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Abstract— The purpose of this study is to establish a
unified modeling procedure of distributed port-Hamiltonian
formulations for field equations. First, higher order Stokes-
Dirac structures on variational complexes of jet bundles are
introduced. Next, a one-to-one correspondence between Euler-
Lagrange equations and distributed port-Hamiltonian systems
is presented. Finally, in the case that the Lagrangian is given,
the concrete transformation procedure for distributed port-
Hamiltonian systems is explained by using two examples.

I. INTRODUCTION

Port-Hamiltonian systems have been developed as a gen-
eral control model for passivity [10]. A power-conserving
property of port-Hamiltonian systems is written by a Dirac
structure [1], [2]. The framework has been extended to a
distributed parameter system with a Stokes-Dirac structure
[1]. The Stokes-Dirac structure is defined on a spatial do-
main and its boundary of the system by differential forms.
The structure makes clear the property that the change of
the interior energy is equal to the power supplied to the
system through its boundary. The internal energy variables
can be stabilized by a damping injection on the energy
balance of the boundary. Some physical models have been
represented by the port-Hamiltonian formulation [4], [5]. On
the other hand, the mathematical extension for the Stokes-
Dirac structure itself have been considered, especially there
are some suggestive variations in the original paper [1]. In
the Timoshenko beam models, Hodge-star operators have
been introduced into Stokes-Dirac structure [3]. And this
concept have been generalized as the higher order structure
[7]. As more general representation, the constant Stokes-
Dirac structure for multi variable systems was presented with
a constant differential matrix and its adjoint [6]. In the latest
study [8], a new axis is introduced by contact forms on a
1-jet space.

In this paper a unified modeling procedures of distributed
port-Hamiltonian formulations for field equations is pre-
sented. First, a higher order Stokes-Dirac structure on varia-
tional complexes of jet bundles is introduced. This structure
rewritten version of the standard higher order Stokes-Dirac
structure [7] with total differential operators is introduced to
represent higher order energy variables. The mathematical
background is the same as the concept in [6] basically. But
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a more concrete calculation has been presented to show a re-
lationship between variations on extremal points and bound-
ary ports. Next, a one-to-one correspondence between field
Euler-Lagrange equations and distributed port-Hamiltonian
systems is presented. One of distributed port-Hamiltonian
formulations, called field port-Lagrangian systems, is defined
by changing of variables in the Lagrange density functional.
A fundamental volume-form, which gives the field port-
Lagrangian system, is introduced. And we show that the
form is an adjoint form of Cartan fundamental 1-form. As
a result, if there exists a Lagrangian of systems, the Euler-
Lagrange equations which given by variational problems can
be written as distributed port-Hamiltonian systems, that is,
field port-Lagrangian systems. Finally, in the case that the
Lagrangian is given, the concrete transformation procedure
for distributed port-Hamiltonian systems is explained by
using two examples. One of them is the thin film equation
on two-dimensional domain. The model is one example of
systems that has complex energy variables. However the field
port-Lagrangian system can be given by the Lagrangian sys-
tematically. The other is the potential Boussinesq equation,
which expresses a wave in shallow waters. In this example a
connection between variations on extremal points and higher
order Stokes-Dirac structures is presented.

The following advantages can be considered as reasons
why we introduce this relationship. Firstly, this approach
clarifies the relation between the Euler-Lagrange equation,
which is calculated by a variational principle, and the dis-
tributed port-Hamiltonian systems related to passivity. This
relation provides a unified modeling method for the systems
that have an infinite dimensional freedom such as a field
equation. That is, if the systems have the Lagrangian and it is
known, such power ports are given systematically. Generally,
it is difficult to find such passive pairs with a manual
observation except simple systems. Secondly, the variations
on extremal points are fixed by boundary conditions in many
cases of variational problems and then the total divergence
terms can be eliminated. On the other hand, in the view
of the distributed port-Hamiltonian systems the conservation
laws that result from the total divergence terms form the
new Stokes-Dirac structure. This matter can be unified by the
higher order Stokes-Dirac structure. Thirdly, from a different
angle of the above, we can see that the integration by parts
formula on the variational complex yields the freedom of
energy variable definitions. Then it is possible to formulate
more extensive system.
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II. MATHEMATICAL PRELIMINARIES

In this section some required mathematical concepts are
quoted from existing results [11], [12].Then our new results
will be presented from the next section. Note that the basic
concepts of distributed parameter port-Hamiltonian systems
are not explained in this paper at all. The detailed definitions
follow the original paper [1].

