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Abstract— We investigate the problem of the stability of a
system of two conservation laws perturbed by non-homogeneous
terms. We assume that these non-homogeneous terms have a
small C1-norm. By a Riemann coordinates approach we state
a sufficient criterion for the stability in terms of the boundary
conditions. This stability result is then applied to the problem
of the regulation of the water level and the flow rate in an
open channel. The flow in the channel is represented by the
SaintVenant equations perturbed by small non-homogeneous
terms that account for the friction effects as well as external
water supplies or withdrawals.

I. INTRODUCTION

Many distributed physical systems are described by hyper-

bolic partial differential equations (PDE). The main property

of this class of PDE is the existence of the so-called Riemann

coordinates which are a successful tool for the proof of

classical solutions, the analysis and the control among other

properties, see e.g. [1], [7].

In this paper, we investigate the problem of the stability

of such hyperbolic equations in presence of small non-

homogeneous terms. In terms of a criterion on the boundary

conditions, we state a sufficient condition for this stability

property. The proof is based on an analysis of the influence

(of these boundary conditions and of the non-homogenous

terms) on the Riemann coordinates.

In [7], a sufficient condition for a stability property of non-

homogeneous systems of conservation laws is also given. It

is also written in terms of the boundary conditions but, in [7,

Chap. 5], it is assumed that the non-homogeneous terms are

continuously differentiable and that the non-homogeneous

terms together with their derivative vanish at the equilibrium.

In this paper, we assume only that the non-homogenenous

terms vanish at the equilibrium and that their derivative

function is small at the equilibrium. This important difference

asks for special care in the proof of the existence of classical

solutions and of the stability. However our result is stated

here only for the case of two quasilinear conservative laws,

and not for the case of n quasilinear conservative laws, with

n ≥ 2, as considered in [7].

In this paper, we apply our general result on non-

homogeneous systems of conservations laws to the design of

a stabilizing boundary control of a channel. More precisely

we address the problem of the regulation of the water level
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and the water flow rate in an open channel by using the gate

opening as control action.

The model used is not strictly hyperbolic since we consider

also the case of the presence of friction and some external

small supplies or removal of water along the canal. The

model is written in terms of Saint-Venant equations intro-

duced in [15] and commonly used in hydraulics to describe

the flow of water in open-channels (see e.g. the textbooks

[3] or [5]). Here the Saint-Venant equations are perturbed

by small non-homogenous terms that account for the friction

effects as well as external water supplies or withdrawals.

This stability problem for the regulation of the flow in a

channel has been considered for a long time in the literature

as reported in the survey paper [13] which involves a

comprehensive bibliography. For advanced control methods,

see [4], [12] where discrete linear approximations of the

perturbed Saint-Venant equations are used. See also [9],

[10], [11] where a H∞ control design is developped. In [8]

the perturbed Saint-Venant equations are linearized and an

infinite dimensional controller is designed to suppress the

oscillating modes over the canal. This paper can been seen as

a generalization of [6], where Saint-Venant equations without

non-homogenous term are considered.

The paper is organized as follows. First in Section II, we

state our main result, namely a sufficient condition for the

stability of two conservation laws. It is written in terms of

the boundary conditions and non-homogeneous terms with

small C1-norm are considered.

In Section III, the main result is applied to the boundary

regulation of the water level and the water flow rate in

a channel in presence of small friction and small external

supplies or removal of water distributed along its length.

Due to the space limitation, the proofs are omitted. How-

ever we state the main steps of our proof in Section IV. For

a complete proof see [14].

Section V contains some concluding remarks.

II. STABILITY OF HYPERBOLIC SYSTEMS WITH

NON-HOMOGENEOUS TERMS

In all the following, we will denote | · | the norm in IR2

defined, for all (ξ1, ξ2) ∈ IR2, by

|(ξ1, ξ2)| = max(|ξ1|, |ξ2|) ,

and B(ε0) the ball centered in 0 with radius ε0 > 0. Let

L > 0. Let us consider ξ: [0, L]× [0, +∞) → IR2 such that:

∂tξ + Λ(ξ)∂xξ = h(ξ) (1)
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where Λ: B(ε0) → IR2×2 is a continously differentiable

function such that

Λ = diag(λ1, λ2) ,

with

λ1(0) < 0 < λ2(0), (2)

and h = (h1,h2): B(ε0) → IR2 is a continously differen-

tiable function such that

h(0) = 0 . (3)

The boundary conditions of (1) are(
ξ1(L, t)
ξ2(0, t)

)
= g

(
ξ1(0, t)
ξ2(L, t)

)
, (4)

where g: B(ε0) → IR2 is a continuously differentiable

function satisfying g(0) = 0.

