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Abstract— First principles models of complex industrial pro-
cesses are often derived using finite element or finite difference
methods. One of the advantages of these models is that the
states in the model have a clear physical interpretation. Using
such models we can attempt to monitor or control selected
physical quantities, even though they may not be directly
measurable. Unfortunately the CPU time associated with each
model evaluation of these complex models is often far too large
for use in modern online monitoring or control algorithms. This
paper introduces a general purpose method to approximate the
computationally expensive first principles models with a quasi-
Linear Parameter Varying (qLPV) model structure. The CPU
time associated with the resulting qLPV models is generally
considerably less than the original first principles model. The
identification algorithm is such that the physical interpretation
of the state vector is retained in the identified model. In contrary
to other qLPV identification algorithms, the proposed algorithm
extensively utilizes the availability of the original first principles
model.

I. INTRODUCTION

Large scale first principles models of complex industrial
processes are generally obtained using finite element or finite
difference methods with a very fine spatial grid. Conse-
quently, the obtained state-space models are characterized
by a very large state vector x(k) (typically dim(x(k)) ∼
103 − 109) and very complex nonlinear functions f(·) and
h(·):

x(k + 1) = f(x(k), u(k)) (1)

y(k) = h(x(k), u(k)). (2)

Consequently, the amount of CPU time required to compute
the state and measurement updates using that type of models
is generally at least of the order of the sampling interval.
The advantages of these detailed first principles models are
that the states x(k) have a clear physical interpretation. As a
result we can use such a model to monitor or control physical
properties of the system even though these properties might
not be directly measurable.

Unfortunately in practice the large dimension of x(k) and
the large computation time reduces the use of those large
scale first principles model to offline simulation studies.

The problem of an overly large state dimension can be
solved by using projection based model reduction technique
such as Proper Orthogonal Decomposition (POD)[1] or (Em-
pirical) nonlinear Balancing [2][3]. Using a projection based
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model reduction techniques it is possible to derive reduced
order models of the form

xred(k + 1) = fred(xred(k), u(k)) (3)

y(k) = hred(xred(k), u(k)). (4)

with dim(xred(k)) << dim(x(k)). After reduction the
reduced order state xred(k) still has a physical interpretation,
because there exists a known simple mapping that can ac-
curately reconstruct the full order state x(k) from a reduced
order state xred(k).

Unfortunately model reduction does not necessarily reduce
the computational effort involved to evaluate (3)-(4) [4]. To
enable state estimation and other related online tasks for
complex industrial processes, we thus require in addition
to state reduction techniques, techniques that can find new
models that approximate (3)-(4), but require considerably
less CPU time to perform simulations. The goal in this paper
is to find generically applicable algorithms that accomplish
this task. Since by far the most CPU time is generally spent
evaluating (3), we will only consider methods that attempt
to find faster models for (3).
Methods available in the literature that attempt to reduce
the computational effort for simulations with large scale first
principles can roughly be divided into four main categories.

The first category of methods consists of either optimizing
the spatial grid of the finite element method generating
the large-scale model (1)-(2) or using simpler approximate
physical relations per grid cell. While good results can be
obtained in this manner, this approach is highly problem
specific, and requires expensive specialists to perform the
model simplification.

A very popular second approach to deriving a faster
simulation model is to linearize the (1)-(2) in a chosen
working point before performing projection based model re-
duction. For linear models, projection based model reduction
instantly results in a model that requires considerably less
computational effort for performing model evaluations. A
drawback of this method is that linearization only results
in reasonably accurate models if the original system was
already close to linear.

A third approach consists of partitioning methods [5][6].
Partitioning methods split the original state x(k) into two
parts: x[1](k) and x[2](k). The model (1) is only used to
compute x[1], the remaining states are reconstructed using
linear methods.

The fourth and final approach encountered in the literature
to find faster approximative models is an identification based
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approach. In [7] equation (3) is approximated using a linear
state space model that has the state of the reduced order
model as outputs:

ζ(k + 1) = Âζ(k) + B̂u(k) (5)

xred(k) = Ĉζ(k) + D̂u(k). (6)

The state space matrices Â, B̂, Ĉ, D̂ are identified using a
subspace estimator on simulation data generated by (3). The
resulting model is a linear approximation to the nonlinear
model. The main drawback of the method is that if the orig-
inal model shows significant nonlinearities, the usefulness of
the identified model is limited.

