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Abstract— In this paper, we present a control system analy-
sis of towed underwater vehicles (TUVs) whose dynamics is
extremely complex due to the flexible-cable dynamics and
hydrodynamic forces. An explicit state-space representation of
the dynamical model is given and, based on it, the fundamental
properties such as controllability, observability, and stability
are assessed in some details considering a degree of approxi-
mation of the cable dynamics, with a numerical and geometric
approach. Additionally, we develop some machinery to assess
output controllability. The analysis results clarify the significant
features of a TUV as a control system and provide useful
information for control-system design of TUVs.

I. INTRODUCTION

In this paper, we present an analysis of a control system

structure of towed underwater vehicles (TUVs), one type

of underwater vehicles as shown in Figure 1. TUVs are

being applied to exploration and exploitation activities of the

underwater environment such as acoustic surveying and mine

hunting, and their roles are becoming increasingly important.

A TUV has no thruster itself and instead should be driven

by a ship through the towline. The TUV considered in this

study has maneuverable wings at the middle and rear of the

vehicle respectively so as to control its depth and attitude

(however, the majority of TUVs practically used have no

maneuverable wings).

In these previous years, a lot of papers on control of TUVs

have been presented, e.g., [1],[2],[4],[5],[7]–[10], [14],[17].

However, only few papers discussed control problems of

TUVs by directly considering their dynamics. One of the

most interesting papers is one presented by Campa et al.

in 1998 [2] which provided a brief control system analysis

and developed a control strategy based on linear H∞ control

powered by some adaptive schemes. However, their emphasis

was not on the control system structure, and only preliminary

results were then provided on this viewpoint. Therefore, to

obtain detailed and better understandings of the fundamental

properties of TUVs as a control system, this paper presents

a control system analysis of TUVs from some new view-

points and in some details, using a numerical and geometric

approach.

One of the defining features in dealing with control of

TUVs is the dynamics of the flexible cable used for towing

which leads to an infinite-dimensional problem, while the

other feature is highly-nonlinear hydrodynamic forces which

every kind of underwater vehicles must be subject to. For

over forty years, a lot of research efforts have been devoted to
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Fig. 1. Schematic diagram of TUV

the dynamics of marine cables, e.g., [15], [6], [3]. Despite the

variety of the works, their basic approaches were similarly

based on finite-difference methods. In this paper, we take a

conventional approach based on finite-dimensional approx-

imation as in those previous papers in both the fields of

TUVs and marine cables, and provide an explicit state-space

representation of the dynamical model of a TUV. Based on

the model, we assess some fundamental properties such as

controllability, observability, and stability, and additionally

investigate how the number of cable-dimension will affect

the control system structure in a numerical manner, which is

one feature of our study.

Moreover, we consider not only state controllability but

also output controllability which will be shown to be con-

siderably important to the TUV control system. This is the

other feature of our study.

Consequently, we shall show that the TUV control system

considered in this paper has desirable properties, and clarify

its significant features, and provide useful information for

control-system design of TUVs.

The remainder of this paper will be organized as fol-

lows. In Section II, the problem setting is made and an

explicit state-space representation of the dynamical model

of the TUV is derived. In Section III, the notion of output

controllability is reviewed and some related machinery is

developed. In the subsequent section, an control system

analysis using this machinery is then presented. In the last

section, concluding remarks are given.

II. DYNAMICAL MODEL

A. problem setting

Here, the problem setting and some assumptions for this

study are made to make the problem tractable and trans-

parent, and to avoid meaningless complexity. First, we shall

restrict ourselves to two-dimensional motions of the TUV

as shown in Figure 2, i.e., motions on the vertical plane,

throughout this paper, which is the most important problem
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in a practical use. Further, the following assumptions are

made:

1) environmental water current such as tide and wave will

be ignored,

2) the dynamics of the ship towing the vehicle will be

ignored and the ship travels only in the horizontal

direction,

3) the dynamics of the wing actuators will be also ig-

nored,

4) the cable (towline) is modeled by a finite number

of rigid segments, with their masses lumped on the

respective ends, connected by frictionless joints as

shown in Figure 2,

5) all forces relative to each cable segment are assumed

to be applied to its point of mass.

The coordinate systems employed for the problem are

shown in Figure 2 where OiXiZi is for i = 0 fixed on the

ship with O0 at its towing point, for i ∈ n on the ith cable

segment with Oi at its point of mass, and for i = n+1 on the

vehicle respectively, where n denotes the number of the cable

segments. Each rotation of the coordinate systems is denoted

by qi (i = 1, · · · , n+1) defined as in the figure. Further, the

maneuverable wings are referred to as the main wing and

the tail wing whose angles relative to On+1Xn+1Zn+1 are

denoted by u1 and u2 respectively. Each angle of qi’s and

uj’s is defined to be positive in the counter-clockwise sense.

