the result follows for p < ∞. As limT→∞(Guv)(t) = Kv
and (N f uv)(t) = f (v) for all t,

lim
T→∞

∥∥∥(Nf uv −Guv)T

∥∥∥∞
‖(uv)T ‖∞ ≥ | f (v) − Kv|

|v|
= lim

T→∞

∥∥∥(Nf uv −G0uv)T

∥∥∥∞
‖(uv)T ‖∞

which proves in a similar fashion that a dynamic approxi-
mation can do no better for the case p = ∞, and the proof
is complete.
In the case of a scalar function f : � → � the nonlinearity
measure can be determined analytically and graphically. This
result is established by the following theorem.

Theorem 3: (Error gain nonlinearity measure for scalar
functions) For any given function f : V ⊆ �→ � define

k+
�
= sup

v∈V\{0}
f (v)
v

k− �
= inf

v∈V\{0}
f (v)
v

and define k∗ by

k∗ �=
{

1
2 (k+ + k−) if |k+k−| < ∞
0 else

.

Then,

inf
k∈�

sup
v∈V\{0}

| f (v) − kv|
|v| =

{
1
2 (k+ − k−) if |k+ | , |k− | < ∞
∞ else

and if the infimum is finite it is uniquely achieved for k = k∗.
Note that we do not require continuity or differentiability
of f , but for consistency we define k+ = ∞ or k− = −∞
respectively if f (0) � 0. The error gain nonlinearity measure
is defined to be infinite in this case.

Proof: In the scalar case, the errror gain nonlinearity
measure of a static function can be reformulated as

inf
k∈�

sup
v∈V\{0}

| f (v) − kv|
|v| = inf

k∈�
sup

v∈V\{0}

∣∣∣∣∣ f (v)
v
− k
∣∣∣∣∣ .

The cases in which |k+ | = ∞ or |k−| = ∞ are obvious. In all
other cases we have for k = k∗

sup
v∈V\{0}

∣∣∣∣∣ f (v)
v
− k∗
∣∣∣∣∣ =
∣∣∣k+ − k∗

∣∣∣ = ∣∣∣k− − k∗
∣∣∣ = 1

2
(
k+ − k−

)
.

Note that we always have k− ≤ k∗ ≤ k+. Now, for any k we
either have k− ≤ k∗ < k and thus

sup
v∈V\{0}

∣∣∣∣∣ f (v)
v
− k
∣∣∣∣∣ ≥ k − k− > k∗ − k− =

1
2
(
k+ − k−

)

or k < k∗ ≤ k+ and thus

sup
v∈V\{0}

∣∣∣∣∣ f (v)
v
− k
∣∣∣∣∣ ≥ k+ − k > k+ − k∗ =

1
2
(
k+ − k−

)

We have shown that no other k than k∗ can achieve the same
or a smaller value and the proof is complete.
What we rediscovered here using a novel framework are of
course the famous sector conditions used in the theory of
abolute stability, e.g. to derive the circle criterion [15]. As

k−v ≤ f (v) ≤ k+v∀v ∈ V

v̄v v

f(v) k+v

k−v

Fig. 1. A nonlinear function and its sector bounds for V = [v, v̄].

the sector in which f lies is given by the slopes k+ and k− and
by definition, those bounds are the tightest bounds possible.
Note that f is to lie in the sector [k−, k+] only for v ∈ V and
may lie outside for v � V (Fig. 1 shows an illustration of
this concept with the set V being an interval on the v-axis).

B. Relative nonlinearity measures of static functions

By considering the same arguments as in Theorem 2,
one can obtain a similar result for the relative nonlinearity
measures.

Theorem 4: (Equivalence of static formulation for relative
nonlinearity measures) Assume the same conditions as in
Theorem 2, but relax the assumption that N f be Lp-stable to
the requirement that ‖(Nu)T ‖ < ∞ for all T > 0 . Then,

inf
G∈G

sup
u∈Ue(V)

lim sup
T→∞

‖(Nu −Gu)T‖
‖(Nu)T ‖ = inf

K∈�n×m
sup
v∈V
| f (v) − Kv|
| f (v)| .