In this paper we will introduce a new identification based
algorithm to approximate (3) with a model that requires
considerably less CPU time. Whereas [7] used a single
linear model to approximate (3) we shall approximate (3)
with a model fid(xred(k), u(k), θ) that has an quasi-Linear
Parameter Varying model structure1:

fid(xred(k), u(k)) = A0xred(k) + B0u(k) + xoff,0+
M∑

m=1

φm(xred, u(k), θm) [Amxred(k) + Bmu(k) + xoff,m] .

(7)

In model structure (7) (A0, B0, xoff,0) are state space
matrices that form a global linear approximation of (3)
and (Am, Bm, xoff,m) are component linear models that
are summed after being weighted according to scheduling
functions φm(·) to allow the behavior of the identified model
to differ from the basic linear model (A0, B0, xoff,0). The
scheduling functions φm(·) determine how the behavior of
the identified model should change, depending on the current
operating point. It can thus be interpreted as an extension
of the method described in [7]. Like in [7] we will need
to identify matrices (A0, B0, xoff,0) and (Am, Bm, xoff,m)
and functions φm(·), for m = 1, . . . , M such that the fid(·)
is as close as possible to the reduced order model fred(·).

Even using a relatively low number of component models
and relatively simple scheduling functions φm(·) a wide vari-
ety of nonlinear models can be approximated. As a result, the
CPU time required to evaluate (7) is generally much lower
than the time required to evaluate (3). Drawback of using
the qLPV model structure are that even for a relatively low
number of components models M the identification problem
is already much more difficult than for linear models. Not
only is it necessary to determine a single linear model given
by A0, B0, xoff,0, we also need to find optimal component
models Am, Bm, xoff,m and scheduling functions φm(·).

The problem of identifying qLPV models has been exten-
sively studied in nonlinear identification literature. Current
methods to identify model structure of the form (7) can be
divided into the following categories:

1We will refer to model structures specified by (7) as quasi-Linear Pa-
rameter Varying (qLPV) models, but in the literature these model structures
are also known under the names local linear models or fuzzy models.

1) identify scheduling functions φm(·) and models
Am, Bm, xoff,m for m = 0, . . . , M simultaneously,
see for instance [8][9][10],

2) functions φm(·) are assumed known, identify only
A0, B0, xoff,0 . . . AM , BM , xoff,M ,

3) two stage methods: first determine scheduling func-
tions φm(·) then identify Am, Bm, xoff,m for m =
0, 1, . . . , M . [11][12].

All the identification approaches in the literature use ex-
perimental data consisting of measured inputs u(k) and
measured outputs y(k) to perform the identification. A plant
model of the form (3) is never assumed available. As a result
the state vector xred(k) of the identified qLPV model will
not have the same physical interpretation as in (3).

In this paper we will introduce a new method to identify
qLPV models. There are three main differences between
our approach and the approaches in the literature. The
first difference is that our procedure will use simulation
data ZN = {u(1), xred(1), . . . , u(N), xred(N)} generated
with (3) instead of measured input and output signals. The
advantages of using simulation data instead of measured data
are threefold:

• in simulation data we know the state xred(k) which will
allow us to retain the physical interpretation of the state
vector xred(k) in the identified model,

• to obtain suitable practical data (expensive) experiments
may be required, while simulation data only requires
computer time,

• there is no measurement noise in simulation data.

The second difference between our method and qLPV
identification methods in literature is that we will not only
use the available simulation data for the identification, but
also we will make extensive use of the knowledge of the
model (3).

The third difference is that using our method the both
the required number of component models M and the
component models Am, Bm, xoff,m themselves for m =
1, . . . , M can be easily determined using a singular value
decomposition.

The remainder of this paper is organized as follows; first
we will provide an outline of our proposed identification
method in section II. Then in sections III to VI we will
discuss the proposed algorithm in more detail. In section VII
the effectiveness of the proposed algorithm is illustrated in
simulation example. Finally the paper ends with a summary
of the main results.

II. OVERVIEW IDENTIFICATION PROCEDURE

This section outlines our proposed identification pro-
cedure. The goal of the procedure is to find a quasi-
LPV model (7) that forms a good approximation to the
orginal reduced order model fred(·) defined in (3). As
mentioned in the introduction, we will use simulation data
ZN = {xred(1), u(1), . . . , xred(N), u(N)} generated with
the known system (3). It is assumed this data is generated
such that the following assumption holds:
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Assumption 1: We have generated data ZN =
{u(1), xred(1), . . . , u(N), x(N)} using the reduced order
model (3). It will be assumed that the available data ZN is
representative for the whole working area of the reduced
order model (3).

