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Abstract— In this paper, the analysis of the closed-loop
dynamics of a control system with scarce random sampling
is addressed. The control strategy is based on the use of
a conventional single-rate controller combined with a model
based output estimator that estimates the unmeasured inter-
sampling outputs at the control (fast) rate. The proposed
estimator takes into account the past measured outputs, as
a difference with inferential control schemes. The separation
principle between the estimator dynamics and the closed-
loop one is demonstrated. The design of the control system
is simplified, since the controller and the estimator can be
designed separately. Some examples illustrate how an adequate
estimator design improves the closed-loop performance with
respect to the inferential control scheme (open loop estimator),
solving the problem of instability that appears when the open
loop system is unstable.

I. INTRODUCTION

In many industrial applications the control signal is up-
dated at a fixed rate T , but the output is measured with
a different timing pattern and, sometimes, by various sen-
sors, each one having a maybe different sampling rate,
and reliability. In some practical cases the output is not
available at every sampling time due to computer overload,
communication errors, shared or slow sensors or event-driven
sensors. Different authors have dealt with the modelling of
such systems when the measurement pattern is periodic [1],
[4] based on the definition of a model that relates outputs
measured at one rate with inputs updated at another rate. This
allows, for example, to tackle the problem of the design of
a dual-rate control system [2], but the multirate approach
cannot deal with random sampling.

A general approach to deal with missing data operation
is to explicitly estimate the outputs at the instants when
they are unavailable, in order to apply standard control or
parameter estimation techniques. This is the idea of the
inferential control, where a model of the plant is used to
estimate the outputs. In many cases, like in [7], the missing
data are estimated by running the plant model in open
loop, using the measurements whenever they are available.
It is clear that if the uncontrolled plant is unstable and the
measurements are very scarce, the controlled plant stability
cannot be guaranteed.
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This paper deals with the analysis of a control scheme
where a conventional single-rate controller is fed back with
the output of a model based estimator that estimates the
unmeasured outputs at period T from the scarcely and irreg-
ularly measured data from the actual plant. This estimator
(defined in [8] and [9]) takes into account the previous
measurements, improving the disturbance rejection and the
dynamic behaviour of the closed-loop. The open loop esti-
mator used in [5], [6] and [7] is a particular case of the more
general one used here.

The main contribution of the paper is to provide tools to
determine the closed-loop stability of (unstable) controlled
plants where an estimator is used to compute the output
under scarce and irregular measurement operation. The main
result is a separation principle, that allows the design of the
conventional controller and the output estimator to be dealt
with independently. Furthermore, some hints to design the
estimator are presented.

The layout of this paper is as follows: In section 2
the control scheme is described, including the estimator
algorithm. In section 3 the dynamics of the estimator is
analysed, giving a design hint to compute the estimator gain.
In section 4 the equation defining the dynamics of the closed-
loop is derived. The separation principle is demonstrated in
section 5. Some numerical examples are analysed on section
6 showing how the use of an adequate estimator improves
the response of the controlled system. Finally on section 7
the main conclusions are summarized.

II. PROBLEM STATEMENT

A. Control scheme

Consider the digital control system shown in figure 1,
where G(s) is a continuous time (CT) SISO linear process
whose input is updated at period T by a computer with a
zero-order hold. A new input u[t] arrives every control period,
where t is the number of input update. The relationship
between the discrete signal and the continuous one is

u[t] = uc(t T ). (1)

The process output yc(τ) is measured synchronously with the
input update at a different and no necessarily constant period.
The instants where the output y[t] is available are given by
the sequence {t0, t1, . . . ,tk, . . .}, where instant tk indicates the
time when the k-th output measurement is available (yk =
y[tk]). The number of input updates (control periods) between
measurements is Nk = tk − tk−1 ≥ 1.

In the control scheme, C(z) represents the conventional
linear digital controller that operates at period T and ŷ[t] is
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the estimated output that is sent to the controller to compute
the control action.

C(z)�� � ZOH � G(s) �
u[t] uc(τ) yc(τ)
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Fig. 1. Control scheme.