B. dynamical model formulation

1) Lagrange equations of motion: Based on the above

problem setting, a dynamical model formulation is derived.

In most of the earlier papers, the dynamical models are

represented in the Newton-Euler formulation and the re-

sulting formulae contain the redundant state-variables and

the constraint forces explicitly. However, for the purpose of

control system analysis and design, the Lagrange approach is

more appropriate than the Newton-Euler one. Therefore, we

adopt the Lagrange approach so that the resulting formulae

contain no redundant state-variable and constraint force.

Note that the system analysis in this paper relies on a

numerical method, hence it requires the specific values of

the physical parameters. The reference [8] has been so far

only one we found where all the values necessary for the

computation of the dynamics are available. Not like other

mechanical systems such as a robotic manipulator, it is

extremely difficult to suppose some realistic values of the

physical parameters for the underwater systems since they

involve hydrodynamic parameters. Therefore, we develop the

dynamical model so that the resulting dynamics is essentially

equivalent to that in the reference [8] and thus we will be

able to adopt all the parameters from the reference for our

analysis with some minor modification.

First, the inertia matrices are introduced as in the follow-

ing.

Mi =
L(mc + ac)

n
I2 = macI2 (1)

where Mi for i ∈ n denotes the inertia matrix of the ith
cable segment relative to OiXiZi, mc, ac, and L denote the

mass, the added mass of the cable per unit length, and the

total length of the cable respectively. Ik represents the k×k
identity matrix.

Mn+1 denotes the inertia matrix of the vehicle relative to

On+1Xn+1Zn+1, each element M ij
n+1 is as in the following.

M11
n+1 = mv + av11

M12
n+1 = M21

n+1 = 0
M13

n+1 = M31
n+1 = mvzg + av13

M22
n+1 = mv + av22

M23
n+1 = M32

n+1 = −mvxg + av23

M33
n+1 = Jv + av33 (2)

where mv , Jv and avij are the mass, the inertia mo-

ment, and the added inertias respectively. (xg, zg) represents

the coordinates of the center of gravity of the vehicle in

On+1Xn+1Zn+1.

Let vi = (vix, viz)T (for i ∈ n) and vn+1 =
(v(n+1)x, v(n+1)z, ˙qn+1)T denote the velocity vectors corre-

sponding to the respective Mi’s defined in OiXiZi’s. Then,

the total kinetic energy K is represented as follows:

K =
n+1∑
i=1

1
2
vT

i Mivi. (3)

Note that q = (q1, · · · , qn+1)T can be generalized config-

uration coordinates for the system and we shall treat the

potential forces separately as generalized forces. Thus, the

Lagrange equations of motion with (3) yield

d

dt

(
∂K

∂q̇

)
− ∂K

∂q
= E(q)q̈ + F (q, q̇) = τbg + τh (4)

where τbg and τh denote the generalized force vectors due to

the buoyancy and gravity, and the nonlinear hydrodynamic

forces respectively. Each element of positive definite E(q)
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can be represented as

Eij = Eji

=
1
2

(
L

n

)2

·{(M11
n+1 + M22

n+1 + 2kijmac)c(qi − qj)
+(av11 − av22)c(qi + qj − 2qn+1)}
(for i, j ∈ n) (5)

Ei,n+1 = En+1,i

=
L

n
{(M13

n+1 + LvM11
n+1)c(qi − qn+1)

+M23
n+1s(qi − qn+1)}

(for i ∈ n) (6)

En+1,n+1 = M33
n+1 + Lv(2M13

n+1 + LvM11
n+1) (7)

where c(·) and s(·) denote cos(·) and sin(·) respectively,

(0,−Lv) represents the towing point on the vehicle in

On+1Xn+1Zn+1 (Lv > 0), and kij denotes the element of

the following n × n matrix:

k =

⎡
⎢⎢⎢⎢⎢⎣

n n − 1 n − 2 . . . 1
n − 1 n − 1 n − 2 . . . 1
n − 2 n − 2 n − 2 . . . 1

...
...

...
. . . 1

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

. (8)

Next, the Coriolis and centripetal force vector F (q, q̇) is

represented as in the following.