The outline of the identification procedure to identify the
quasi-LPV model (7) is given below:

1) Determine A0, B0, xoff,0 such that the linear model
given by A0, B0, xoff,0 is minimizes the residual sig-
nal ψ(k)

[A0, B0, xoff,0] = arg min
N∑

k=1

‖ψ(k)‖2, (8)

with ψ(k) defined as:

ψ(k) = fred(xred(k), u(k))−
[A0xred(k) + B0u(k) + xoff,0]. (9)

2) Compute time-dependent matrices Aψ
k , Bψ

k , xoff,ψ(k)
such that:

ψ(k) = Aψ
k xred(k) + Bψ

k u(k) + xψ
off,k. (10)

The computed time dependent matrices Aψ
k , Bψ

k and
xψ

off,k will be used the step to determine the fixed ma-
trices Am, Bm, xoff,m of our final qLPV expansion.

3) In the previous step we created an expansion of the
residual ψ(k) in time-varying matrices Aψ

k , Bψ
k and

xψ
off,k. Since we want to identify a quasi-LPV struc-

ture of the form (7) we would like an expansion of
ψ(k) in M << N fixed matrixes Am, Bm, xoff,m and
scheduling coefficients βm(k) for m = 1, . . . , M such
that for the simulation data in ZN :

1
N

N∑
k=1

∥∥∥∥∥ψ(k) −
M∑

m=1

βm(k) [Amxred(k)+

Bmu(k) + xoff,m]‖2
< α. (11)

with α a small user defined constant.
As will be explained in section V we will determine the
required number of component models M , the compo-
nent models Am, Bm, xoff,m and the time dependent
scheduling coefficients βm(k) using a Singular Value
Decomposition (SVD) in the ‘parameter-domain’ of
the time-dependent matrices Aψ

k , Bψ
k , xψ

off,k.
4) The scheduling coefficients βm(k) computed in the

previous step are unstructured coefficients while in fact
they depend on current reduced order state xred(k)
and input u(k). In the final step of our identifica-
tion procedure, as elaborated in section VI, we will
determine structured functions φm(xred(k), u(k)) to
replace coefficients βm(k) in (11) such that

1

N

N∑
k=1

∥∥∥∥∥ψ(k) −
M∑

m=1

φm(xred(k), u(k)) [Amxred(k)+

Bmu(k) + xoff,m]‖2 < α. (12)

III. STEP 1: DETERMINATION OF A0 , B0 AND xoff,0

In the first step of the proposed quasi-LPV identification
procedure we determine matrices A0, B0 and xoff,0. In the
proposed identification algorithm we choose to determine
these matrices that the obtained matrices minimize the resid-
ual signal ψ(k) as defined in (9):

[A0, B0, xoff,0] = arg min
A,B,xoff

N∑
k=1

‖f(xred(k), u(k))−

Axred(k) − Bu(k) − xoff‖2. (13)

Since we chose to use simulation data for the identification
procedure, the states xred(k) and inputs u(k) are known. As
a result the criterion (13) is linear in A, B, xoff and thus
A0, B0 and xoff,0 can be easily determined by solving a
linear least squares minimization problem.

IV. STEP 2: DETERMINATION OF Aψ
k , Bψ

k , AND xψ
off,k

In this second step of the algorithm we shall construct
time-dependent matrices Aψ

k , Bψ
k and xψ

off,k such that (10)
holds. Note that such a expansion is not unique. Since we will
later use the expansion (10) to compute the quasi-LPV model
we will choose a particular expansion. In this expansion, the
matrices Aψ

k , Bψ
k are chosen such that:

A0 + Aψ
k =

∂fred(x, u)
∂x

∣∣∣∣
x=xred(k),u=u(k)

(14)

B0 + Bψ
k =

∂fred(x, u)
∂u

∣∣∣∣
x=xred(k),u=u(k)

. (15)

xoff,0 + xψ
off,k) = fred(xred(k), u(k))−

[A0 + Aψ
k ]xred(k) − [B0 + Bψ

k ]u(k) (16)

In other words, the matrices Aψ(k), Bψ(k), xoff,ψ(k) are
chosen such that A0 + Aψ(k), B0 + Bψ(k) and xoff,0 +
xoff,ψ(k) form the linearization of fred(·) at time index k.
As will be explained in the next section this particular choice
for the expansion (11) will allow us to easily compute the
fixed matrices Am, Bm, xoff,m for m = 1, . . . , M using a
simple SVD operation.