We define the compatibility condition for (1) and (4):

Definition 2.1: A function ξ# ∈ C1(0, L; IR2) satisfies

the compatibility condition C if(
ξ#

1 (L)
ξ#

2 (0)

)
= g

(
ξ#

1 (0)
ξ#

2 (L)

)
,

and(
λ1(ξ#(L))∂xξ#

1 (L) − h1(ξ#(L))
λ2(ξ#(0))∂xξ#

2 (0) − h2(ξ#(0))

)

=

∇g
(

ξ#
1 (0)

ξ#
2 (L)

) (
λ1(ξ#(0))∂xξ#

1 (0) − h1(ξ#(0))
λ2(ξ#(L))∂xξ#

2 (L) − h2(ξ#(L))

)
.

We denote by BC(ε0) the set of functions ξ#: [0.L] →
B(ε0) of class C1 satisfying the compatibility assumption C.

To state the following result, we need to define the classical

norms on C0(0, L) and C1(0, L). Given Φ continuous on

[0, L] and Ψ continuously differentiable on [0, L], we denote

|Φ|C0(0,L) = maxx∈[0,L]|Φ(x)| ,
|Ψ|C1(0,L) = |Ψ|C0(0,L) + |Ψ′|C0(0,L)

In addition, for a given matrix A = (aij), ρ(A) denotes its

spectral radius and abs(A) is the matrix defined by abs(A) =
(|aij |).

The main result of this paper is the following

Theorem 2.1: Let ε0 > 0. If

ρ(abs(∇g(0)) < 1, (5)

then there exist ε1 ∈ (0, ε0), and H1 > 0 such that, for all

continuously differentiable functions h : B(ε1) → IR2 such

that (3) holds together with

|∇h(0)| ≤ H1 , (6)

for all ξ# ∈ BC(ε1), there exists one and only one function

ξ ∈ C1([0, L] × [0, +∞) ; IR2) satisfying (1), (4) and

ξ(x, 0) = ξ#(x) ,∀x ∈ [0, L]. (7)

Moreover, there exist µ > 0 and C1 > 0 such that this

function satisfies

|ξ(., t)|C1(0,L) ≤ C1e
−µt|ξ#|C1(0,L) ,∀t ≥ 0. (8)

x
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Fig. 1. A reach of an open channel delimited by two adjustable overflow
spillways

The proof of this result is based on an estimation of the

influence of the non-homogeneous terms on the evolutions

of the Riemann coordinates. In particular, we have to prove

that the damping condition (5) is strong enough to manage

the non-homogeneous terms, whose derivative is assumed to

be small at the origin due to (6). In fact we prove this result

for a particular structure of the boundary conditions (see

(15) below) and we deduce our main result for the boundary

conditions (4).

The sketch of the proof of this Theorem is postponed in

Section IV.

III. APPLICATION TO LEVEL AND FLOW CONTROL IN AN

HORIZONTAL REACH OF AN OPEN CHANNEL

We consider the special case of a reach of an open channel

delimited by two overflow spillways as represented in Figure

1.

We assume that 1) the channel is horizontal, 2) the channel

is prismatic with a constant rectangular section and a unit
width, 3) the channel is subject to time-invariant spatially

distributed water supplies or removals that do not modify

the momentum conservation.

The flow dynamics are described by a nonhomogeneous

system of two laws of conservation (Saint-Venant or shallow

water equations), namely a law of mass conservation :

∂tH(x, t) + ∂x(Q(x, t)) = q(x), (9)

and a law of momentum conservation :

∂tQ(x, t) + ∂x(
Q2(x, t)
H(x, t)

+
gH2(x, t)

2
) = −Cf

Q2(x, t)
H2(x, t)

.