Fi =
n∑

j=1

[
1
2

(
L

n

)2

·{(M11
n+1 + M22

n+1 + 2kijmac)s(qi − qj)
−(av11 − av22)s(qi + qj − 2qn+1)}q̇j

2

+
(

L

n

)2

(av11 − av22)

·s(qi + qj − 2qn+1)q̇j ˙qn+1]

+
L

n
{M23

n+1c(qi − qn+1)

+(M13
n+1 + LvM11

n+1)s(qi − qn+1)} ˙qn+1
2

+
L

n
(av11 − av22)s(qi − 2qn+1)v0 ˙qn+1

+
1
2

(
L

n

)
{(av11 − av22)c(qi − 2qn+1)

+(M11
n+1 + M22

n+1 + 2Lk1imac)c(qi)}v̇0

(for i ∈ n) (9)

Fn+1 =
n∑

i=1

[
n∑

j=1

{−1
2

(
L

n

)2

·(av11 − av22)s(qi + qj − 2qn+1)q̇iq̇j}
−L

n
{M23

n+1c(qi − qn+1)

+(M13
n+1 + LvM11

n+1)s(qi − qn+1)}q̇i
2

−L

n
(av11 − av22)s(qi − 2qn+1)v0q̇i]

+
1
2
(av11 − av22)s(2qn+1)v2

0

+{(M13
n+1 + LvM11

n+1)c(qn+1)
+M23

n+1s(qn+1)}v̇0 (10)

where v0 denotes the velocity of the towing point on the ship

in the horizontal direction (recall assumption 2)).

2) generalized forces: First, consider τbg associated with

buoyancy and gravity. Let Bc and Bv denote the buoyancy of

the cable per unit length and of the vehicle respectively and

g be the gravitational acceleration. Then, using the principle

of virtual work, τbg can be obtained as,

τbgi =
L

n
{Lk1i

n
(Bc − mcg) + Bv − mvg}s(qi)

(for i ∈ n) (11)

τbgn+1 = (Bvxb − mvgxg)c(qn+1)
+{BvLv − mvg(Lv + zg)}s(qn+1) (12)

where (xb, 0) represents the center of buoyancy of the vehicle

in On+1Xn+1Zn+1.

Next, consider the hydrodynamic force vector τh. Let the

centers of hydrodynamic force on the main and tail wings be

(0, 0) and (−Lt, 0) in On+1Xn+1Zn+1 respectively (Lt >
0), and let hci be the drag on the ith cable segment, hmD and

hmL be the drag and lift [12] on the main wing. Similarly,

the suffix t is for the tail wing, the suffix v for the body of

the vehicle, the suffix D for drag and L for lift respectively.

Then, we can obtain τh in the following form.

τhi = −
n∑

j=i

L

n
hcjc(αi)

+
L

n
{hmDc(αn+1 − qn+1 + qi)

+htDc(αt − qn+1 + qi)
+(hvL + hmL)s(αn+1 − qn+1 + qi)
+htLs(αt − qn+1 + qi)} (for i ∈ n) (13)

τhn+1 = hmDLvc(αn+1) + hmLLvs(αn+1)
−(htDLv + htLLt)c(αt)
+(−htDLt + htLLv)s(αt)
+hvL(Lv sinαn+1 + CM) (14)

where CM is a constant parameter associated with hydro-

dynamic moment and αi for i ∈ n + 1 is the angle of attack
[12] defined as (recall Equation (3)),

αi = tan−1

(
viz

vix

)
(vix �= 0). (15)

The angle of attack αt is similarly defined for the tail wing

with the velocity vector denoted by vt in On+1Xn+1Zn+1.

Each of the hydrodynamic forces is a polynomial of each

angle of attack, control angle of wing ui, and velocity
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represented as in the following.

hci =
L

n
(CDc1α

2
i + CDc2)‖vi‖2 (16)

hmL = CLm1(αn+1 + u1 + CLm2)‖vn+1‖2 (17)

hmD = {CDm1(αn+1 + u1 + CLm2)2

+CDm2}‖vn+1‖2 (18)

htL = CLt1(αt + u2)‖vt‖2 (19)

htD = {CDt1(αt + u2)2 + CDt2}‖vt‖2 (20)

hvL = CLv1αn+1‖vn+1‖2 (21)

where CDx and CLx are constant drag and lift coefficients

and ‖ · ‖ denotes the Euclidean norm.