V. STEP 3: DETERMINATION OF FIXED MATRICES

Am, Bm, xoff,m AND TIME DEPENDENT COEFFICIENTS

βm(k) FOR m = 1 . . . , M

By construction (see (9)) it holds that for each data pair
{xred(k), u(k)} ∈ ZN :

fred(xred(k), u(k)) =
A0xred(k) + B0u(k) + xoff,0 + ψ(k) (17)

with ψ(k) the discrepancy between the linear model
A0, B0, xoff,0 and the reduced order model fred(·). In the
previous section, we provided an expansion of the prediction
error ψ(k) in a set of time dependent state space matrices:

ψ(k) = Aψ
k xred(k) + Bψ

k u(k) + xψ
off,k. (18)
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In this third step of our methodology, we will determine
M << N models (Am, Bm, xoff,m) (m = 1, . . . , M) and
M scheduling coefficients βm(k) (m = 1, . . . , M), (k =
1, . . . , N) such that (11) holds.

To abbreviate the notation in this section we introduce the
following notation. Define parameter vectors Vs

m for m =
1, . . . , M as:

Vs
m = [vec(Am)T vec(Bm)T xT

off,m]T . (19)

with vec(·) the operator that transforms an arbitrary matrix
into a vector, by stacking its columns. Similarly we define
parameter vectors Vψ,k for k = 1, . . . , N as

Vψ,k = [vec(Aψ
k )T vec(Bψ

k )T xψ
off,k

T
]T . (20)

Using this notation the problem of finding appropriate
matrices Am, Bm, xoff,m such that (11) holds is equivalent
the problem of finding parameter vectors V s

m for m =
1, . . . , M .

The problem of finding vectors Vs
m such that (11) is

satisfied is not trivial, because each vector Vs
m represents

a linear model. We propose a procedure in the parameter
space of the vectors Vs

m to compute the required component
models. This procedure is based on the assumption that if
for all k = 1, . . . , N

Vψ,k ≈
M∑

m=1

βm(k)Vs
m (21)

then we also have that

Aψ
k ≈

M∑
m=1

βm(k)Am, (22)

Bψ
k ≈

M∑
m=1

βm(k)Bm, (23)

xψ
off,kk ≈

M∑
m=1

βm(k)xoff,m (24)

and thus

ψk ≈
M∑

m=1

βm(k) (Amxred(k) + Bmu(k) + xoff,m) . (25)

Procedure 1: The following algorithm can be used to de-
termine parameter vectors Vs

1 , . . . ,Vs
M such that (11) holds:

1) Set λ = 1
2) Compute parameter vectors Vs

1 , . . . ,Vs
λ and coeffi-

cients β1(k), . . . , βλ(k) for k = 1, . . . , N such that:

Vs
1 , . . . ,Vs

λ, β1(1), . . . , βλ(N)

= arg min
Ṽs
1 ,...,Ṽs

λ
,β̃1(1),...,β̃λ(N)

N∑
k=1

∥∥∥∥∥Vψ,k −
λ∑

m=1

β̃m(k)Ṽs
m

∥∥∥∥∥
2

,

(26)

The criterium above results in those parameter vectors
Vs

1 , . . . ,Vs
λ such that averaged over the identification

set ZN we can construct the parameter vectors Vψ,k

for k = 1, . . . , N as a linear combination of the

λ parameter vectors Vs
1 , . . . ,Vs

λ with the smallest
possible error. The parameter vectors Vs

1 , . . . ,Vs
λ and

coefficients β1(k), . . . , βλ(k) for k = 1, . . . , N can be
efficiently computed using an SVD operation.

3) Compute the prediction error of the short ex-
pansion specified by V1, . . . ,Vλ and coefficients
β1(k), . . . , βλ(k). If the computed error satisfies (11)
then M = λ and stop. Otherwise, λ = λ + 1 and goto
step 2.

The advantage of using the parameter space criterion
is that the parameter vectors Vs

1 , . . . ,Vs
λ and functions

β1(k), . . . , βλ(k) can be computed efficiently using the SVD.
Using the vectors Vψ(1), . . . ,Vψ(N), we can construct a data
matrix X:

X = [Vψ,1 · · · Vψ,N ]. (27)

If the singular value decomposition of X is denoted as:

X = USV T , (28)

then the parameter vectors Vs
1 , . . . ,Vs

λ which satisfy (26) are
equivalent to the first λ columns of U .