(10)

where H(x, t) represents the water level and Q(x, t) the

water flow rate in the reach, g denotes the gravitation

constant, q(x) the water supply/removal function, Cf the

friction coefficient. The system is written in matrix form as

follows :

∂t

(
H
Q

)
+ A(H, Q)∂x

(
H
Q

)
=

(
q(x)

−CfQ2/H2

)
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with the matrix A(H, Q) defined as :

A(H, Q) =
(

0 1
gH − (Q2/H2) 2Q/H

)
.

The eigenvalues of the Jacobian matrix A(H, Q) :

λ1(H, V ) = (Q/H) −
√

gH

λ2(H, V ) = (Q/H) +
√

gH

are generally called characteristic velocities . The flow is

said to be fluvial (or subcritical) when the characteristic

velocities have opposite signs :

λ1(H, Q) < 0 < λ2(H, Q).

A. Steady-state solution

Under constant boundary conditions Q(0, t) = Q̄0 and

H(L, t) = H̄L ∀t, there exists a steady-state solution :

H(x, t) = H̄(x) and Q(x, t) = Q̄(x) x ∈ [0, L] ∀t

which satisfies the differential equations :

∂xQ̄(x) = q(x)

∂xH̄(x) =
2q(x)

H̄(x)Q̄(x)
+

Cf

H̄2(x)

B. Control design

The control objective is to stabilise the level H(x, t) and

the flow rate Q(x, t) at the steady state profiles H̄(x) and

Q̄(x) corresponding to set points H̄L and Q̄0. We assume

that the boundary flow rates Q(0, t) and Q(L, t) are the

control actions at the user’s disposal because they can be

assigned by the positions u0 and uL of the spillways. It is

also assumed that the water levels at the boundaries H0(t) =
H(0, t) and HL(t) = H(L, t) are the only available on-

line measurements. In order to satisfy this control objective,

and in light of the control laws designed in [6] for the

homogeneous case, the following control laws are proposed :

Q0 =
Q̄0

H̄0
H0 − α0H0

(
2
√

gH0 − 2
√

gH̄0

)
(11)

QL =
Q̄L

H̄L
HL + αLHL

(
2
√

gHL − 2
√

gH̄L

)
(12)

with:

0 < α0 < 1 and 0 < αL < 1.

The parameters α0 and αL are tuning parameters at the

user’s disposal. It can be seen that both controls have the

form of a state feedback at the two boundaries. In addition,

it can be emphasized that the implementation of the controls

is particularly simple since only measurements of the levels

H0(t) et HL(t) at the two spillways are required. This

means that the feedback implementation does not require

neither level measurements inside the pool nor any flow rate

measurements.

C. Stability analysis

We shall now show that the stability of this control system

can be analysed with the theorem reported in Section II. In

order to transform the model (9)-(10) into characteristic form

(1), the following characteristic (Riemann) coordinates are

considered :

ξ1 = (Q/H) − 2
√

gH − (Q̄/H̄) + 2
√

gH̄

ξ2 = (Q/H) + 2
√

gH − (Q̄/H̄) − 2
√

gH̄

Observe that these coordinates can be inverted to give :

H(ξ) =

(
ξ2 − ξ1 + 4

√
gH̄

)2

16g
(13)

and

Q(ξ) =

(
ξ1 + ξ2 + 2(Q̄/H̄)

)
2

(
ξ2 − ξ1 + 4

√
gH̄

)2

16g
(14)

With these coordinates, it is then readily shown that the

model (9)-(10) can be written in the characteristic form (1)

with the characteristic velocities λ1(ξ) and λ2(ξ) expressed

in the Riemann coordinates by using the inverse transforma-

tion (13)-(14) and the following definitions for h1(ξ) and

h2(ξ) :

h1(ξ) =
(

Q̄

H̄
+

√
gH̄ − 3ξ1 + ξ2

4

) (
Q̄

H̄
− 2

√
gH̄

)

+
g

[
q(x) − 4Cf (ξ1 + ξ2 + 2(Q̄/H̄))

]
ξ2 − ξ1 +

√
gH̄

h2(ξ) =
(

Q̄

H̄
−

√
gH̄ − 3ξ1 + ξ2

4

) (
Q̄

H̄
+ 2

√
gH̄

)

−g
[
q(x) + 4Cf (ξ1 + ξ2 + 2(Q̄/H̄))

]
ξ2 − ξ1 +

√
gH̄

Observe also that h1(0) = h2(0) = 0.