3) control system formulation: Additionally, we assume

that the ship velocity v0 to be positive constant and choose

outputs of the system to be the depth and attitude of the

vehicle. Then by some algebraic manipulation to Eq. (4),

the above dynamical system can be transformed into the

following familiar control-system form,

ẋ = f(x, u)
y = g(x) (22)

where the input vector u = (u1, u2)T ∈ R2, the state vector

x = (xT
1 , xT

2 )T = (qT , q̇T )T ∈ the state-space manifold

X ⊂ R2n+2, the output vector y = (y1, y2)T ∈ the output-

space manifold Y ⊂ R2 and the mappings f and g are,

f(x, u) =
[

x2

E(x1)−1{−F (x) + τbg(x1) + τh(x, u)}
]

(23)

g(x) =
[

L
n

∑n
i=1 cos qi + Lv cos qn+1

qn+1

]
. (24)

III. OUTPUT CONTROLLABILITY

In this section, we review output controllability. In prac-

tical control problems, we are often interested in only the

output rather than the state as long as the whole system can

be stabilized. The control of TUVs is exactly the case, which

has motivated the present framework.

First, we present the definition of output controllability

and then develop some machinery to be exploited to analyze

control systems in this framework. The essence of this

concept is an issue of how the associated tangent mapping

g∗ : TX → TY of g : X → Y will map the distribution

generated by the inputs on the state-space manifold X onto

the distribution on the output-space manifold Y .

Definition 1: Consider the system modeled as in the form

of Eq. (22) where u ∈ U ⊂ Rk , the admissible control set,

x ∈ X , the state-space C∞ connected manifold of dimension

l, y ∈ Y , the output-space C∞ connected manifold of

dimension m, and f and g are C∞ mappings. Suppose

x(0) = x0 and y(0) = y0 = g(x0) and if the set of points on

the output space which can be reached from y0 by using an

input function u(·) : [0, t] → U in a finite time contains

a neighborhood of y0, then we say the system is output

controllable at x0. Moreover, if x0 is an equilibrium with an

input u0 ∈ U , i.e., f(x0, u0) = 0 then we call y0 = g(x0)
an output-controllable equilibrium.

Then, we introduce a sufficient condition for an output-

controllable equilibrium of the nonlinear system represented

by (22) by using a linearization approach, which is exactly

the modification of state-space controllability version in the

reference [13]. See the appendix A for the proof.

Proposition 1: Consider the nonlinear system of the form

(22) let x(0) = x0 ∈ X and u(0) = u0 ∈ U satisfying

f(x0, u0) = 0. We obtain the linearization of the system at

x = x0 and u = u0 as,

ż =
∂f

∂x
(x0, u0)z +

∂f

∂u
(x0, u0)v

p =
∂g

∂x
(x0)z (25)

where v ∈ Rk , z ∈ Rl and p ∈ Rm . Suppose that this linear

system is output controllable at z = 0, then the original

nonlinear system is also output controllable at x0, and hence

y0 = g(x0) is an output-controllable equilibrium.

Finally, we discuss the open property of output-

controllable equilibriums on the output-space manifold, that

is, not being an isolated point. See the appendix B for the

proof.

Proposition 2: Consider the nonlinear system (22) again

and make the same assumption as in Proposition 1. Addi-

tionally, if ∂f
∂x (x0, u0) is non-singular then there exists a

neighborhood of y0 = g(x0) where every point y is also

an output-controllable equilibrium.

Remark: As stated in the reference [13], the above

discussions also hold for the time-reversed system, which

implies that for any y1 and y2 ∈ U2 there exist admissible

control functions such that one can steer from y1 to y2 in a

finite time and vice versa.

IV. ANALYSIS OF CONTROL SYSTEM STRUCTURE

In this section, we present a control system analysis of

the dynamical model derived in Section II in a numerical

manner. Specifically, we shall investigate the controllability,

observability and stability at equilibriums of the system, and

furthermore discuss the output controllability. Throughout

this section, we shall emphasize a point of view how these

characteristics of the system will be affected by the number

of cable segments, i.e., the order of approximation of the

system, to explore the property of the infinite dimensional

system. All the parameters and their values used for the

analysis are shown on Table 1, most of which are adopted

from the reference [8].

A. controllability, observability, and stability

Let us consider the system (22) and its equilibrium with

the main wing input u1 = 0 (deg) and the tail wing input

u2 = −1.568 (deg) which chosen so that the attitude of the

vehicle qn+1 = 0. For these inputs and several numbers of

the cable segments n = 2, 5, 10, 20, we obtain the respective

equilibriums corresponding to n’s and each configuration of

them is depicted in Fig. 3.
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Fig. 3. Equilibriums of TUV system

Then, at each equilibrium, we obtain the linearization

represented in the form of (25) with the symbols in (40).

