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Abstract— A practical method is proposed for the convex
design of robust feedforward controllers, which ensure H∞/L2

performance in the face of LTI and arbitrarily time-varying
model uncertainties. A technique which computes the global
minimum of this difficult infinite dimensional optimization
problem is proposed, as well as a suboptimal but computa-
tionally less involving algorithm. A missile example illustrates
the efficiency of the scheme: a robust feedforward controller is
designed, either on the continuum of linearised time invariant
models (corresponding to trim points), or on a quasi-LPV model
representing the non-linear one.

I. INTRODUCTION

The issue of designing robust feedforward controllers
has been rather underestimated in the litterature w.r.t. the
feedback case, despite its interest in industrial problems: in
practice the aim of many design specifications is indeed to
shape the time- or frequency-domain responses of a closed
loop to a reference input rather than to an unmeasured
disturbance. Moreover, if the convex closed loop design
of a feedback controller requires Youla parametrisation [1],
so that the order of the controller is necessarily greater or
equal than the one of the open loop plant, the design of a
robust feedforward controller which simultaneously ensures
time- or frequency-domain specifications on several closed
loops (for a fixed feedback controller) is much simpler,
since it directly reduces to the minimisation of a convex
objective under convex constraints, corresponding to the
design specifications [2], [3].

We consider in this paper a much more complex prob-
lem, namely the design of a robust feedforward controller
either on a continuum of linearised time invariant models
(corresponding to trim points) or on an LPV model. The
issue is just to obtain a closed loop LFT model, either
with only LTI model uncertainties, or with mixed LTI and
arbitrarily time-varying ones. The design of a feedforward
controller, which minimises an upper bound of the worst-case
H∞/L2 performance in the face of these model uncertainties,
remains convex [4]. This is nevertheless a difficult opti-
mization problem, with an infinite number of optimization
parameters and frequency domain constraints. The principle
is to solve it first on a frequency gridding with an LMI
solver, and then to validate the result with a µ frequency
sweeping technique [5], [6], [7], even when time-varying
uncertainties are accounted for: remember that the structured
singular value (s.s.v.) µ is used to analyse the robustness
properties in the face of LTI model uncertainties.

A suboptimal but computationally less involving solution
to this infinite dimensional optimization problem is also
proposed, in which the frequency-dependent D,G scaling
matrices, corresponding to a µ upper bound, are computed
with the routine mu.m of the µ-Analysis and Synthesis
Toolbox instead of an LMI solver. Note that the µ frequency
sweeping technique also uses this routine.

Note that to a large extent the order and structure of the
feedforward controller H(s) are free. The sole constraint
is to put it under the form H(s) =

∑N
i=1 θiHi(s), where

filters Hi(s) are fixed while the θi are the design parameters.
As for the choice of the filters, the orthonormal basis
of [8] is used to reduce numerical problems. Moreover, with
a suitable choice of the poles of the basis the whole set
of asymptotically stable transfer matrices is covered by this
infinite-dimensional basis.

A missile example illustrates the computational efficiency
of the method. The non-linear missile model is extracted
from [9], a robust feedback controller is synthesised with
a quadratic stability method [10] and the missile model is
finally put under an LFT form with the LFR Toolbox [11].
The feedforward controller is then designed, either on the
continuum of linearised time invariant models, or on a quasi-
LPV model representing the non-linear one.

The paper is organised as follows. Section II states the
problem while section III presents the method. Section IV
then details the missile application and concluding remarks
end the paper.

II. PROBLEM STATEMENT

With reference to Fig. 1.a, the issue is to design a
feedforward controller H(s) which minimises the L2 in-
duced norm of the transfer function Tyr→y between the
reference input yr and y despite model uncertainties in
∆ = diag(∆1,∆2), where ∆1 = diag(δTI

i Iri
) contains

LTI parametric uncertainties δTI
i and ∆2 = diag(δTV

i Iqi
)

contains arbitrarily time varying parametric uncertainties
δTV
i . Neglected dynamics could also be accounted for, and

each normalised time invariant or time varying parametric
uncertainty satisfies δi ∈ [−1, 1]. As a consequence let the
unit ball B∆ = {∆ | σ(∆) < 1}. The issue is to minimise
(an upper bound of) γ under the induced L2 norm constraint:

‖Tyr→y‖iL2
≤ γ ∀∆ ∈ B∆ (1)

Frequency domain templates can be included in P .
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Fig. 1. Design scheme (a) and standard interconnection structure (b).