Moreover, in the characteristic coordinates, the control

laws (11)-(12) can be shown to be equivalent to the following

boundary conditions :

ξ1(L, t) = −kLξ2(L, t) with kL =
1 − αL

1 + αL

and

ξ2(0, t) = −kLξ1(0, t) with k0 =
1 − α0

1 + α0

It is easily seen that these boundary conditions are in the

form (3) and that, in this special case,

ρ(abs(∇g(0)) = k0kL.

Hence the closed loop control system is exactly set in

a form which allows to apply Theorem 2.1. This means
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that, provided the conditions of that theorem are satisfied

(in particular provided the tuning paramaters α0 and αL

are chosen such that |k0kL| < 1), under the control laws

(11)-(12), the level H(x, t) and the flow rate Q(x, t) are

guaranteed to smoothly exponentially converge to the desired

steady-state profiles H̄(x) and Q̄(x) respectively.

IV. SKETCH OF THE PROOF OF THEOREM 2.1

This section is devoted to the proof of Theorem 2.1. First

we assume that the boundary conditions have a particular

form (see (15) below). It allows us to set down a more natural

machinery to prove intermediate technical lemmas. In Sec-

tion IV-A, we recall an existence result of a solution in finite

time. In Sections IV-B and IV-C, estimates of |ξ(·, t)|C0(0,L)

and |ξ(·, t)|C1(0,L) are derived, and we conclude the proof of

Theorem 2.1 in Section IV-E (in particular the assumption

on the form of the boundary conditions is removed).

A. Existence result

In all the following, except in Section IV-E below for

the proof of Theorem 2.1, we assume that the boundary

conditons (4) are of the particular form(
ξ1(L, t)
ξ2(0, t)

)
=

(
g1(ξ2(L, t))
g2(ξ1(0, t))

)
, (15)

where the functions g1 and g2 are continuously differentiable

on a neighborhood of 0.

Combining the existence result of [7, Chap. 5, Theo. 1.1]

together with the result of the continuity with respect to

parameters as given in [1, Chap. 3], we get the following

existence result:

Theorem 4.1: Let T > 0. There exist ε(T ) > 0, c(T ) > 0
and H(T ) such that, for all ξ# ∈ BC(ε(T )) and for all

continuously differentiable functions h: B(ε(T )) → IR2

such that (3) holds and

|∇h(0)| ≤ H(T ) (16)

there exists one and only one function ξ ∈ C1([0, L] ×
[0, T ], IR2) satisfying the PDE (1) with boundary conditions

(15) and initial condition (7). Moreover, this function ξ
satisfies, ∀t ∈ [0, T ],

|ξ(., t)|C0(0,L) ≤ c(T )|ξ#|C0(0,L) , (17)

|ξ(., t)|C1(0,L) ≤ c(T )|ξ#|C1(0,L) . (18)

In the following, we apply Theorem 4.1 several times.

This allows us to define two decreasing sequences of positive

numbers ε2, ε3, ... and H2, H3, ... We consider initial

conditions ξ# successively in BC(ε2), BC(ε3), ...

Let, for i ∈ {1, 2},

si = L
|λi(0)| , (19)

τ1 > max{s1, s2}. (20)

Let A = (aij) ∈ IR2×2 and a > 1 such that

|(∇g)ij(0)| < aij < a, ∀(i, j) ∈ {1, 2}2, (21)

ρ(A) < 1. (22)

Let

τ2 := (K + 2)τ1. (23)

From (22), there exists an integer K ≥ 2 such that such

that c(2τ1)
∑

k≥K |Ak| < 1. Let µ, ν and ω > 1 be such

that

ν = c(2τ1)
∑

k≥K |Ak| < 1, (24)

µ = c(τ2)τ2(2a)
τ2−τ1

min{s1,s2}+1 + c(τ2)τ2, (25)

ω ≥ |(Λ′(ξ#))ij |,∀(i, j) ∈ {1, 2}2,∀ξ# ∈ BC(ε(2τ1))(26)

ω ≥ |(Λ̄)ij |,∀(i, j) ∈ {1, 2}2. (27)

where Λ̄ = Λ(0) and c(2τ1), c(τ2) and ε(2τ1) are given by

Theorem 4.1.