The corresponding matrices Am, Bm, xoffm , m =
1, . . . , λ can be determined by applying the inverse of the
vec(·) operator to the obtained vectors:

[Am Bm xoff,m] = vec−1(Vs
m). (29)

The coefficients β1(k), . . . , βλ(k) in (26) can be easily
computed via:

βm(k) = Vs
m

TVψ,k. (30)

Note that using our procedure in the parameter space
allows us to easily determine the number of component
models M , which is often a problem is other algorithms.

Secondly, also note that the described method of deter-
mining the expansion (11) is not guaranteed to result in the
shortest possible expansion that satisfies (11). However the
expansions obtained using procedure 1 will in general satisfy
(11) with M << N .

VI. STEP 4: IDENTIFICATION OF STRUCTURED

SCHEDULING FUNCTIONS φi(xred(k), u(k), θ)

In the previous steps matrices
A0, B0, xoff,0 . . . , AM , BM , xoff,M were determined
such that for the available identification data there exists a
scheduling coefficients βm(k) such that the one step ahead
prediction error (11) was smaller that a chosen value α. The
criterion was met using an unstructured set of scheduling
coefficients βm(k) as computed in (30).

In practice the optimal scheduling functions of the final
qLPV models should be known structured function of both
the reduced order xred(k) and inputs u(k). In this fourth
step of the identification procedure structured scheduling
functions φm(xred(k), u(k), θm) will be identified using the
available simulation data ZN .

For this purpose we first choose a model structure for
the functions φm(xred(k), u(k), θm). Since the functions
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φm(·, θm) are not required to have any physical interpre-
tation, we are free to chose any model structure we would
like. The choice for structure of these functions is a tradeoff
between complexity and flexibility.

An example of a simple model structure is:

φm(xred(k), u(k), θm) = [xred(k)T u(k)T 1]θm. (31)

The simple affine model structure for φm(·, θm) has as
main advantages that the structure is linear in its parameter
vector θm and the number of parameters is relatively small.
Drawback of this model structure is that such a structure may
not be flexible enough to allow for an accurate model (7).

If more complex scheduling functions are required, it is
possible to use more complex structures such as radial basis
functions [13] or fuzzy membership functions [12]. To select
an appropriate structure for the scheduling functions, it is
often helpful to examine plots of the computed coefficients
βm(k) (see (30)) as a function of the states and inputs
{xred(k), u(k)} ∈ ZN .

Once a structure has been selected, all that remains is to
estimate the parameter vectors θm. This can be accomplished
by minimizing the prediction error criterion for the available
data ZN :

θ1, . . . , θM = arg min
θ1,...,θM

1
N

N∑
k=1

‖fred(xred(k), u(k))

−fid(xred(k), u(k), θ1, . . . , θM )‖2
, (32)

with fid(·) defined as in (7) using matrices Am, Bm, xoff,m

as determined in section V.
Note that if the scheduling functions φm(·, θm) are chosen

linear in θm such as in (31), the resulting minimization
problem is a linear least squares problem which can be
easily solved. For more complex structures that are not
linear in θm, the parameters of the scheduling functions have
to be determined using nonlinear optimization techniques.
For the previously mentioned structures involving radial
basis functions or fuzzy membership functions, good initial
conditions can be obtained by applying clustering methods
on the computed coefficients βm(k).

VII. SIMULATION EXAMPLE

To illustrate the effectiveness of the presented quasi-
LPV identification method, the method will be applied in
a simulation example. In the simulation example we use the
techniques outlined in sections II through VI to approximate
a finite element model of a heated iron slab that can be
heated or cooled at its edges. To prevent confusion, we shall
use (p, q) instead of the more common (x, y) for horizontal
and vertical coordinates within the slab. If we assume that
heat is only exchanged in the p− q plane the first principles
model for the slab can be easily derived using the following
energy balance:

ρcp(dp)(dq)h
dT (p, q, t)

dt
= ∇ · J(p, q, t) (33)

with cp the specific heat of the iron, h the height of the
slab, T (p, q) the temperature at location (p, q) and J(p, q, t)

a vector containing the flow of thermal energy. The energy
flow J(p, q, t) is given by:

J(p, q) = λ(T (p, q, t))∇(T (p, q, t)), (34)

with λ(T (p, q, t)) a temperature dependent heat conductivity
coefficient. For constant λ(T (p, q, t)), the heated plate model
would be a linear model. In this example however, we chose

λ(T ) = 80 +
3
8
T +

1
2560

T 3, (35)

and thus the heated slab model in nonlinear. To derive
a model for the heat distribution of the entire slab, the
equations (33)-(35) are solved on a 32×32 spatial grid, using
a finite differences approach. After numerical integration
using a step size of 20 seconds using a simple explicit Euler
method, the model can be written in the form (1). This model
was finally reduced to a model of order 25 using a POD
technique [1]. The resulting model is of the form (3), with
dim(xred(k)) = 25 and dim(u(k)) = 4 (i.e. the temperature
at each each side of the slab).