III. THE METHOD

As a preliminary the s.s.v. µ and its upper bound are
introduced in section III-A, as well as the µ frequency
sweeping technique. Section III-B then details how to convert
the design specifications of section II into a convex infinite
dimensional optimization problem. An efficient solution to
this problem is proposed in section III-C, as well as a
suboptimal but computationally less involving algorithm in
section III-E. The aim of section III-D is to explain how the
µ frequency sweeping technique is used in this context.

A. Preliminaries

The s.s.v. µ is first defined. The next lemma then intro-
duces the µ upper bound of [12].

Definition 3.1: Let a structured model perturbation
∆ = diag(δ1Iq1 , . . . , δnIqn

,∆C
1 , . . . ,∆C

m), i.e. a block di-
agonal matrix with real parametric uncertainties δi ∈ [−1, 1]
and full complex blocks ∆C

j , i.e. complex matrices without
specific structure satisfying σ(∆C

j ) < 1. ∆ thus belongs to
the unit ball B∆. Let N a given complex matrix. The s.s.v.
µ∆(N) is defined as the inverse of the size of the smallest
model perturbation ∆ satisfying det(I − ∆N) = 0.

Lemma 3.2: As a sufficient condition, µ∆(N) ≤ β if
there exist scaling matrices D = D∗ > 0 and G = G∗,
whose structure fits the one of ∆ (i.e. D∆ = ∆D and
G∆ = ∆∗G) satisfying:

σ

((
DND−1

β
− jG

) (
I + G2

)−1/2
)

< 1 (2)

If ∆ = diag(δ1Iq1 , . . . , δnIqn
,∆C

1 , . . . ,∆C
m), the structures

of the matrices D and G are:

D = diag(D1, . . . , Dn, d1Ir1 , . . . , dmIrm
)

G = diag(G1, . . . , Gn, 0, . . . , 0)

where the dimension of Di and Gi is qi and ∆C
j ∈ Crj ,rj .

The issue is to minimize the µ upper bound β w.r.t. scaling
matrices D and G (i.e. w.r.t. submatrices Di and Gi and
scalars dj). This can be done either with the σ formula-
tion above [12], implemented in the routine mu.m of the
µ-Analysis and Synthesis Toolbox, or with the original LMI
formulation.

Let us now state the general problem solved by the
µ frequency sweeping technique [5], [6], [7].

µ test problem: Let a given transfer matrix N(s) and ∆
an LTI structured model perturbation. Do there exist scaling
matrices D(ω) and G(ω) satisfying for ω ∈ [0,+∞):

σ
“`

D(ω)N(jω)D−1(ω) − jG(ω)
´ `

I + G2(ω)
´−1/2

”
< 1

The issue is to test whether µ(N(jω)) ≤ 1 over the
frequency domain with the µ upper bound. This can be
performed in a very efficient way by computing the µ upper
bound over a (small) finite subset of frequencies ωi. If the µ
upper bound is found to be greater than 1 at a frequency ωi,
stop since a worst-case frequency is found which does not
satisfy the test. Otherwise let D(ωi) and G(ωi) the computed
values of the scaling matrices at frequency ωi. The issue is
to compute the validity domain of these scaling matrices, i.e.
the frequency intervals inside which:

σ
“`

D(ωi)N(jω)D−1(ωi) − jG(ωi)
´ `

I + G2(ωi)
´−1/2

”
< 1

so as to finally eliminate with a few frequency points ωi

the whole frequency domain. See [5], [6] for the detailed
algorithm and [7] for an efficient implementation based on
the routine mu.m of the µ-Analysis and Synthesis Toolbox.