B. Estimation of |ξ(., t)|C0(0,L)

Let ε2 = ε(τ2) and H2 = H(τ2) given by Theorem 4.1.

For all 0 < H < H2, for all continuously differentiable

functions h: B(ε2) → IR2 satisfying (3) and

|∇h(0)| ≤ H , (28)

for all ξ# ∈ BC(ε2), there exists a solution ξ ∈ C1([0, L]×
[0, τ2]; IR2) of (1), (15) and (7).

Due to (2), we may assume without loss of generality (i.e.

with ε2 sufficiently small) that

λ1(ξ(x, t)) < 0 < λ2(ξ(x, t)). (29)

The aim of this section is to establish the following

Lemma 4.2: We have the existence of H6 > 0 and ε6 ∈
(0, ε2), such that for all continuously differentiable functions

h: B(ε2) → IR2 satisfying (3) and (28), for all ξ# ∈ BC(ε6),
the following inequalities holds:

|ξ(., τ2)|C0(0,L) ≤ (ν + µ)(H + ε2)|ξ#|C0(0,L). (30)

Before sketching the proof of this lemma, let us state a series

of intermediate results.

Let x ∈ [0, L].
We define, for k ∈ N \ {0} and for (i1, ..., ik) ∈ {1, 2}k,

ti1...ik
∈ [0, T ] and pi1...ik

∈ [0, L] × {ti1...ik
} by recursion

on k as follows

• For k = 1, let us consider the solution y1 of the Cauchy

problem

•
y1 (t) = λ1(ξ(y1(t), t)), y1(τ2) = x.

Due to (29), it allows us to define the time instant t1 ≤
τ2 by y1(t1) = L, and we set p1 = (L, t1).

• For k = 1 again, let us consider the solution y2 of the

Cauchy problem

•
y2 (t) = λ2(ξ(y2(t), t)), y2(τ2) = x.

Due to (29), it allows us to define the time instant t2 ≤
τ2 by y2(t2) = 0. and we set p2 = (0, t2).

We can prove the following

Claim 4.1: There exist ε3 ∈ (0, ε2) and H3 ∈ (0, H2)
such that, for all 0 < H < H3, for all continuously
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differentiable h: B(ε2) → IR2 satisfying (3) and (28), for

all ξ# ∈ BC(ε3), we have, ∀i1 ∈ {1, 2}
|ξi1(x, τ2)| ≤ |ξi1(pi1)|+τ2c(τ2)(H +ε2)|ξ#|C0(0,L). (31)

Suppose that ti1...ik
∈ [0, τ2] and pi1...ik

∈ [0, L] ×
{ti1...ik

} are defined and, for ik+1 ∈ {1, 2}, we define

ti1...ik+1 ∈ [0, τ2] and pi1...ik+1 ∈ [0, L]×{ti1...ik+1}. Again,

we consider two cases:

• We consider the Cauchy problem

•
y1 (t) = λ1(ξ(y1(t), t)), y1(ti1...ik

) = 0

and we define ti1...ik1 ∈ [0, ti1...ik
) by y1(ti1...ik1) = L.

If such ti1...ik1 exists, it is unique and we define then

pi1...ik1 such that pi1...ik1 = (L, ti1...ik1). In contrast, if

such ti1...ik1 does not exist, we do not define ti1...ik1,

nor even pi1...ik1, nor ti1...ik1...il
and pi1...ik1...il

for l >
k + 1.

• We consider the Cauchy problem

•
y2 (t) = λ2(ξ(y2(t), t)), y2(ti1...ik

) = L,

and we define ti1...ik2 ∈ [0, ti1...ik
) by y2(ti1...ik2) = 0.

Again, if such ti1...ik2 exists, it is unique and we define

then pi1...ik2 such that pi1...ik2 = (0, ti1...ik2). However

if such ti1...ik2 does not exist, we do not define ti1...ik2,

nor even pi1...ik2, nor ti1...ik2...il
and pi1...ik2...il

for l >
k + 1.