�

�
◦

◦ ◦ ◦

�� �� �� ��Nk−2T Nk−1T NkT Nk+1T

k−3 k−2 k−1 k k +1

uc(τ)
�

yk−1 y[tk] = ykyk−2

yc(τ)
◦yk+1

u

y
yk−3

�
u[tk]u[tk−1]

t

Fig. 2. Synchronous random sampling.

B. Plant

The discrete ZOH equivalent of G(s) at period T , is
defined by the difference equation

y[t] = −θ
ᵀ
a Y [t −1]+θ

ᵀ
b U [t −1], (2)

where θa = [a1 · · · an]
ᵀ

and θb = [b1 · · · bn]
ᵀ

are the parameter
vectors, Y [t − 1] = [y[t −1] · · · y[t −n]]

ᵀ
is the output vec-

tor and U [t − 1] = [u[t −1] · · · u[t −n]]
ᵀ

is the input vector
(whose elements are as defined in (1)). Equation (2) can be
rewritten as1

Y [t] =
[ −θ

ᵀ
a

I(n−1)×(n)

]
Y [t −1]+

[
θ

ᵀ
b

0(n−1)×(n)

]
U [t −1]

= AY [t −1]+BU [t −1]. (3)

C. Estimator

The digital controller C(z) needs the sequence of outputs
at period T , but the process output is measured irregularly
at a slower rate. Therefore, the missing inter-sampling mea-
surements have to be estimated. For that purpose, a model
based output predictor has been added in the closed-loop.
The estimator (introduced in [3] and analysed in depth in [8])
uses the parameters of the process model, and all the previous
inputs, measurements and past output estimates to obtain
the estimation of the unknown outputs. When there is no
measurement available, the output is estimated running the
model in open loop, leading to

Ŷ [t|t −1] = AŶ [t −1]+BU [t −1], (4a)

1I(n−1)×(n) are the n − 1 first rows of the nxn identity matrix, and
0(n−1)×(n) is a null matrix of order (n−1)× (n).

where Ŷ [t|t−1] = [ŷ[t|t−1] · · · ŷ[t−n+1|t−1]]
ᵀ

is the initial
estimation of the output regression vector, and Ŷ [t] = Ŷ [t|t]
represents the updated one. Depending on the availability of
a new measurement, the estimated output regression vector
is updated by

Ŷ [t] = Ŷ [t|t] =Ŷ [t|t −1]+ l (y[t]− ŷ[t|t −1])δ [t] (4b)

where δ [t] is the availability factor (δ [t] = 1 if the mea-
surement is available and δ [t] = 0 if not). The vector gain
l = [l1 · · · ln]ᵀ must be designed to assure the estimation error
dynamics stability. The output estimation is the first value of
Ŷ [t] given by ŷ[t] = hŶ [t], with h = [10 · · · 0].

D. Digital controller

The conventional single-rate digital controller C(z) is as-
sumed to be a LTI SISO discrete system of order n, operating
at period T . The reference signal will be assumed to be null
(it is not relevant to obtain the closed-loop dynamics). The
controller difference equation can then be expressed as

u[t] = −θ
ᵀ
pU [t −1]+θ

ᵀ
qỸ [t −1]+q0 ŷ[t], (5)

where θp = [p1 · · · pn]
ᵀ
, θq = [q1 · · ·qn]

ᵀ
and q0 are the

controller parameters2, and Ỹ [t−1] = [ŷ[t−1] · · · ŷ[t−n]]
ᵀ

is
the history of the fed back output estimations at each control
period (note the difference with Ŷ [t]). Equation (5) can be
written in matrix form as

U [t] =
[ −θ

ᵀ
p

I(n−1)×(n)

]
U [t −1]+

[
θ

ᵀ
q

0(n−1)×(n)

]
Ỹ [t −1]

+q0h
ᵀ
hŶ [t]

= P U [t −1]+QỸ [t −1]+q0HŶ [t], (6)

where H = h
ᵀ
h is a n×n null matrix with the element (1,1)

equal 1.