B. The infinite dimensional optimization problem

We now go back to the problem of section II. As a
preliminary, Fig. 1.a is transformed into Fig. 1.b.

If P =
[

P11 P12 P13

P21 P22 P23

]
, then:

M =
[

P11 P12 + P13H
P21 P22 + P23H

]
=

[
M11 M12

M21 M22

]
(3)

The following proposition is just an application of the
robustness analysis theory.

Proposition 3.3: Assume that M(s) is asymptotically sta-
ble. Let D1(ω) = D∗

1(ω) > 0 and G1(ω) = G∗
1(ω) some

frequency-dependent scaling matrices whose structure fits
the one of ∆1. Let then D2 = D∗

2 > 0 and G2 = G∗
2

some constant scaling matrices whose structure fits the one
of ∆2, assuming moreover that D2 is a real matrix and G2

an imaginary matrix. Let D(ω) = diag(D1(ω), D2, I) and
G(ω) = diag(G1(ω), G2, 0). As a sufficient condition (1)
is satisfied if:

Mγ(jω)D(ω)M∗
γ (jω) +

j
(G(ω)M∗

γ (jω) − Mγ(jω)G(ω)
)

< D(ω) (4)

for ω ∈ [0, +∞) and with Mγ = M

[
I 0
0 I

γ

]
.

The next proposition then states the main result, namely
the convex infinite dimensional optimization problem.

Proposition 3.4: With reference to proposition 3.3, let
D(ω) = diag(D1(ω), D2) and G(ω) = diag(G1(ω), G2).
Let then H(s) =

∑N
i=1 θiHi(s), where filters Hi(s) are fixed

while the θi are the design parameters. As a sufficient condi-
tion (1) is satisfied if there exist θi and frequency dependent
scaling matrices D(ω) and G(ω) satisfying ∀ω ∈ [0, + ∞)
(the ω dependence is dropped out to alleviate the notations):
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D − P11DP ∗
11+

j
`
P11G − GP ∗

11

´ −(P11D + jG)P ∗
21 M12

−P21(DP ∗
11 − jG) γI − P21DP ∗

21 M22

M∗
12 M∗

22 γI

3
77775 > 0 (5)

with M12 = P12 +P13

NX
i=1

θiHi and M22 = P22 +P23

NX
i=1

θiHi.

Proof of Proposition 3.4: First assume that γ = 1 to
alleviate the notations. (4) can be equivalently rewritten:»

M11

M21

–
D

ˆ
M∗

11 M∗
21

˜
+ j

»
GM∗

11 − M11G GM∗
21

−M21G 0

–

−
»

D 0
0 I

–
+

»
M12

M22

– ˆ
M∗

12 M∗
22

˜
< 0

i.e. −Q + SS∗ < 0, with S =
[

M12

M22

]
. Just apply the

Schur complement and finally note that:

Mγ = M

[
I 0
0 I

γ

]
=

[
M11

M12
γ

M21
M22

γ

]
�

Inequality (5) corresponds to the minimisation of a linear
objective γ under LMI constraints, which can be efficiently
solved with an LMI solver. The aim of sections III-C to III-E
is now to exploit this property to propose a practical solution
to the problem of proposition 3.4.

C. Solutions to the infinite dimensional optimization problem

The problem of proposition 3.4 has an infinite number
of frequency dependent constraints and also of optimization
parameters, namely the scaling matrices D1(ω) and G1(ω).
Let γ∗ the minimal solution of this infinite dimensional
problem. There are 2 classical ways to solve it.

The first one is to solve it on the continuum of frequencies
[0, +∞) with the KYP Lemma, i.e. a state-space solution.
This requires the use of bases for D1(s) =

∑
i αiDi(s)

and G1(s) =
∑

i βiGi(s), where filters Di(s) and Gi(s) are
fixed while the αi and βi are the optimization parameters.
An augmented finite dimensional optimization problem is
obtained. This approach has 3 drawbacks:

• Just an upper bound of γ∗ is computed, since finite
dimensional bases of D1(s) and G1(s) are used, which
can not cover the whole set of possible scaling matrices
D1(ω) and G1(ω).