To assess the Kalman rank conditions, we construct the

following matrices,

Wc =
[
B,AB, · · · , An−1B

]
Λc (26)

and

Wo =
[
CT , AT CT , · · · , An−1T CT

]
Λo (27)

where Λc and Λo are the 2l×2l non-singular diagonal-scaling

matrices so that each non-zero component column vector

of Wc and Wo has the magnitude of 1. So, we call Wc

the normalized controllability matrix and Wo the normalized
observability matrix, and check them by using singular value

decomposition as,

Wc = UcΣcV
T
c (28)

Wo = UoΣoV
T
o , (29)

where Uc and Uo are the l × l orthogonal matrices, Σc

and Σo are the l × l diagonal matrices with elements of

the decreasingly ordered singular values, and Vc and Vo are

the 2l × l matrices. By the geometric control theory [16],

it is known that the controllable subspace and observable

subspace coincide with Im(Wc) and Im(Wo) when Λc

and Λo are identity matrices respectively. Furthermore, it is

straightforward to verify that those subspaces are invariant

for such scalings.

It is important to note here that the scaling matrices Λc

and Λo will play an important role in our own approach for

analyzing the system. The purpose of the application of those

matrices is to focus on the geometric structure of the tangent

and cotangent vectors in the first term of Wc and Wo, and

to ignore the unbalance of their magnitudes. This approach

is particularly powerful for high-order systems, which will

be discussed later.

First, we take, as an illustrative example, the results of the

case where n = 2 (the order of the system l = 6),

Σc = diag[3.416, 0.5752, 5.459 × 10−3, 4.137
×10−3, 7.034 × 10−4, 1.738 × 10−5] (30)

Σo = diag[2.992, 1.000, 1.000, 1.000,

0.2131, 2.231 × 10−3]. (31)

As seen from the above, both the matrices are of full rank and

hence the system is controllable and observable mathemati-

cally. However, we notice that there exists some unbalance

among the state subspaces, and therefore expect there exist

hardly controllable and hardly observable subspaces in some

sense( Campa et al. also stated this point briefly in [2]). Since

in a practical control problem we generally have to limit the

control input magnitude and the accuracy of measurements,

this point of view will then become important. Note that the

similar notion concerning such unbalance of the state space

can be found in [11] where their purposes are to develop

balanced realization and model reduction based on it.

Table 1: Parameters for computation

Symbol Value Unit
mc 0.95 kg/m

ac 1.76715ρ × 10−4 kg/m
Bc 0.69g N/m
mv 182.687 kg
av11 0.010ρ kg
av13 0 kgm
av22 0.539ρ kg
av23 0.032ρ kgm

av33 0.039ρ kgm2

Iv 26.078 kgm2

xg 0.017 m
zg 0.02 m
xb 0.017 m
L 300 m
Lv 0.205 m
Lt 0.7 m

CDc1 −1.23075ρ × 10−3 Ns2/m3

CDc2 3.975ρ × 10−3 Ns2/m3

CLm1 1.72595ρ Ns2/m2

CLm2 -0.141372 rad

CDm1 0.60835ρ Ns2/m2

CDm2 0.0274506ρ Ns2/m2

CLt1 0.09978ρ Ns2/m2

CDt1 8.11639ρ × 10−3 Ns2/m2

CDt2 7.22347ρ × 10−4 Ns2/m2

CLv1 0.0766708ρ Ns2/m2

CM 1.17268 m

g 9.8 m/s2

ρ 1025 kg/m3

Let us focus on the minimum singular value of Wc for

example and the associated column vector uc6 in Uc which

represents the subspace which might be hardly controllable.

By computation, we obtain

uc6 = [0.8334,−0.5371,−0.0002,

0.1077,−0.0733,−0.0001]T (32)

and give some interpretation to this subspace as depicted in

Fig. 4 (a). As shown in the figure, this subspace represents
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A = UT
c AUc

=
[

A11 A12

A21 A22

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−7.854 4.894 × 10−1 9.991 × 10 3.509 × 103 −1.257 × 102 8.429 × 10
1.548 × 10−1 7.489 × 10−2 −1.469 × 10 −4.498 × 102 1.848 × 10 −1.239 × 10
−2.484 × 10−3 −1.731 × 10−2 −7.616 −5.310 1.599 × 10−1 −1.413
−5.086 × 10−4 −1.605 × 10−2 8.074 × 10−2 −5.815 × 10−1 3.849 × 10−2 8.668 × 10−3

5.611 × 10−4 −9.160 × 10−3 1.672 × 10−1 −7.563 × 10−1 3.085 × 10−2 3.555 × 10−5

−1.715 × 10−5 −1.381 × 10−5 1.209 × 10−2 1.860 × 10−2 −1.317 × 10−3 −3.682 × 10−2