(10)
According to the definition of the relative nonlinearity mea-
sure, we will understand the expression on the right hand
side of (10) in the sense of

inf
{
ϕ ∈ �|∃K ∈ �n×m : | f (v) − Kv| ≤ ϕ | f (v)| ∀v ∈ V} .

As a consequence, either the set V0 of all points v for which
f (v) = 0 (and all limit points v̄ of sequences {vi} for which
f (vi) → 0) is equal to ker K ∩ V or we have ϕUe(V)

N f
= 1.

For rectangular systems with more inputs than outputs (m >
n), the relation f (v) = 0 ↔ Kv = 0 is very unlikely to
hold for any K and thus the realtive nonlinearity measure,
being almost always equal to one, is of restricted use for
such systems. In the cases where m ≤ n, the set V0 will
usually have only few elements, and the nonlinearity measure
is likely to deliver useful information.

Proof: The proof of the result for ϕU(V)
N goes through

as in Theorem 2 with obvious modifications and is omitted.

In the case of scalar functions, we can again obtain an
explicit solution.

8153



Theorem 5: (Relative nonlinearity measure of scalar func-
tions) Let f , k+ and k− be as above and define k∗ by⎧⎪⎪⎨⎪⎪⎩

1
k∗
�
= 1

2

(
1
k+ +

1
k−
)

if 0 < k+k−, |k+ | , |k− | < ∞
k∗ �= 0 else

.

Then

ϕVf
�
= inf

k∈�
sup
v∈V
| f (v) − kv|
| f (v)|

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣ k+−k−

k++k−
∣∣∣ if 0 < k+k−, |k+| , |k− | < ∞

0 if k+ = k− = 0
1 else

.

and the infimum is uniquely achieved for k = k∗ if k+and k−
are finite .

Proof: In the scalar case, the relative nonlinearity
measure of a static function can be reformulated as

inf
k∈�

sup
v∈V
| f (v) − kv|
| f (v)| = inf

k∈�
sup
v∈V

∣∣∣∣∣1 − k
f (v)/v

∣∣∣∣∣ .
We first consider the case k+k− ≤ 0. The case k+ = k− = 0
is obvious. If either k+ = 0 or k− = 0 then k = 0 is
the only admissible value for k, leading to ϕV

f = 1 (see
remark after Theorem 4), so it suffices to consider the case
k− < 0 < k+. If k = 0 we have again ϕV

f = 1. If k > 0 then
ϕV

f ≥ |1 − k/k−| > 1 and if k < 0 then ϕV
f ≥ |1 − k/k+| > 1.

Hence ϕV
f = 1 and this value is uniquely achieved for k = 0.

Next, consider the case when either |k+ | = ∞ or |k−| =
∞. Clearly, for any k � 0: supv∈V

∣∣∣∣1 − k
f (v)/v

∣∣∣∣ ≥ 1 but
supv∈V | f (v) − kv| / | f (v)| = 1 for k = 0 (but this time there
may be other k achieving the same value).
We have now to verify the case 0 < k+k−. For k = k∗ we
have

sup
v∈V

∣∣∣∣∣1 − k∗

f (v)/v

∣∣∣∣∣ =
∣∣∣∣∣1 − k∗

k+

∣∣∣∣∣ =
∣∣∣∣∣1 − k∗

k−

∣∣∣∣∣ =
∣∣∣∣∣k
+ − k−

k+ + k−

∣∣∣∣∣ .
Note that we always have k− ≤ k∗ ≤ k+. We can now
distinguish the two cases

k− ≤ k∗ < k : sup
v∈V

∣∣∣∣∣1 − k
f (v)/v

∣∣∣∣∣ ≥
∣∣∣∣∣1 − k

k−

∣∣∣∣∣ =
∣∣∣∣∣ 1
k−

∣∣∣∣∣ (k − k−)

>

∣∣∣∣∣ 1
k−

∣∣∣∣∣ (k∗ − k−) =
∣∣∣∣∣k
+ − k−

k+ + k−

∣∣∣∣∣
k < k∗ ≤ k+ : sup

v∈V

∣∣∣∣∣1 − k
f (v)/v

∣∣∣∣∣ ≥
∣∣∣∣∣1 − k

k+

∣∣∣∣∣ =
∣∣∣∣∣ 1
k+

∣∣∣∣∣ (k+ − k)

>

∣∣∣∣∣ 1
k+

∣∣∣∣∣ (k+ − k∗) =
∣∣∣∣∣k
+ − k−

k+ + k−

∣∣∣∣∣ .
We have shown that no other k than k∗ can achieve the same
or a smaller value and the proof is complete.