• The choice of the basis is not obvious.
• The order of the state-space representation of the aug-

mented plant, which is used in the KYP Lemma, can
be very high, since it contains P (s) and the bases of
H(s), D1(s) and G1(s). This may lead to an excessive
computational burden for the LMI solver.

The second approach, that is further investigated in this
paper, is to solve a finite dimensional optimization problem
corresponding to a frequency gridding, as usually done in
µ analysis. Nevertheless the computational time is higher
in our problem, since because of the design parameters in
H(s) =

∑
i θiHi(s) and of the constant D2 and G2 scaling

matrices, it is impossible to independently solve the problem
at each frequency ωi (with just optimization parameters
D1(ωi) and G1(ωi)): LMI (5) at each point of the gridding
must be stacked into a single one. Moreover, just a lower
bound of γ∗ is obtained since the optimization problem is
less constrained than on a continuum of frequencies.

The algorithm below is now introduced in this context to
tackle the aforementioned drawbacks. It computes an interval
inside which γ∗ is guaranteed to lie with a precision of ε.

1) Let (ωi)i∈[1, N ] an initial (small size) frequency
gridding.

2) Solve the optimization problem of proposition 3.4 on
the gridding. Let γLB,N the minimised value, and
H(s), D2 and G2 the associated values of the feedfor-
ward controller and of the constant scaling matrices.

3) For these values let γ = (1+ ε)γLB,N with ε > 0, and
check (4) with the µ frequency sweeping technique
(see section III-D). If this is satisfied γ is an upper
bound of γ∗ and the global minimum is computed
with a satisfactory accuracy ε. Otherwise let ω̃ a worst-
case value of the frequency, where (4) is not satisfied.
Include ω̃ in the gridding and go back to step 2.

To some extent, this algorithm minimises the necessary
size of the gridding to minimise the computational time. A
parameter α > 0 is also introduced to release the constraints
and objectives between optimization at step 2 and validation
at step 3, which are performed for ∆ ∈ (1 + α)B∆ and
∆ ∈ B∆ respectively. This allows to guarantee conver-
gence and to reduce the number of iterations. The following
proposition now states the key result to prove the finite-time
convergence of the algorithm. For the sake of conciseness,
only the case of zero G scaling matrices is presented and the
proof is omitted.

Proposition 3.5: Let Mγ,α = M

(
(1 + α)I 0

0 I
γ

)
. Let

a frequency gridding (ωi)i∈[1,N ] of [0, ω], with ω1 = 0
and ωN = ω. Assume that there exist scaling matrices
D(ωi) satisfying MγLB ,α(jωi)D(ωi)M∗

γLB ,α(jωi) ≤ D(ωi)
and d1I ≤ D(ωi) ≤ d2I . Let γ = γLB(1 + ε) and
ν = min(ε, α) > 0. Assume that the degree of stability
of Mγ,0(s) is ρ (i.e. all poles si satisfy �(si) < −ρ)
and that its ρ shifted H∞ norm is bounded by L, i.e.

sup
�(s)≥−ρ

σ(Mγ,0(s)) ≤ L. If the frequency gridding satisfies:

max
i

|ωi − ωi−1| ≤ 2ξρ√
4 − ξ2

with ξ =
√

d1

d2

ν

L(1 + ν)

then ∀ω ∈ [ωi−1, ωi+1]:

Mγ,0(jω)D(ωi)M∗
γ,0(jω) ≤ D(ωi) (6)

First note that 4− ξ2 > 0 can be guaranteed by choosing
a small enough value of ν, and thus of tolerances inside
the algorithm. If relation (6) is satisfied, it means that there
exists a frequency dependent scaling matrix D(ω) satisfying
Mγ,0(jω)D(ω)M∗

γ,0(jω) ≤ D(ω) ∀ω ∈ [0, ω], so that γ is
a guaranteed worst-case performance level. It thus proves that
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if the optimization is performed on a suitable and fine enough
frequency gridding, the validation at step 3 will necessarily
be successful. On this basis, it is possible to prove the finite-
time convergence of the algorithm. Finally note that ω should
be theoretically infinite. Nevertheless, as usually done in µ
analysis, a large value is used in practice.