III. ESTIMATOR DYNAMICS

In this section, a sufficient condition for the estimator
stability is obtained. First, the dynamics of the estimation
error es obtained.

Lemma 1 (Estimation error dynamics): The prediction
error dynamics of the algorithm (4) applied to system (3)
when there is no modelling error is defined by the linear
time-variant system (updated every measuring instant)

Ek = (I − lh)ANk Ek−1 = Mk Ek−1 (7)

where Nk may change arbitrarily with time. The estimation
error vector is defined when the measurement is available
(t = tk) as Ek = Y [tk]− Ŷ [tk].

Proof 1: When t = tk, equation (4b) can be expressed as

Ŷ [tk] =AŶ [tk −1]+BU [t −1]

+ lh
(
Y [tk]−AŶ [tk −1]−BU [tk −1]

)
.

2If the process and the controller polynomials have different orders, n
will be the higher one, and the vectors of parameters are assumed to be
completed by zeros.
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Subtracting this expression from Y [tk], one obtains

Ek =(I − lh)
(
Y [tk]−AŶ [tk −1]−BU [tk −1]

)
.

If equations (3) and (4a) are applied recursively, Y [tk] and
Ŷ [tk − 1] can be expressed as a function of the regression
vectors in the previous sampling time (i.e, Y [tk−1] and
Ŷ [tk−1]) leading to

Ek =(I − lh)ANk
(
Y [tk−1]− Ŷ [tk−1]

)
.

When a periodic sampling is addressed (Nk = N, where
N is a constant value), the predictor error dynamics of the
algorithm (4) is stable if and only if the eigenvalues of the
matrix

M = (I − lh)AN

are inside the unit circle. When a time-varying irregular
sampling is addressed (Nk varies arbitrarily with time), the
previous condition established for all k is not necessary
neither sufficient, and the nature of the time-variant matrix
Mk in (7) must be taken into account. The number of input
updates between available measurements is assumed to vary
in a given finite set

Nk ∈ N = {ν1, . . . ,νm}. (8)

Theorem 1: Consider the system (3). If there exist one
matrix P = P

ᵀ ∈Rn×n such that the set of LMIs[
P P (I − lh)Aνi

((I − lh)Aνi)
ᵀ
P P

]
� 0, (9)

for i = 1, . . . ,m is feasible, then the prediction error of the
algorithm defined by (4) when there is one measurement
available every Nk, belonging to the set (8), converges
asymptotically to zero.

Proof 2: Applying Schur complements in (9)

((I − lh)Aνi)
ᵀ
P (I − lh)Aνi −P ≺ 0, (10)

holds for i = 1, . . . ,m. Defining the Lyapunov function Lk =
E

ᵀ
k P Ek, the existence of a matrix P � 0 such that Lk <

Lk−1, ∀k is a sufficient condition to assure the convergence
of the estimation error. Using the estimation error dynamic
equation (7), this is equivalent to condition

M
ᵀ
k PMk −P ≺ 0, (11)

for any instant k. As (10) holds, and as (9) also implies
P � 0, condition (11) also holds and quadratic stability is
then proved.

Remark 1: The design of the output estimator gain can
be addressed by pole placement using a constant value N
(for example the average of the possible values of Nk), and
then checking the stability over all possible Nk with the help
of theorem 1. If the set of LMI is not feasible, then the
assigned poles, or the constant N can be changed till one
gain l is found such that the estimator is stable. Other LMI
based design strategies are being developed but they are out
of the goal of this work.

IV. CLOSED LOOP DYNAMICS

In this section, the time varying matrix defining the
global closed-loop dynamics is obtained. For this purpose
a relationship between the vectors of inputs, outputs and
estimation errors is established, first at the control period
T and then at the global time varying period Nk T .