C. Steady-state behaviour of nonlinear dynamical systems

Next, we turn our attention to stable nonlinear systems
featuring a unique steady state response to a steady state
input. The intuitive idea is that the nonlinearity measures
are bounded from below by the corresponding quantities of
the steady state locus. This idea is formalized as follows.

Theorem 6: Consider a nonlinear system defined by the
causal, Lp-stable mapping N : u ∈ Lm

pe 
→ y ∈ Ln
pe. Consider

the function f : V ⊆ �m → �n satisfying | f (v)| < ∞ for all
v ∈ V and assume that N has a unique steady state locus
given by f in the sense that y(t) = (Nu)(t)→ f (v) whenever
u(t)→ v for t → ∞. Then

γUe(V)
N = inf

G∈G
sup

u∈Ue(V)
lim sup

T→∞
‖(Nu −Gu)T ‖
‖uT‖ (11)

≥ γUe(V)
N f

= inf
K∈�n×m

sup
v∈V
| f (v) − Kv|
|v| . (12)

Proof: We define the set U∗ of functions u∗ ∈ Ue(V)
that satisfy u∗(t) → v, v ∈ V\{0} for t → ∞ and |u∗(t)| ≤ v
for all t ≥ 0. Consider the following (in)equalities

inf
G∈G

sup
u∈Ue(V)

lim sup
T→∞

‖(Nu −Gu)T‖
‖uT ‖

≥ inf
G∈G

sup
u∗∈U∗

lim sup
T→∞

‖(Nu∗ −Gu∗)T ‖∥∥∥u∗T
∥∥∥

= inf
G∈G

sup
u∗∈U∗

lim sup
T→∞

∥∥∥(Nf u∗ −Gu∗)T

∥∥∥∥∥∥u∗T
∥∥∥

= inf
K∈�n×m

sup
v∈V
| f (v) − Kv|
|v|

where N f denotes the static nonlinear transfer operator
associated with f . The first inequality is trivial and the
last equality follows from the proof of Theorem 2. Thus,
if we can prove the second equality, the result follows. We
first consider the case p < ∞. For any u∗ ∈ U∗ we have
(Nu∗)(t) → (Nf u∗)(t) as t → ∞. Thus, there is a constant
c > 0 such that for any ε > 0 there exist times T2 ≥ T1 ≥ 0
such that

∣∣∣(Nu∗)(t) − (Nf u∗)(t)
∣∣∣ < 1 and |u∗(t)| > c for all

t > T1 and
∣∣∣(Nu∗)(t) − (Nf u∗)(t)

∣∣∣ < ε for all t > T2. Hence

⎛⎜⎜⎜⎜⎜⎝lim sup
T→∞

∥∥∥(Nf u∗ − Nu∗)T

∥∥∥∥∥∥u∗T
∥∥∥

⎞⎟⎟⎟⎟⎟⎠
p

= lim sup
T→∞

∥∥∥(Nf u∗ − Nu∗)T

∥∥∥p

∥∥∥u∗T
∥∥∥p

≤ lim sup
T→∞

∥∥∥(Nf u∗ − Nu∗)T1

∥∥∥p
+ (T2 − T1) + εp(T − T2)∥∥∥u∗T1

∥∥∥p
+ cp(T − T1)

=

(
ε

c

)p

for a fixed c > 0 and an arbitrary ε > 0,
so the limit must vanish. As

∥∥∥(Nf u∗ − Nu∗)T

∥∥∥ ≥∣∣∣∥∥∥(Nf u∗ −Gu∗)T

∥∥∥ − ‖(Nu∗ −Gu∗)T ‖
∣∣∣ we get

lim sup
T→∞

‖(Nu∗ −Gu∗)T ‖∥∥∥u∗T
∥∥∥ = lim sup

T→∞

∥∥∥(Nf u∗ −Gu∗)T

∥∥∥∥∥∥u∗T
∥∥∥

for all u∗ ∈ U∗ and the result follows for p < ∞. If p = ∞ we
have

∥∥∥u∗T
∥∥∥∞ ≤ |v| and limT→∞ ‖(Nu∗ −Gu∗)T ‖∞ ≥ | f (v) − Kv|

and we thus directly get

lim sup
T→∞

‖(Nu∗ −Gu∗)T ‖∞∥∥∥u∗T
∥∥∥∞

≥ | f (v) − Kv|
|v|

and the proof is complete.
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Proceeding the same way, a similar result can again be
obtained for the relative nonlinearity measure and we give it
without proof.