D. Validation with a µ frequency sweeping technique

The aim of this section is to show how the µ frequency
sweeping technique presented in section III-A is used to
validate on the whole frequency range the result computed on
the frequency gridding at step 2. At the beginning of step 3,
the feedforward controller H(s) is fixed, as well as constant
scaling matrices D2 and G2. M(s) in (3) is thus fixed. The
problem to be solved is the following :

Problem 1: Do there exist scaling matrices
D1(ω) = D∗

1(ω) > 0 and G1(ω) = G∗
1(ω) satisfying (4)

for ω ∈ [0,+∞), with D(ω) = diag(D1(ω), D2, I),
G(ω) = diag(G1(ω), G2, 0) and γ = (1 + ε)γLB,N ?

At the end of step 2, it is already known that there exist
scaling matrices D1(ωi) and G1(ωi) satisfying inequality
(4) at each point of a gridding (ωi)i∈[1,N ] for γ = γLB,N .
The following lemma explains how to transform the LMI
formulation (4) into a σ one [12].

Lemma 3.6: There exist scaling matrices D(ω) and G(ω)
satisfying (4) if and only if there exist scaling matri-
ces D̃(ω) = D1/2(ω) and G̃(ω) = D−1/2(ω)G(ω)D−1/2(ω)
satisfying:

σ

„“
D̃(ω)M∗

γ (jω)D̃−1(ω) − jG̃(ω)
” “

I + G̃2(ω)
”−1/2

«
< 1 (7)

Proof: Following [12] first multiply inequality (4) by
D̃−1(ω) on the left and on the right to obtain:

M̃(ω)M̃∗(ω) + j(G̃(ω)M̃∗(ω) − M̃(ω)G̃(ω)) < I

with M̃(ω) = D̃−1(ω)Mγ(jω)D̃(ω). The above inequality
can then be rewritten as:(

M̃(ω) + jG̃(ω)
) (

M̃(ω) + jG̃(ω)
)∗

< I + G̃2(ω) �

Using the above lemma, problem 1 can be equivalently
restated as follows:

Problem 2: Do there exist scaling matrices D̃1(ω), G̃1(ω)
satisfying (7) for ω ∈ [0,+∞), with γ = (1 + ε)γLB,N ,
D̃(ω) = diag(D̃1(ω), D̃2, I), G̃(ω) = diag(G̃1(ω), G̃2, 0),
D̃i = D

1/2
i and G̃i = D

−1/2
i GiD

−1/2
i for i = 1, 2 ?

Problem 2 can finally be equivalently transformed into
problem 3. Let first:

H(jω) =

2
4

0
@ I 0 0

0 D̃2 0
0 0 I

1
A M∗

γ (jω)

0
@ I 0 0

0 D̃−1
2 0

0 0 I

1
A

−j

0
@ 0 0 0

0 G̃2 0
0 0 0

1
A

3
5

0
@ I 0 0

0 (I + G̃2
2)

−1/2 0
0 0 I

1
A (8)

Problem 3: Do there exist scaling matrices D̃1(ω) and
G̃1(ω) satisfying:

σ

„“
D̂(ω)H(jω)D̂−1(ω) − jĜ(ω)

” “
I + Ĝ2(ω)

”−1/2
«

< 1

for ω ∈ [0,+∞), with γ = (1 + ε)γLB,N , D̂(ω) =
diag(D̃1(ω), I, I) and Ĝ(ω) = diag(G̃1(ω), 0, 0) ?

The equivalence of problems 2 and 3 is proved with:“
D̃(ω)M∗

γ (jω)D̃−1(ω) − jG̃(ω)
” “

I + G̃2(ω)
”−1/2

=

“
D̂(ω)H(jω)D̂−1(ω) − jĜ(ω)

” “
I + Ĝ2(ω)

”−1/2

Problem 3 is equivalent to a µ test problem (see sec-
tion III-A), with N(jω) = H(jω) and ∆ = diag(∆1,∆c),
where ∆c is a full complex block, since the set of scaling
matrices D and G whose structure fits the one of ∆ is the set
of scaling matrices D̂ and Ĝ in problem 3. The µ frequency
sweeping technique can thus be applied to solve this µ test
problem.