A. Jet bundle formalism

A bundle is a triple (M,�, X) with the total manifold
M , the base manifold X and the surjective submersion � :
M → X . For each point x ∈ X , the subset �−1(x) = Mx

is called the fiber over x. A section σ of M is a map σ :
X → M such that � ◦ σ = idX , where idX denotes the
identity map on X . Let σf be a smooth section of a bundle
(M,�, X) defined by uα = fα(x) with coordinates (xi, uα)
, where xi = (x1, · · ·, xm) are m independent variables and
uα = (u1, · · ·, ul) are l dependent variables.

The k-th order partial derivatives of f will be denoted by

∂Jf(x) =
∂kf(x)

∂xj1∂xj2 · · · ∂xjk
(1)

with J = (j1, · · ·, jk) is a multi-index of order k = �J . The
v-th prolongation u(v) = f (v)(x) : X → U (v) is defined by
uα

J = ∂Jfα(x) ⊂ Uk where U (v) := U × U1 × · · · × Uv .
Now we introduce v-th jet space M (v) = X ×U (v). Let A
be a space of smooth functions P (x, u(v)) called differential
functions.

B. Variational complexes

A total derivative Di (called formal differentials also) can
be thought of as a kind of vector field on the infinite jet
space.

Di =
∂

∂xi
+

∑
J

uJ,i
∂

∂uJ
(2)

where uJ,i = ∂uJ/∂xi. As such, we can allow it to act on
the following vertical forms as a Lie derivative. In particular,
Di acts on the basic forms by Di duJ = d(DiuJ) = duJ,i.

The total r-forms concentrated on the horizontal variables
x in M ⊂ X ×U in that only the differentials dxi appeared.
Vertical forms is constructed by similarly concentrating on
the vertical variables, which consist of the u’s and all their
derivatives. Specially, a vertical k-form is a finite sum

ω̂ =
∑

Pα
J duα1

J1
∧ · · · ∧ duαk

Jk
(3)

in which the coefficients Pα
J are differential functions. Since

only the differentials duα
J appear in these forms, the analogue

of the differential of the ordinary de Rham complex is the
vertical differential:

d̂ω̂ =
∑ ∂Pα

J

∂uβ
K

duβ
K ∧ duα1

J1
∧ · · · ∧ duαk

Jk
. (4)

Since any given vertical form ω̂ can depend on only finitely
many of the variables uα

J , and hence exists on a finite jet
space M (v), the vertical differential d̂ω̂ is in reality the same

as the de Rham differential in these variables, the remaining
independent variables playing the role of parameters. Thus
the vertical differential is readily seen to have the usual bilin-
earity, anti-derivation and closure properties of the ordinary
differential.

We consider an equivalence relation on the space of
vertical forms, with [ω̂] = ω̂ + div η̂, ω̂, η̂ ∈ ∧̂r. The space
of equivalence classes is the space of functional r-forms∧r
∗ = ∧̂r/ div(∧̂r). The natural projection from

∧̂r to
∧r
∗

is denoted by an integral sign
∫

ω̂ dx stands for [ω̂]. This
definition gives the integration by parts formula.∫

ψ̂ ∧ Diη̂ dx = −
∫

(Diψ̂) ∧ η̂ dx (5)

where ψ̂ ∈ ∧̂r, η̂ ∈ ∧̂s and Di is the total derivative.
Let ω =

∫
ω̂ dx be a functional r-form corresponding

to the vertical r-form ω̂. The variational differential of ω
is the functional (r + 1)-form corresponding to the vertical
differential of ω:

δω =
∫

d̂ω̂ dx . (6)

The variational complex is defined as follows.

Theorem 2.1 ([11]): Let M ⊂ X × U be vertically star-
shaped. Then the variational differential determines an exact
complex

0 �� ∧0
∗

δ �� ∧1
∗

δ �� ∧2
∗

δ �� · · · (7)

on the spaces of functional forms on M .

C. Euler-Lagrange equations

Let Z ⊂ X denote a connected open set with smooth
boundary ∂Z. A variational problem means the problem of
finding the extremals of a functional, is referred to as the
Lagrangian

L =
∫

Z

L(x, u(v)) dx (8)

over some space of functions u = f(x), x ∈ Z. Then its
variational differential is the functional 1-form

δL =
∫

d̂L dx =
∫ {

E(L) · du
}
dx (9)

where E = (E1, · · ·, El) is the Euler operator such that

Eα =
∑

J

(−D)J
∂

∂uα
J

(10)

and E(L) ≡ 0 yields Euler-Lagrange equations.
If we interpret the differentials duα as infinitesimal varia-

tions of uα with corresponding variations duα
J = DJduα in

the derivatives (see Remark 3.1), the above computation (9)
is the same as the traditional determination of the Euler-
Lagrange equations from the definition of the variational
derivatives. This interpretation leads to a natural corre-
spondence between the standard Stokes-Dirac structure with
differential forms and the definition on a variational complex
(see Remark 3.2).
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III. STOKES-DIRAC STRUCTURES ON VARIATIONAL

COMPLEXES

At the start, a higher order Stokes-Dirac structure on
variational complexes of jet bundles will be presented with
the definitions mentioned above.