Similarly to Claim 4.1, using (1), (3), Theorem 4.1 and

by construction of ti1...ik+1 and pi1...ik+1 , we have

Claim 4.2: There exist ε4 in (0, ε3) and H4 ∈ (0, H3)
such that, for all 0 < H < H4, for all continuously

differentiable functions h: B(ε2) → IR2 satisfying (3) and

(28), and for all ξ# ∈ BC(ε4),

|ξ1(0, ti1...ik
)| ≤ |ξ1(pi1...ik1)|+c(τ2)τ2(H+ε2)|ξ#|C0(0,L) ,

(32)

and

|ξ2(L, ti1...ik
)| ≤ |ξ2(pi1...ik2)|+c(τ2)τ2(H+ε2)|ξ#|C0(0,L) .

(33)

Note that, due to (19), there exists a finite number of k ≥ 1
such that

si1 + · · · + sik
≤ τ2 − τ1 .

Similarly to Claim 4.1, by using Equations (15), (19), (20),

(31), (32), (33), and Theorem 4.1, we can prove the following

technical result.

Claim 4.3: There exist ε5 ∈ (0, ε4) and H5 ∈ (0, H4),
such that, for all 0 < H < H5, for all continuously

differentiable functions h: B(ε2) → IR satisfying (3) and

(28), for all ξ# ∈ BC(ε5), for all integer k ≥ 1, and for

all (i1, ..., ik, ik+1) ∈ {1, 2}k+1 such that si1 + · · · + sik
≤

τ2 − τ1, we have the existence of ti1...ikik+1 and pi1...ikik+1 .

Moreover

|ξik
(pi1...ik

)| ≤ ∑
j �=ik

aikj |ξj(pi1...ikj)|
+ c(τ2)τ2(H + ε2)|ξ#|C0(0,L).

By using Theorem 4.1, Equations (17), (19) and (20), we

may prove the follwing

Claim 4.4: There exist ε6 ∈ (0, ε5) and H6 ∈ (0, H5),
such that, for all 0 < H < H6, for all continuously

differentiable functions h: B(ε2) → IR2 satisfying (3) and

(28), for all ξ# ∈ BC(ε6), for all integer k ≥ 1, and for all

(i1, ..., ik, ik+1) ∈ {1, 2}k+1 such that

τ2 − 2τ1 ≤ si1 + ... + sik
≤ τ2 − τ1 ,

we have the existence of ti1...ikik+1 and the estimation

ti1...ik
∈ [0, 2τ1]. Moreover

|ξ(pi1...ik
)| ≤ c(2τ1)|ξ#|C0(0,L). (34)

Let us state the following

Claim 4.5: For all l in IN, there exists δl > 0 such that

we have (Pl):

For all 0 < H < H6, for all continuously differentiable

functions h: B(ε2) → IR2 satisfying (3) and (28), for all

ξ# ∈ BC(ε6), ∀(i1, . . . , il) ∈ {1, 2}l such that si1 + · · · +
sil

≤ τ2 − 2τ1, we have

|ξil
(pi1...il

)| ≤
∑
k≥l

∑
τ2−2τ1≤si1+···+sil

+sil+1+···+sik
≤τ2−τ1

2∑
j=1

ailil+1ail+1il+2 · · · aikj |ξj(pi1···ikj)|

+ δl(H + ε2)|ξ#|C0(0,L) .

Moreover we may assume that

δ1 = c(τ2)τ2(2a)
τ2−τ1

min{s1,s2}+1
. (35)

C. Estimation of |∂xξ(., t)|C0(0,L)

Let η: [0, L]×[0, τ2] → IR2 be defined by η = Λ̄ ∂ξ
∂x where

ξ ∈ C1([0, L]× [0, τ2]; IR2) is defined by ξ# ∈ BC(ε6), (1),

(15) and (7) as above.

Similarly let us define η1: [0, L] × [0, τ2] → IR and η2:

[0, L]× [0, τ2] → IR defined respectively by η = (η1, η2)T .

Differentiating (1) with respect to x, it follows that

∂tη + Λ̄Λ(ξ)Λ̄−1∂xη = −Λ̄(Λ′(ξ)∂xξ)∂xξ + Λ̄∇h(ξ)∂xξ ,
(36)

along the characteristics.