⎤
⎥⎥⎥⎥⎥⎥⎦

B = UT
c B

=
[

B1

B2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

6.825 −7.379
−1.004 1.085

−4.704 × 10−3 1.324 × 10−2

−2.264 × 10−2 −1.628 × 10−2

1.402 × 10−3 1.851 × 10−4

−4.213 × 10−5 8.855 × 10−5

⎤
⎥⎥⎥⎥⎥⎥⎦

(33)

C = CUc

=
[
C1|C2

]
=

[ −2.714 × 10−3 −5.284 × 10−2 −4.937 −7.968 −1.684 × 102 4.689 × 10
−1.455 × 10−1 −9.893 × 10−1 6.884 × 10−4 9.823 × 10−3 −2.298 × 10−4 −2.070 × 10−4

]

(34)

velocity

(b) unstable

equilibrium

perturbationequilibrium

perturbation

(a) hardly controllable

velocity

Fig. 4. Particular subsystems of TUV

that q1 increases, however q2 decreases, while q3 stays rela-

tively to the equilibrium, and intuitively we can understand

it might be difficult to control such a mode.

Next, we make a coordinate transformation for the linear

system by using the orthogonal matrix Uc and the result is

as in (33). Note that if the minimum singular value of Wc

were really zero then A21 = 0 and B2 = 0. Thus, from the

above numerical results, we expect the system is close to

the uncontrollable system, and hence which also justifies the

significance of such a concept.

Let us consider the stability of the equilibrium by checking

the eigenvalues of A, λ = {−7.674 + 0.4249i,−7.674 −
0.4249i,−2.801, 2.214,−0.03969,−0.009737}. We notice

that λ4 is a non-oscillatory unstable mode while the others

are all stable modes. The associated eigenvector with λ4

is [0.2885, 0.7481,−2.547,−106.294,−101.9,−0.4182]T
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Fig. 5. Singular values of Wc and Wo

whose interpretation can be depicted as in Fig. 4 (b). We

can associate this mode with a kite losing its balance.

Here one question arises, whether this unstable mode is

contained in the hardly controllable subspace or not? To an-

swer this question, we investigate the respective eigenvalues

λ1 and λ2 of A11 and A22. Then we obtain λ1 = {−7.675+
0.4251i,−7.675 + 0.4251i,−2.801, 2.214,−0.01012} and

λ2 = −0.03682 which therefore implies that the unstable

mode is not contained in the hardly controllable subspace.

Furthermore, we discuss how all those properties discussed

above for n = 2 are for a larger number of the cable

segments. Figure 5 shows the singular values of Wc and Wo
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for each n. As seen from the figure, the minimum singular

value becomes the smaller with the larger n for both Wc and

Wo. In addition, we introduce the fact that the characteristics

of hardly controllable and hardly unobservable subspaces

and the decomposition based on them become the more

prominent for the higher order system. Therefore, we can

expect that there exist a hardly controllable and a hardly

observable subspaces for the infinite dimensional system in

some sense, although it might be difficult to define the term

“hardly” uniformly because it will depend on applications.

On the other hand, with respect to the stability, regardless

of n, there always exists only one non-oscillatory unstable

eigenvalue of near 2 for n = 2, 5, 10, 20 and the associated

eigenvector v always has the property that v1, · · · , vn are

positive while vn+1, · · · , v2(n+1) are negative the same as

shown for n = 2. Furthermore, loosely speaking, this mode

is not contained in a hardly controllable subspace nor in a

hardly observable subspace. We expect also this fact holds

for the infinite dimensional system.

It is important to note again the role of the scaling matrices

Λc and Λo. Without those scalings, the features discussed

above will not be prominent for higher order systems such as

n = 20 in the sense of geometric structure, which is mainly

due to the large magnitude of higher order. That’s exactly

the reason why we employed this approach. In this paper,

we discuss the controllable subspaces from a geometric

viewpoint. However, we note that consideration of them with

time order together is also important.

B. output controllability

The above discussion on hardly controllability has moti-

vated the notion of output controllability. That is, we are

here interested in a question “even if the hardly controllable

subspaces are really uncontrollable then is the system still

output controllable?” We present an analysis of the TUV

system from this point of view by using the machinery

developed in Section III.

Again, consider the case n = 2 and recall the transformed

linearization (33). Similarly in (33) applying Uc to C yields

C in (34) and thus rank(C1) = 2. Then, the lineariza-

tion is output controllable at its origin, and therefore from

Proposition 1 we conclude that the TUV system is output

controllable in the equilibrium and say that this equilibrium

is an output-controllable equilibrium, even if the hardly

controllable subspace is really uncontrollable.