E. A suboptimal design

The LMI optimization performed at step 2 of the optimal
algorithm of section III-C can be computationally very
demanding. The number of optimization parameters and thus
the computational time indeed increase with the size of the
frequency gridding, since the frequency dependent scalings
D1(ω) and G1(ω) have to be determined at each point of the
gridding. Thus, it appears worthwhile to resort to the routine
mu.m of the µ-Analysis and Synthesis Toolbox to determine
these frequency dependent scalings, instead of determining
all parameters in a single LMI step. A suboptimal algorithm
is introduced in this context, allowing to optimize first w.r.t.
the frequency dependent scalings D1(ω) and G1(ω) with the
routine mu.m, and then w.r.t. the design parameters θi and
constant scalings D2, G2 by solving inequality (5) with LMI
tools. Step 2 of the optimal algorithm is just replaced by:

2a) For the current values H(s), D2, G2 of the feedforward
controller and constant scaling matrices (see Remark
(i) below for comments about how to initialize these
parameters), perform an optimization on the gridding
w.r.t. D1(ωi) and G1(ωi) to minimize γ in inequal-
ity (4). This is done by first transforming the LMI
formulation (4) into a σ one as described in section III-
D and then performing a dichotomy search on γ.

2b) For the values D1(ωi) and G1(ωi) determined at step
2a, solve the optimization problem of proposition 3.4
w.r.t. θi, D2 and G2. Let γNmin

the minimized value of
γ and H(s), D2, G2 the corresponding values of the
feedforward controller and constant scaling matrices.
If γNmin

< (1 − η) γN , with γN the value of γ
at the beginning of step 2a and η > 0 a given
threshold, it means that it is worth going on with the
optimization and γ minimization process. In this case,
let γN = γNmin

and go back to step 2a. Otherwise, let
γN = γNmin

and continue to step 3.

Remarks:
(i) In the first occurrence of step 2a, the initial values of
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H(s), D2 and G2 can be arbitrarily chosen, e.g. all design
parameters equal to zero, D2 = I and G2 = 0. An other
solution is to slightly modify the algorithm by performing a
first optimal iteration using the algorithm of section III-C and
then switching to the aforementioned suboptimal algorithm.
The delicate initialization of the parameters and scalings can
thus be avoided without penalizing the computational cost.
(ii) The choice of η conditions the relevance of γN at the
end of step 2b. A smaller value of η indeed increases the
number of iterations between steps 2a and 2b and thus leads
to a less conservative value of γN . This parameter as well as
a tuning parameter of the routine mu.m enable to achieve a
trade-off between the computational time and the accuracy
of the final upper bound of γ∗.

Note that unlike the optimal algorithm, it is not guaranteed
that the value of γN determined at the end of iteration 2b
is a lower bound of γ∗. Thus it is not possible to quantify
the accuracy of the final upper bound of γ∗. Nevertheless,
the following heuristics can be applied to combine both
optimal and suboptimal algorithms to determine guaranteed
lower and upper bounds of γ∗ with sufficient accurary while
keeping a reasonable computational time:

1) Perform the suboptimal algorithm to determine a guar-
anteed upper bound γUB of γ∗.

2) Perform the optimal algorithm to determine a guar-
anteed lower bound γLB of γ∗ and stop as soon as
γLB > (1 − ξ) γUB , with ξ the desired accuracy.
The algorithm can be initialized with the frequency
gridding and the values of H(s), D2, G2, D1(ωi) and
G1(ωi) obtained at the end of step 1.

Comparison between optimal and suboptimal algorithms
in section IV shows that conservatism of the suboptimal
design remains very low and that the previous heuristics
prove to be efficient, at least for this missile example.