Theorem 7: Consider a nonlinear system defined by the
causal mapping N : u ∈ Lm

pe 
→ y ∈ Ln
pe satisfying ‖(Nu)T ‖ <

∞ for all T > 0 . Consider the function f : V ⊆ �m → �n

satisfying | f (v)| < ∞ for all v ∈ V and assume that N has
a unique steady state locus given by f in the sense that
y(t) = (Nu)(t)→ f (v) whenever u(t)→ v for t → ∞. Then

ϕUe(V)
N = inf

G∈G
sup

u∈U(V)
lim

T→∞
‖(Nu −Gu)T ‖
‖(Nu)T‖ (13)

≥ ϕUe(V)
N f

= inf
K∈�n×m

sup
v∈V
| f (v) − Kv|
| f (v)| . (14)

D. Results for composite nonlinear systems

Finally, we have a look at systems that are composed
of two subsystems. We first consider the case of a parallel
connection of two Lp-stable mappings N1 and N2. We have

γUN1+N2
= inf

G∈G
sup
u∈U
‖(N1 + N2)u −Gu‖

‖u‖
= inf

G1 ,G2∈G
sup
u∈U
‖(N1 + N2)u − (G1 +G2)u‖

‖u‖
≤ inf

G1 ,G2∈G
sup
u∈U
‖N1u −G1u‖ + ‖N2u −G2u‖

‖u‖
≤ inf

G1 ,G2∈G
sup

u,w∈U

( ‖N1u −G1u‖
‖u‖ +

‖N2w −G2w‖
‖w‖

)

= γUN1
+ γUN2

and thus for two causal, Lp-stable mappings N1,N2 : Ue →
Lpe the triangle-like inequality γUN1+N2

≤ γUN1
+ γUN2

holds. If
one of the systems is linear, say N2 ∈ G, we trivially get
γUN1+N2

= γUN1
.

Next, we consider the series connection of a nonlinear
system N1 and a linear system N2 ∈ G. We get

γUN2N1
= inf

G∈G
sup
u∈U
‖N2(N1u) −Gu‖

‖u‖

≤ inf
G̃∈G

sup
u∈U

∥∥∥N2(N1u) − N2(G̃u)
∥∥∥

‖u‖
≤ ‖N2‖i,p γUN1

where ‖N2‖i,p is the Lp-induced norm of N2. If the nonlinear
subsystem is static, the structure of the composed system is
of Hammerstein-type and we get γU(V)

N2N1
≤ ‖N2‖i,p γVf . For

these relations, no equivalent properties exist for relative
nonlinearity measures.

IV. Conclusions

When using linear controller design techniques for non-
linear systems, it is important to quantify the degree of
nonlinearity of the process under consideration. We studied
two such measures. The first measure, called error gain
nonlinearity measure, corresponds to an error system gain
where the error signal is the difference between the output
of the nonlinear system and its appropriately defined best
linear approximation. The second measure, termed relative

nonlinearity measure, is somewhat similar, but rather cor-
responds to a relative deviation and allows the comparison
of different systems and the analysis of unstable systems.
For both measures we have given simpler formulae in the
case of static nonlinearities. A particularly simple case was
obtained for scalar nonlinearities, where both quantities are
determined by the slopes of the bounding straight lines.
The most useful result is that for dynamical systems, the
values of both quantities are bounded from below by the
corresponding quantities of the function describing the steady
state. Moreover, two results for interconnections of systems
were obtained for the error gain nonlinearity measure.

The obtained results give a very easily derivable lower
bound on the nonlinearity measures and will thus help to
render those quantities more useful both in theoretical studies
and analysis of real-world problems. For the future, further
results on bounds for special system structures as well as
guidelines on how to use the results of the nonlinearity
assessment for controller design purposes are desirable.
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