Next, by applying Proposition 2 to this output-controllable

equilibrium, we discuss its open property. In fact, by com-

putation we can verify that ∂f
∂x (x0, u0) is non-singular. Since

we have already shown the system is output-controllable in

this equilibrium, then it follows from Proposition 2 that there

exists a neighborhood of y0 = g(x0) where every point y is

also an output-controllable equilibrium.

C. for other equilibriums

At the last of this section, we present the results for the

other equilibriums as depicted in Fig. 6. At each equilibrium

the vehicle attitude is 0 (deg), and the respective main

wing inputs are -7.5, -5.0, -2.5, 0, 2.5, 5.0, and 7.5 (deg).

Consequently, all those properties discussed above for the

one equilibrium, i.e., hardly controllable, hardly observable,

unstable modes, an output-controllability equilibrium and its

open property are invariant for the other equilibriums, and

moreover, for the system dimensions within our considera-

tion. Therefore, those significant features of this type of TUV

control system are expected to be essentially generic ones.

V. CONCLUSION

We have discussed the fundamental control system struc-

ture of the TUV system. All those discussions have shown

that the TUV has a desirable structure as a control system

with respect to (output) controllability, observability and

stability. Further, it has been verified that these fundamental

properties are invariant for dimensions of approximation

for the TUV system and also for equilibriums within our

consideration. The analysis presented relies on the numerical

method and hence the results are dependent on the given

specific parameters. However, the TUV considered in this

paper is a general type of TUVs and the results are therefore

expected to be essentially generic ones, and provide useful

information for control-system design of TUVs.

APPENDIX

A. Proof of Proposition 1

Since the linearization Eq. (25) is output controllable at

z = 0 then for a given time T > 0 there exist input func-

tions v1(·), · · · , vm(·) such that the corresponding outputs

p1(T ), · · · , pm(T ) are independent.

Next, using these inputs vi(·)’s for the linear system we

construct the inputs for the nonlinear system in the following

way,

u(t, ξ1, · · · , ξm) := u0 + ξ1v
1(t) + · · · + ξmvm(t), (35)

which technique plays a key role in this proof. Briefly, we

shall prove that (ξ1, · · · , ξm) can be a coordinate chart of the

output-space manifold Y .

By taking |ξi| small enough in u(·, ξ), there will exist the

corresponding solutions of the system (22) for all 0 ≤ t ≤ T
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denoted by x(t, ξ) and y(t, ξ) initiating x(0, ξ) = x0 and

y(0, ξ) = y0. Consider now the following mappings,

φ : ξ �→ x(t, ξ) ξ near 0 (36)

ψ : ξ �→ y(t, ξ) ξ near 0, (37)

and further the associated tangent mappings φ∗ and ψ∗ in

the Jacobian-matrix forms at ξ = 0,

Z(t) =
∂x(t, ξ)

∂ξ

∣∣∣
ξ=0

=
∂x

∂ξ
(t, 0) (38)

Y (t) =
∂y(t, ξ)

∂ξ

∣∣∣
ξ=0

=
∂g(x(t, ξ))

∂ξ

∣∣∣
ξ=0

=
∂g

∂x
(x0)Z(t). (39)

By substituting x(t) and u(t) by x(t, ξ) and u(t, ξ) in (22)

respectively and differentiating (22) with respect to ξ at ξ =
0, we obtain

˙Z(t) = AZ(t) + B
[
v1(t), · · · , vm(t)

]
Y (t) = CZ(t) (40)

where A = ∂f
∂x (x0, u0), B = ∂f

∂u (x0, u0) and C = ∂g
∂x (x0).

By definition of vi(·)’s, the column vectors of Y (T ) =[
p1(T ), · · · , pm(T )

]
are independent and therefore it follows

from the Inverse Function Theorem that (ξ1, · · · , ξm) can be

a coordinate chart around y0. Hence, the proof is completed.

B. Proof of Proposition 2

Since ∂f
∂x (x0, u0) is non-singular, then it follows from the

Implicit Function Theorem that there exist a neighborhood

W of (x0, u0), a neighborhood V of u0, and a C∞ mapping

h : V → X such that h(u0) = x0 and

{(x, u) ∈ W | f(x, u) = f(h(u), u) = 0, u ∈ V }. (41)

Now, let (x, u) be restricted to W and rewrite the equation

(39) in the proof of Proposition 1 as in the following.