Let Z be an n-dimensional smooth manifold with a
smooth (n−1)-dimensional boundary ∂Z. Here the space∧1
∗ is the center of topic because it is related to the calculus

of variation yielding Euler-Lagrange equations.
From (9), the integrand of functionals d̂L in

∧1
∗ can be

defined by a product of differential functions ∂L/∂uα
J ∈ A

and differentials duα
J ∈ ∧̂1. Then let us consider the Stokes-

Dirac structure that is written by elements of the two spaces.

Definition 3.1: Let F and E be linear spaces as follows:

F := ∧̂1(Z) × ∧̂1(Z) × ∧̂0(∂Z) ,

E := ∧̂0(Z) × ∧̂0(Z) × ∧̂0(∂Z) .
(11)

A pairing between flows f and efforts e is defined by

〈〈 (f1, e1), (f2, e2) 〉〉

:=
∫

Z

(
e1
p ∧ f2

p + e1
q ∧ f2

q + e2
p ∧ f1

p + e2
q ∧ f1

q

)
dx

+
∫

∂Z

(
e1
b ∧ f2

b + e2
b ∧ f1

b

)
dx (12)

where f = (fp, fq, fb) ∈ F and e = (ep, eq, eb) ∈ E .

Now let us consider the higher order Stokes-Dirac struc-
ture on variational complexes from the above definitions.

Theorem 3.1: The linear subspace

D =
{
(fp, fq, ep, eq, fb, eb) ∈ F × E|[

fp

fq

]
=

[
0 −(−Dx)n

Dn
x 0

] [
ep

eq

]
,

fb =

⎡
⎢⎢⎢⎢⎢⎢⎣

Dn−1
x ep|∂Z

...
Dn−i

x ep|∂Z

...
ep|∂Z

⎤
⎥⎥⎥⎥⎥⎥⎦

, eb =

⎡
⎢⎢⎢⎢⎢⎢⎣

−eq|∂Z

...
(−1)iDi−1

x eq|∂Z

...
(−1)nDn−1

x eq|∂Z

⎤
⎥⎥⎥⎥⎥⎥⎦

}
(13)

satisfies Dirac structure with the pairing (12), where Dx is a
total differential operator concerning with spatial variables.

Proof: See appendix.

Theorem 3.2: The linear subspace

D̄ =
{
(fp, fq, ep, eq, fb, eb) ∈ F × E|[

fp

fq

]
=

[
0 ∓I
±I 0

] [
ep

eq

]
, fb = 0, eb = 0

}
(14)

satisfies Dirac structure with the pairing (12), where I = idZ

is an identity operator on the manifold.
Proof: The structure corresponds with the special

Stokes-Dirac structure with Hodge-star operator ‘∗’ [7], [3].
Remainder omitted.

Remark 3.1: If we consider the differentials duα as in-
finitesimal variations in the uα, the coefficient of duα can be

regard as a space of functions A to define flows. And efforts
are equal to functions A . Then the definitions of vertical
forms and of differential functions are compatible. Now (11)
are interpreted as two spaces of differential functions A :

F̂ = A × A × A , Ê = A × A × A . (15)

And this interpretation agrees with the original definition [1]
of energy variables: e ∧ α := ∂H /∂α ∧ δα|δα→α.

Remark 3.2: The energy variables of the standard Stokes-
Dirac structure are defined by differential forms: efforts
e ∈ Ωn−p(Z) and flows f ∈ Ωp(Z) shapes the volume
form dσ ∈ Ωn(Z). If we adopt the interpretation (15), then
there differential functions A are regarded as coefficients
of differential forms dx1 ∧ · · · ∧ dxp and dxn−p ∧ · · · ∧ dxn

respectively. This is the compatible definition. Note that total
differential operators Dx projected to base manifolds X is
equivalent to exterior differential operators d.

IV. RELATIONSHIP OF DISTRIBUTED

PORT-HAMILTONIAN SYSTEMS TO FIELD EQUATIONS

In this section, the main result, that is, the relationship of
distributed port-Hamiltonian systems to field equations will
be presented by means of the previous preparations. Please
note that the subjects of the classical field theory are quoted
from [14].