IV. MISSILE APPLICATION

The technique was implemented and applied to a missile
example. Section IV-A describes the missile model, the
robust feedback controller design and the resulting closed
loop plant P as depicted on Fig. 1.a. Sections IV-B and IV-C
then detail the feedforward design either on the continuum of
linearised time invariant models or on the quasi-LPV model.

A. Linearised and non-linear missile models

The non-linear missile model is extracted from [9]. Its
equations are:

α̇ = q + K1 M Cz(α,M, δ) cos(α)
q̇ = K2 M2 Cm(α,M, δ) (9)

where cos(α) is approximated in the following as 1 − α2

2
and Cz , Cm are defined as:

Cz = z3 α3 + z2 α2 + z1 (2 − (1/3)M) α + z0 δ

Cm = m3 α3 + m2 α2 + m1 (−7 + (8/3)M) α + m0 δ

K1, K2, zi and mj are fixed. u = δ is the control input, while
y = x = [α q]T is the output and state vector. δ is the tail fin

deflection, q the rotational rate and α the angle of attack. This
open loop missile model, which also depends on the Mach
number M , is put under an LFT form y = Fu(M(s),∆)u
(see Fig. 1.b) with the LFR Toolbox [11].

If the continuum of linearised time invariant models is to
be described, the first point is to linearise the state-equations
above w.r.t. x and u, and to introduce the trim point condition
α̇ = q̇ = 0. A trim point is uniquely parametrised by values
of α = 10 + 10δ1 and M = 3 + δ2, so that when δi ∈
[−1, 1], α ∈ [0, 20 deg] and M ∈ [2, 4], i.e. the validity
domain of the model. Thus the first open loop missile LFT
model corresponds to an LTI structured model perturbation
∆ = diag(δ1I4, δ2I6) containing variations of α and Mach.

The quasi-LPV model is directly obtained from the non-
linear equations (9): this state-space model ẋ = f(x, u) and
y = x is equivalently rewritten as y = Fu(M(s),∆)u,
where ∆ now contains time-varying signals α and M . More
precisely, here again α = 10 + 10δ1 and M = 3 + δ2 are
injected in equations (9), so that ∆ = diag(δ1I4, δ2I6).
It is also possible to introduce LTI parametric uncer-
tainties δ3 to δ10 in the coefficients zi and mj of
the polynomials, e.g. z3 = z30 (1 + 0.05δ3), so that
∆ = diag(δ1I4, δ2I6, δ3, δ4I2, δ5I2, δ6, δ7, δ8, δ9, δ10) con-
tains time-varying and time-invariant parametric uncertain-
ties. If e.g. δ3 ∈ [−1, 1], the resulting uncertainty on z3

is ±5%. z30 represents the nominal value.
An integrator is added to the output α, and a robust

feedback controller u = K
[
α q

∫
α
]T

is synthesised with
a quadratic stability method [10]. This feedback controller
is finally validated on the missile model with an actuator
model, i.e. a second order transfer function ω2

v

s2+2ξvωvs+ω2
v

with ωv = 150 rad/s and ξv = 0.7.

Fig. 2 shows the resulting closed loop plant P as depicted
on Fig. 1.a. The missile model can be either the contin-
uum of LTI linearised models, or the quasi-LPV model.
Its desired behaviour is represented by a reference model,
namely a second order transfer function ω2

0
s2+2ξ0ω0s+ω2

0
with

ω0 = 4 rad/s and ξ0 = 0.6. Frequency domain templates are
also included via the first order low-pass filters W1 = s+1

s+0.01

and W2 = 0.5
s+100 . Thus the total order of the plant P is 9.

+
+

−
+

−
+

yr = αr

w

ur

y1

z

y2

reference
model

missile

model

W1

sactuatorK1/s W2

α

q

Fig. 2. Detailed constitution of the closed loop missile.