A. Closed loop dynamics under standard sampling

Consider a standard sampled data closed-loop system
running at period T with the output measured every time the
control input is updated and therefore, no predictor is used.
In this case the controller only receives measured outputs
(ŷ[t] = y[t]), so Ek is a null vector. The controller equation (6)
can be combined with equation (3) leading to

U [t] = (P +q0HB)U [t −1]+ (Q+q0HA)Y [t −1]. (12)

Combining the process (3) and the controller (12) equations,
the closed-loop dynamics of the system can be expressed as[

Y [t +1]
U [t +1]

]
=

[
A B

Q+q0HA P +q0HB

][
Y [t]
U [t]

]
≡ MCL

[
Y [t]
U [t]

]
,

(13)

where the eigenvalues of matrix MCL define the closed-
loop behaviour. If they are inside the unit circle, stability
is assured.

B. Feedback signal reconstruction

In order to express the closed-loop dynamics of the
system with missing outputs estimator, the four equations (3),
(4) and (6) must be joined together. For this purpose the
feedback signal vector Ỹ [t] must be expressed as a function
of the ouput vector Y [t] and the estimation error E[t]. As
Ŷ [t] contains the updated estimations ŷ[t − i|t], they must
be related with the fedback ones ŷ[t − i] = ŷ[t − i|t − i]. The
second element in Ŷ [t] is

ŷ[t−1|t] = ŷ[t−1]+ l2 (y[t]− ŷ[t|t−1])δ [t],

being

ŷ[t|t−1] =
1

1− l1δ [t]
(ŷ[t]− l1y[t]δ [t]),

that leads to

ŷ[t−1|t] = ŷ[t −1]+
l2δ [t]
1− l1

(y[t]− ŷ[t]).

When expressing the third element of Ŷ [t] as

ŷ[t−2|t] = ŷ[t−2|t−1]+ l3 (y[t]− ŷ[t|t−1])δ [t]

the elements ŷ[t|t−1] and ŷ[t−2|t−1] must be obtained as a
function of ŷ[t], ŷ[t−1] and ŷ[t−2] leading to

ŷ[t−2|t] = ŷ[t−2]+
l3(y[t]− ŷ[t])δ [t]+ l2(y[t−1]− ŷ[t−1])δ [t−1]

1− l1
.

For a generic entry in Ŷ [t] the above expression takes the
form

ŷ[t−i|t] = ŷ[t−i]+
i−1

∑
j=0

li− j+1

1− l1
(y[t− j]− ŷ[t− j])δ [t− j]
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i = 1, . . . ,n− 1. This set of equalities can be joined in the
expression

Ŷ [t] = R[t]Ỹ [t]+ (I −R[t])Y [t]

with

R[t] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0
−l2 δ [t]

1−l1
1

. . .
...

−l3 δ [t]
1−l1

−l2 δ [t−1]
1−l1

. . .
. . .

...
...

...
. . . 1 0

−ln δ [t]
1−l1

−ln−1 δ [t−1]
1−l1

. . . −l2 δ [t−n+2]
1−l1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

The relationship between feedback regressor and estimation
error can then be established as

Ỹ [t] = Y [t]−W [t]E[t] (15)

where W [t] is the inverse of R[t] defined as

W [t] = R[t]−1 = 2I −R[t], (16)

C. Closed loop dynamics under random sampling

Theorem 2: Consider the control scheme shown in fig-
ure 1 where the process is assumed to be a CT LTI SISO
system defined by equation (3). The controller is assumed to
be a discrete LTI system operating at period T and defined by
equation (6), and the estimator is defined by equations (4).
Assume also a synchronous random sampling scenario as
shown in figure 2. Then, the closed-loop dynamics of the
resulting linear time-variant system updated every measuring
instant is defined by

ξ[tk] = Γ

(
Nk

∏
j=1

M [tk − j]

)
ξ[tk−1] ≡ Mpred(k)ξ[tk−1], (17)

with the global state vector ξ[t] = [E[t]
ᵀ
Y [t]

ᵀ
U [t]

ᵀ
]
ᵀ

and
where matrix M [t] is defined by

M [t] =

⎡⎣ A 0 0
0 A B

−(QW [t]+q0HA) Q+q0HA P +q0HB

⎤⎦ , (18)

and matrix Γ is defined by

Γ =

⎡⎣I − lh 0 0
0 I 0

q0 l1 H 0 I

⎤⎦ (19)