To approximate the reduced order first principles model
of the heated slab with a qLPV model of the form (7), we
first generated N = 3000 pairs of simulation data ZN =
{u(1), xred(1), . . . , u(N), xred(N)}.

After generating the required simulation data the first step
in the qLPV identification algorithm is to estimate a global
linear model with matrices A0, B0, xoff,0. These matrices
were estimated by solving the least squares problem (13).
The global linear model is used to compute the residual ψ(k).
Then in the second step of the identification algorithm the
residual ψ(k) is rewritten function of time-varying matrices
Aψ

k , Bψ
k and xψ

off,k . For this purpose the reduced order
nonlinear model was linearized for all {xred(k), u(k)} ∈
ZN . The obtained expansion (10) was used to construct
the matrices Am, Bm, xoff,m for the shorter expansion, for
m = 1, . . . M using Procedure 1. This resulted in M = 8
component models for α = 0.1. The prediction error of the
shorter expansion (11) over the simulation data ZN using
time functions βm(k) computed via (30) is 0.078. To put
this number in perspective, the prediction error of the linear
model specified by A0, B0, xoff,0 is 4.5, a factor 58 times
larger!

The final step in the qLPV identification algorithm is
to identify the scheduling functions φm(·). To choose an
appropriate structure for the scheduling functions we used
examined plots of the coefficients βm(k) as a function
of states xred(k) and inputs u(k). From these plots we
concluded that the functions βm(k) mainly seem to depend
linearly on the first eight rows of the state vector xred(k)
(denoted by [xred(k)]1:8) and all inputs u(k). Apart from
this linear dependence, functions βm(k) appear to depend
on the both the first four rows [xred(k)]1:4) and inputs u(k)
to the power of 3. This was of course to be expected given
that the heat conductivity function λ(T ) (see (35)) is a third
order polynomial. As a result, the following structure for
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TABLE I

AVERAGED PREDICTION ERRORS AND COMPUTATION TIME OF

CONSTRUCTED APPROXIMATE FASTER MODELS OF HEATED PLATE

MODELS. AVERAGED PREDICTION ERRORS PER GRID CELL AND

COMPUTATION TIME WERE DETERMINED FOR 1000 POINTS OF

VALIDATION DATA.

Model Err CPU time
fred(·) 0 307 s.
Identified Linear model 4.8 3 s.
Identified quasi-LPV model 0.1 36 s.

φm(·) was selected:

φm(xred(k), u(k), θm)

=
[
1 [xred]T1:8 [(xred)3]T1:4 u(k)T u(k)3

T
]
, (36)

with θm ∈ R
21×1 parameter vector that is still to be

determined. Since the chosen model structure for φm(·) is
linear in θm, the parameter vectors can be estimated by
solving linear least squares problem (32).

To test the quality of the identified qLPV model, 1000
points of new validation data has been generated and the
prediction error of the identified qLPV model has been
determined. For reference the prediction error of the linear
model specified by only A0, B0, xoff,0 was also computed.
Results are presented in Table I. In the table we see that
even though the linear model is already fairly accurate, the
qLPV model is approximately 48 times more accurate than
the linear model. The Table also lists the computation times
to generate the predictions using each of the models. The
CPU time for the qLPV model is more that 8 times lower
than the original reduced order model, even though we only
used a very simple explicit Euler solver to derive our first
principles model.

VIII. CONCLUSION

This papers describes a method of approximating a known
complex first principles model (obtained with finite ele-
ment/differencing methods) with a simpler structures. The
chosen structure of the approximation models is a state-
dependent linear combination of affine component models, a
structure also used in LPV and fuzzy identification literature.

To optimally use knowledge contained in the known first
principles models, a new procedure is introduced to derive
the approximation model. Instead of using experimental
data, only simulation data generated with the known first
principles model is used. Apart from using simulation data
instead of experimental data, this paper also introduces a
novel method that allows using the known simulation model
to easily determine the optimal component models.
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