Robust performance is defined through the transfer func-
tion Tyr→y , whose L2 induced norm has to be minimised.
yr corresponds to the reference angle of attack αr and y
is a two-dimensional weighted signal [y1 y2]T , where y1
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represents the difference between the real and desired angle
of attack (to ensure reference model tracking) and y2 the
control surface deflection rate (to limit actuator efforts).
Thus the feedforward H(s) has to be designed to convert
the reference angle of attack αr into an appropriate control
surface deflection ur, i.e. ur = H(s)αr.

B. Design on the continuum of LTI linearised models

Several parameters have first to be defined according to
our knowledge of the physical behaviour of the missile: the
considered frequency range is [0, 104 rad/s], while the poles
of the feedforward filters Hi(s) are -1, -5, -10 and -15. The
initial gridding is just 5 rad/s.

The optimal algorithm of section III-C is first applied. The
lower bound of γ∗ calculated on the frequency gridding is
γLB = 0.881 whereas the guaranteed upper bound on the
whole frequency range is γUB = 0.904. The gap between
the 2 bounds is about 2.5% and computations are achieved
in 450 s on a SunBlade 1500 Workstation.

Then the suboptimal algorithm of section III-E is ap-
plied. As expected, it is computationally far more attractive
(79 s) and the guaranteed upper bound is γUB = 0.917. This
result is almost non conservative, since the difference with
the optimal upper bound is less than 2%.

Finally the heuristics proposed in section III-E are applied.
The suboptimal algorithm is first performed as before. Then
a single iteration of the optimal algorithm (172 s) computes
a lower bound γLB = 0.873. The heuristics prove here to be
very conclusive, since the difference between the 2 bounds
of γ∗ is less than 5% for a total computational time of
251 s. Results are summarized in table I:

TABLE I

RESULTS FOR THE CONTINUUM OF LTI LINEARISED MODELS

Algorithm optimal suboptimal heuristics
Guaranteed γLB 0.881 - 0.873
Guaranteed γUB 0.904 0.917 0.917

Computational time 450 s 79 s 79 s + 172 s

The value of γUB corresponding to performance analysis,
i.e. computed with H(s) = 0, is 1.894. The introduction of
a feedforward controller composed of only four filters Hi(s)
thus allows to reduce this value by more than 50%, which
demonstrates the efficiency of the design tools.

C. Design on the quasi-LPV model

The optimal and suboptimal algorithms as well as the
heuristics are successively performed, following the same
steps as in section IV-B. Results are summarized in table II:

TABLE II

RESULTS FOR THE QUASI-LPV MODEL

Algorithm optimal suboptimal heuristics
Guaranteed γLB 1.629 - 1.627
Guaranteed γUB 1.651 1.664 1.664

Computational time 730 s 469 s 469 s + 169 s

As in section IV-B, the introduction of a feedforward
controller composed of only four filters Hi(s) allows to
reduce the value of γUB by almost 50%.

V. CONCLUSION

The aim of this paper is to synthesise robust feedforward
controllers in the face of LTI and arbitrarily time-varying
model uncertainties. Noting that the closed loop LFT model
describes a set of time-invariant or time-varying linearised
models, it would be possible to introduce additional time-
or frequency-domain specifications on a finite subset of this
continuum, i.e. on a finite subset of frozen-time linearised
models, and especially on the nominal one corresponding to
∆ = 0. These specifications can be stronger than the robust
performance one but the problem remains convex [2], [3].

The main contribution of this paper is to propose a
practical solution to the infinite-dimensional optimization
problem in [4] with an infinite number of frequency-domain
constraints and also an infinite number of optimization
parameters. Besides a more complex issue is addressed
than in [4], since LTI and arbitrarily time varying model
uncertainties are simultaneously considered. We first propose
an optimal algorithm combining a frequency gridding with
a µ frequency sweeping technique, and then a suboptimal
algorithm which is faster. Moreover, thanks to the use of
the frequency sweeping technique, our technique provides
a reliable result even in the case of flexible systems, i.e.
it is impossible to miss a critical peak between two points
of the gridding. The missile example finally illustrates the
computational efficiency of the suboptimal algorithm, as
well as the possibility to efficiently combine the optimal
and suboptimal algorithms to compute the minimum of the
infinite dimensional optimization problem.
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