Proof 3: For an arbitrary instant t �= tk without measure-
ment, predictor (4) is applied with δ [t] = 0 and the controller
equation (6) is expressed as

U [t] = PU [t −1]+QỸ [t −1]+q0H(AŶ [t −1]+BU [t −1]).
(20)

Applying expression (15) to vector Ỹ [t −1]

U [t] =(P +q0HB)U [t −1]+ (Q+q0HA)Y [t −1]
− (QW [t −1]+q0HA)E[t −1]. (21)

and grouping equations (3), (4) and (21) the following ex-
pression is obtained when there is no measurement available,

i.e., when t = tk−1 +1, . . . ,tk −1

ξ[t] = M [t −1]ξ[t −1] (22)

When a new measurement is available at instant t = tk,
expression (6) leads to

U [t] = (P +q0HB)U [t −1]+ (Q+q0HA)Y [t −1]
− (QW [t −1]+q0HA)E[t −1]+q0HlhAE[t −1], (23)

where q0 H lh = q0 l1 H due to the special form of matrices
h and H . Grouping equations (3), (4) and (23) the next
expression can be written

ξ[t] = ΓM [t −1]ξ[t −1] (24)

Applying equation (22) recursively for t = tk−1 +1, . . . ,tk −1
and equation (24) for t = tk, the desired expression (17) is
obtained

ξ[tk] = ΓM [tk −1]M [tk −2] · · ·M [tk−1]ξ[tk−1].

V. SEPARATION PRINCIPLE

In this section, the control scheme of figure 1 is shown to
fulfil a separation principle, in the sense that the stability of
the estimator (4), and the standard closed-loop system (13)
are necessary and sufficient conditions to ensure the stability
of the full system (17). First, an important result of a class
of linear time variant systems is presented.

Lemma 2: Consider a time variant system defined by the
partitioned matrix

Mk =
[
Ak 0(n×2n)
Bk Ck

]
(25)

where the matrices Ak and Ck represent two subsystems that
are part of the global system represented by Mk. If there
exist two matrices Q1 � 0 and P3 � 0 such that

Ak Q1 A
ᵀ
k −Q1 ≺ 0, (26)

C
ᵀ
k P3 Ck −P3 ≺ 0, (27)

then there exists one matrix P � 0 such that

M
ᵀ
k P Mk −P ≺ 0, (28)

and, therefore, the system Mk is stable.
Conversely, if there exists one matrix P � 0 such that (28)

holds, then there exist two matrices Q1 � 0 and P3 � 0 such
that (26) and (27) are true, and, therefore, the subsystems
Ak and Ck are stable.

Proof 4: First assume that (28) has a solution P � 0, with
P partitioned as blocks P = [P1,P

ᵀ
2 ;P2,P3]. Due to the

special structure of matrix (25) it is easily checked that the
inequality (28) implies (27). If (28) has a solution P � 0,
then there also exists a solution Q � 0 to the equation

Mk QM
ᵀ
k −Q ≺ 0, (29)

with Q partitioned as blocks Q = [Q1,Q
ᵀ
2;Q2,Q3]. Again,

it is easily checked that the inequality (29) implies (26).
Conversely, suppose now that there are two matrices Q1 �

0 and P3 � 0 such that (26) and (27) hold. It is evident that
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there also exists a solution Z � 0 to the equation

A
ᵀ
k Z Ak −Z ≺ 0. (30)

Moreover, the existence of a positive γ such that the matrix

P =
[

γ Z(n×n) 0(n×2n)
0(2n×n) P3(2n×2n)

]
satisfies (28), will be demonstrated, proving the stability of
the closed-loop system (25). Equation (28) can be written as

M
ᵀ
k P Mk −P =[

γA
ᵀ
k Z Ak+B

ᵀ
k P3 Bk−γZ B

ᵀ
k P3 Ck

C
ᵀ
k P3 Bk C

ᵀ
k P3 Ck−P3

]
≺ 0.