Y (t) =
∂g

∂x
(x0)

∂x(t, u(t, ξ))
∂u

∣∣∣
ξ=0

∂u(t, ξ)
∂ξ

∣∣∣
ξ=0

=
∂g

∂x
(x0)

∂h

∂u
(u0)

∂u

∂ξ
(t, 0) (42)

where the fact that x = h(u) in W is used, furthermore

which implies that the rank of

∂y

∂u
(u0) =

∂g

∂x
(x0)

∂h

∂u
(u0) (43)

is m since the rank of Y (T ) is m as in the proof of

Proposition 1. Hence, there exists a neighborhood U1 of y0

such that

{y ∈ U1| y = g(h(u)), f(h(u), u) = 0, u ∈ V }. (44)

On the other hand, recall the matrices A =
∂f
∂x (h(u0), u0),B = ∂f

∂u (h(u0), u0) and C = ∂g
∂x (h(u0)) of

the linearization. By continuity of h(·) and these matrices,

it follows that there exists a neighborhood U2 ⊂ U1 of y0

such that every y ∈ U2 is an output-controllable equilibrium.

Hence, U2 is the desired neighborhood.

REFERENCES

[1] B. Buckham, M. Nahon, M. Seto, X. Zhao, and C. Lambert, “Dynam-
ics and control of a towed underwater vehicle system, part I: model
development,” Ocean Engineering, 30, pp. 453-470, 2003.

[2] G. Campa, J. Wilkie and M. Innocenti,“Robust control and analysis
of a towed underwater vehicle,”Int. J. Adapt. Control Signal Process.,
12, pp. 689-716, 1998.

[3] Z. Feng and R. Allen, “Evaluation of the effects of the communica-
tion cable on the dynamics of an underwater flight vehicle,” Ocean
Engineering, 31, pp. 1019-1035, 2004.

[4] D. Hopkin, M. Davis and I. Gartshore, “The aerodynamics and
control of a remotely-piloted underwater towed vehicle,” Canadian
Aeronautics and Space Journal, vol. 36, no. 3, pp. 122-129, 1990.

[5] F. S. Hover and D. R. Yoerger, “Identification of low-order dynamic
models for deeply-towed underwater vehicle systems,” Proc. First Int.
Offshore Polar Eng. Conf., pp. 97–105, 1991.

[6] S. Huang, “Dynamic analysis of three-dimensional marine cables,”
Ocean Engineering, vol. 21, no. 6, pp. 587-605, 1994.

[7] I. W. Kamman, S. D. Patek and S. A. Hoeckley, “Application of
Multivariable linear control design to marine towed systems,” J.
Guidance, Control and Dynamics, vol. 19, no. 6, pp. 1246-1251, 1996.

[8] N. Kato, “Underwater towed vehicle maneuverable in both vertical and
horizontal axis (Part1: Principal configuration and attitude control),”
Journal of the Society of Naval Architects of Japan, no. 169, pp. 111-
122, 1991.

[9] N. Kato, “Guidance and control of underwater towed vehicle maneu-
verable in both vertical and horizontal axis,” Proc. Second Int. Offshore
Polar Eng. Conf., pp. 505-512, 1992.

[10] C. Lambert, M. Nahon, B. Buckham, and M. Seto, “Dynamics and
control of a towed underwater vehicle system, part II: model validation
and turn maneuver optimization,” Ocean Engineering, 30, pp. 471-485,
2003.

[11] B. C. Moore, “Principal component analysis in linear systems: con-
trollability, observability, and model reduction,” IEEE Trans. AC, vol.
26, no. 1, pp. 17-32, 1981.

[12] J. N. Newman, Marine Hydrodynamics. Cambridge, MA: MIT Press,
1977.

[13] H.Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control
Systems. New York, NY: Supringer-Verlag, 1990.

[14] D. Perrault, G. Hackett and M. Nahon,“Simulation and active control
of towed undersea vehicles,” Proc. Oceans ’97, pp. 1277-1282, 1997.

[15] T. S. Walton and H. Polachek, “Calculation of transient motion of
submerged cables,” Mathematics of computation, 14, pp. 27-46, 1960.

[16] W. M. Wonham, Linear Mulitivariable Control: A Geometric Ap-
proach. Berlin, Supringer-Verlag, 1974.

[17] T. Yokobiki, W. Koterayama, S. Yamaguchi, and M. Nakamura,
“Dynamics and control of a towed vehicle in transient mode,” Int.
J. of Offshore and Polar Engineering, vol. 10, no. 1, pp. 19-25, 2000.

7533


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