Moreover, differentiating (15) and using (1), it gives(
(−Λ(ξ)Λ̄−1η + h(ξ))1(L, t)
(−Λ(ξ)Λ̄−1η + h(ξ))2(0, t)

)
=

∇g
(

ξ1(0, t)
ξ2(L, t)

) (
(−Λ(ξ)Λ̄−1η + h(ξ))1(0, t)
(−Λ(ξ)Λ̄−1η + h(ξ))2(L, t)

)
.

A development similar to ξ can be used as for ξi along the

trajectories of (36). It can be shown from Theorem 4.1, and

(18), (26) and (27), that there exist ε7 ∈ (0, ε6) and H7 ∈
(0, H6) such that, for all 0 < H < H7, for all continuously

differentiable functions h: B(ε2) → IR2 satisfying (3) and

(28), for all ξ# ∈ BC(ε7) then, we have with (36), for all

i ∈ {1, 2},

|ηi(y(t2), t2) − ηi(y(t1), t1)| ≤ ω|ξ#|2C1(0,L)|t2 − t1|
+ ω(H + ε2)|ξ#|C1(0,L)|t2 − t1|.
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Hence, using the computations of Section IV-B, it follows

the following

Lemma 4.3: There exist ε7 and H7 > 0 such that, for all

0 < H < H7, for all continuously differentiable functions h:

B(ε2) → IR2 satisfying (3) and (28), for all ξ# ∈ BC(ε7),
we have

|η(., τ2)|C0(0,L) ≤ (ν + 2ω)(H + ε2)|ξ#|C1(0,L). (37)

D. Sketch of the proof of Theorem 2.1 for boundary condi-
tions (15)

In this section, we sketch the proof of Theorem 2.1 for

the special boundary conditions (15) instead of (4).

Let ν′ ∈ (0, 1). Up to reducing ε2, there exists H8 ∈
(0, H7) such that

(ν + max(µ, 2ω))(H8 + ε2) < ν′ .

We combine (30) and (37) to get the existence of ε8 ∈
(0, ε7), such that, for all 0 < H < H8, for all continuously

differentiable functions h: B(ε2) → IR2 satisfying (3) and

(28), for all ξ# ∈ BC(ε8), we have

|ξ(., τ2)|C1(0,L) ≤ ν′|ξ#|C1(0,L) .

This estimate allows a repeated application of Theorem 4.1 to

give, for all 0 < H < H8, for all continuously differentiable

functions h: B(ε2) → IR2 satisfying (3) and (28), for all

ξ# ∈ BC(ε8), the existence of a unique solution of (1), (7)

and (15) over any interval [0, nτ2] with n ∈ IN \ {0} and

|ξ(., nτ2)|C1(0,L) ≤ ν′n|ξ#|C1(0,L) .

Thus, by letting C1 = max(c(τ2), 1)e− ln ν′
and µ =

− ln(ν′)
τ2

, we get (8).

E. Conclusion of the proof of Theorem 2.1

In the previous section, we have proved Theorem 2.1 if

the boundary conditions have the special form (15). To prove

Theorem 2.1 for the boundary conditions (4), the size of the

state can be doubled as done in [6, Proof of Theorem 6]. For

more details see [14].

V. CONCLUSION

The aim of this paper is to address the two following

problems.

Firstly, we state a sufficient condition for the stability of

non-homogeneous systems of two conservation laws, when

the non-homogeneous part is small in C1-norm. This suffi-

cient criterion is written in terms of the boundary conditions

and it is proved thanks to an analysis of the Riemann

coordinates.

Secondly, we apply this general condition to the case of

the regulation of the water level and the water flow rate in

an open channel. The evolution of the flow is described by

using the Saint-Venant equations perturbed by small non-

homegeneous terms that account for the friction effects

as well as external supplies or withdrawals. Our general

sufficient condition allows us to design stabilizing boundary

controls of the canal.

The complete version of this paper [14] will also inves-

tigate the generalization of these results to a network of

n open-channels with n > 2. This asks for a study of

hyperbolic systems of larger dimension than those considered

in this paper.
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