Using Schur complements it is easy to show that the above
condition holds (and so, the closed-loop system (25) is
stable) if γ satisfies

γ
(
A

ᵀ
k Z Ak −Z

)
+B

ᵀ
k P3 Bk

−B
ᵀ
k P3 Ck

(
C

ᵀ
k P3 Ck −P3

)−1
C

ᵀ
k P3 Bk ≺ 0. (31)

Since (30) is satisfied and γ > 0, the first addend is negative
definite. The term B

ᵀ
k P3 Bk is positive definite because P3 �

0. The last addend is positive definite because the inverse of a
positive definite matrix is also positive definite, and because
it is pre and postmultiplied by a matrix (B

ᵀ
k P3 Ck) and its

transpose (C
ᵀ
k P3 Bk). Condition (31) is then satisfied for any

γ > 0 such that γ ·µ > ν , where

µ = λmin

(
Z−A

ᵀ
k Z Ak

)
and

ν=λmax

(
B

ᵀ
k P3 Bk−B

ᵀ
k P3 Ck

(
C

ᵀ
k P3 Ck−P3

)−1
C

ᵀ
k P3 Bk

)
.

Since (30) and (27) are satisfied, such a γ always exists.

Theorem 3: Consider the same hypothesis described in
theorem 2. Assume that the next conditions hold

(i) there exists one matrix P � 0 such that (11) is satisfied
(the estimator is stable), and

(ii) there exists one matrix Q � 0 such that(
MCL

Nk
)ᵀ

QMCL
Nk −Q ≺ 0, (32)

i.e., the conventional sampling closed loop system (de-
fined by MCL) is stable.

Then, there exists one matrix X � 0 such that

Mpred(k)
ᵀ
X Mpred(k)−X ≺ 0, (33)

i.e., the closed loop system defined in (17) is stable.

Conversely, if there exists one matrix X � 0 such that
condition (33) is satisfied, then the estimator subsystem (7),
and the conventional closed-loop subsystem (13) satisfy
conditions (i) and (ii) (and therefore both are stable).

Proof 5: First, let us rewrite matrix (18) as

M [t] =
[

A [0 0]
Φ[t] MCL

]
,

with

Φ[t] =
[

0
−(QW [t]+q0HA)

]
and MCL the conventional closed-loop dynamic matrix (13).
The closed-loop dynamic equation (17) is then defined by the
matrix

Mpred(k) = ΓM [tk −1] · · ·M [tk−1] =

=

⎡⎣ (I − lh)ANk [0 0][
0

q0 l1 H

]
ANk +∆(k) MCL

Nk

⎤⎦ , (34)

with

∆(k) =
Nk

∑
j=0

MCL
Nk− jΦ[t + j]A j.

The matrix (34) describes a linear time variant system with
predefined structure defined by all the possible combinations
of the sequence {Nk}. Applying the lemma 2 to this matrix,
the separation principle for the system (17) is easily demon-
strated.

The previous result simplifies the procedure to check the
stability of the whole system, because it is sufficient to prove
the stability of the estimator and the conventional control
loop. The design of the whole system is also simplified,
because the estimator and the controller can be designed
separately.

The control scheme studied in this paper (with the pro-
posed estimator that takes into account the previous mea-
surements) does not need the plant to be open loop stable in
order to reach a closed-loop stable system. This is illustrated
on the examples.

VI. EXAMPLES

To illustrate the previous results, the closed-loop behaviour
is analysed in two different examples.

Example 1 (Control of a stable system): Consider a sta-
ble system that can be approximated by the second or-
der transfer function G(s) = 10/(s2 + 2s + 8). The input
is assumed to be updated at constant period T = 0.06
seconds. The DT ZOH equivalent transfer function is G(z) =
(0.0173z−1 +0.0166z−2)/(1−1.86z−1 +0.8869z−2). A dig-
ital controller C(z) is designed by pole placement for closed-
loop poles z = {0.85,0.7,0.4,0.3,0.2}, leading to C(z) =
(18.32 − 31.79z−1 + 13.92z−2)/((1 − z−1)(1 + 0.0937z−1 +
0.0161z−2)).

Assume that the outputs are measured randomly every
ν input periods, with ν ∈ N = {1, . . . ,5}. An estimator is
designed by pole placement for stable eigenvalues (0.7,0.7)
at period N = 3, leading to l = [0.8314 0.7921]

ᵀ
. In order to

guarantee the stability, LMI (9) must be verified. With the
help of standard LMI solvers a positive definite matrix is
found

P =
[

0.7068 −0.0286
−0.0286 0.7797

]
� 0.

Applying the theorem 3 one concludes that the closed loop
system is also stable (the estimator and the conventional
closed loop are stable and hence the equation (33) is ver-
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Fig. 3. Step response and output disturbance rejection (example 1).

ified). The step response and output disturbance rejection of
the control system is shown in the figure 3 and is compared
to the inferential control (estimator running in open loop,
l = 0).

Example 2 (Control of an unstable system): Consider
now an unstable system defined by G(s) = 10/(s2 − s)
with the input being updated at constant period T = 0.03
seconds. The DT ZOH equivalent transfer function is G(z) =
(0.0045z−1 + 0.0046z−2)/(1 − 2.0305z−1 + 1.0305z−2).
Assume that the outputs are measured randomly every
2, 3, 4, 5 or 6 input periods, with the same probability.
A digital controller C(z) is designed by pole placement
assigning closed-loop poles at z = {0.9,0.7,0.5}, leading
to C(z) = (27.05 − 25.407z−1)/(1 − 0.1925z−1). For the
estimator, the gain of the estimator (4b) is designed
for eigenvalues {0.7,0.7} assuming N = 4, leading to
l = [0.9489 0.787]

ᵀ
. The stability of the closed loop is

checked by looking for feasibility on the LMI problem (9).
Using standard LMI solvers it is found a matrix P

P =
[

20.6907 −0.1227
−0.1227 19.3365

]
� 0,

that is positive definite. The stability of the closed loop is
therefore concluded applying theorem 3. In this case, the set
of LMI (9) is not feasible when running the estimator in
open loop (l = 0) because the plant is unstable, and thus the
closed loop system with that strategy is also unstable.

The response of the closed-loop to a step change on the
reference (at t = 0), and on the input disturbance (at t = 50)
is shown in figure 4. The behaviour (disturbance rejection
and reference tracking) of the closed-loop estimator strategy
(–) is correct. The open loop estimator strategy (- -) leads
to an unstable response due to the unstable dynamics of the
process included in the closed-loop.

VII. CONCLUSIONS

In this paper, the analysis of the closed-loop dynamics of a
control system with synchronous random sampling has been
addressed. A control scheme consisting of a conventional
single-rate controller combined with a model based out-
put estimator that estimates the unmeasured inter-sampling
outputs at the fast rate has been analysed. The proposed
estimator takes into account the previous measurements (as
a difference with inferential control schemes).
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Fig. 4. Step response and input disturbance rejection (example 2).

A sufficient condition for stability of the output estimator
has been obtained in terms of the feasibility of a set of LMI.
A predictor gain design strategy has been proposed based on
this result.

The global closed-loop dynamic equation of the controller-
estimator system has been derived, related to the measuring
instants (variable hyper-period).

The main result is the demonstration of the separation
principle between estimator and controller, in the sense that
the stability of the estimator and the conventional control
loop imply the stability of the global closed loop system. The
estimator and the controller can thus be designed separately.

The proposed scheme can lead to stable closed loop even
if the process is open loop unstable, as a difference with
inferential control schemes (where instability of open loop
process implies instability of the closed loop).

Finally, some examples illustrate the main results and
show the improvement of the closed-loop performance with
respect to the inferential control scheme (open loop esti-
mator), when an adequate closed-loop estimator is designed
(solving the instability problem that appears when the open
loop system is unstable).
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