Euler-Lagrange equations used as practical physical mod-
els are defined by variational problems of action integrals
from the Hamilton’s principle. If a Lagrange function L is
regular, that is, a Hessian is not zero: detAij �= 0, Aij =
∂2L/(∂q̇i∂q̇j), then the relation of Hamiltonian systems to
Lagrange equations is one-to-one. On the other hand, many
physical objects distributed on a space continuously (e.g. a
gravity field, an electromagnetic field or a Yang-Mills field,
etc.) have an infinite degree of freedom. Then these systems
are described by the field theory.

Now we introduce the following concrete definition. Field
quantities φa(x) are used instead of dynamic variables of
particles q(t), where ‘a’ is an index of independent com-
ponents of the field, ‘x’ is a set of special coordinates
xi, i = 1, · · · , n and a time coordinate x0 = t. We simplify
the notation and write as φa

,µ = ∂φa/∂xµ = ∂µφa, µ =
0, · · · , n. Variables in a velocity state space are φa, φa

,0 and
variables in a phase space are φa, πa = ∂L/∂φa

,0.

A. Field equations via variational calculus

First of all, we refer to a calculation method of Euler-
Lagrange equations extended to the field theory [14].

An action integral of Lagrange density functions L is given
as a functional

L =
∫

L(φa, φa
,µ) dx (16)
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where dσ = dx1∧· · ·∧dxm, dx = dx0∧dσ. The variational
derivation of (16) yields

δL =
∫ [(

∂L
∂φa

− ∂

∂xµ

∂L
∂φa

,µ

)
dφa+

∂

∂xµ

(
∂L

∂φa
,µ

dφa

)]
dx

(17)

where dφa
,µ = (∂/∂xµ)dφa. The stationary condition of

the first term of (17) results Euler-Lagrange equations. The
second term of (17) relates to Noether’s theorem of field
situation. If a Lagrangian is invariant, such a quantity, that
is, Noether current is conserved.

B. Field port-Lagrangian systems

From the above, we present the relationship of distributed
port-Hamiltonian systems to field equations.

Lemma 4.1: The linear subspace D such that

D =
{
(fp, fq, fr, ep, eq, er, fb, eb) ∈ F × E|⎡

⎣fp

fr

fq

⎤
⎦=

⎡
⎣ 0 −I Di

I 0 0
Di 0 0

⎤
⎦
⎡
⎣ep

er

eq

⎤
⎦ ,

[
fb

eb

]
=

[
ep|

∂Z−eq|
∂Z

]}
(18)

satisfies the Dirac structure where Di is a total differential
operator as regards spatial variables, I = idZ is an identity
operator.

Proof: First, it is easy to see the structure on ‘I’ in the
small matrix does not affect the boundary energy structure by
Theorem 3.2. Then we see that (18) satisfies a Stokes-Dirac
structure through Theorem 3.1.

Theorem 4.2: In (18) let us consider the definitions:

f = (fp, fr, fq) =
(
−∂0

∂L
∂φa

,0

, −∂0φ
a, −∂0φ

a
,i

)
, (19)

e = (ep, er, eq) =
(
−φa

,0,
∂L
∂φa

,
∂L
∂φa

,i

)
. (20)

Then the first row of (18) corresponds to Euler-Lagrange
equations. The second and the third row of (18) define an
identity relation of higher order variables.

Proof: Let us consider the energy density function:

E(φa, φa
,µ) = φa

,0

∂L
∂φa

,0

− L . (21)

The energy functional E is defined by the integral of (21).
The variation of E is obtained as follows.

δE =
∫

d̂

(
φa

,0

∂L
∂φa

,0

− L
)

dx

=
∫ (

φa
,0 d

∂L
∂φa

,0

− ∂L
∂φa

dφa − ∂L
∂φa

,i

dφa
,i

)
dx

=
∫ (

ep · αp + er · αr + eq · αq

)
dx

≡
∫

ep dxp̄ ∧ αp dxp + er dxr̄ ∧ αr dxr

+ eq dxq̄ ∧ αq dxq

=
∫ ∑

i=p,r,q

ei dxī ∧ ∗(ei dxī) , (22)

where f• dx• = −∂α•/∂t dx• and dxī is a (m − i)-form
for any i-form dxi. Actually, r = p̄, r̄ = p. By Remark 3.1,
vertical 1-forms dφa on a variational complex are identified
as a differential function φa. Then the direct calculation with
the energy variables (19)–(20) leads to a conclusion.

The system (18) is called a field port-Lagrangian system.
And more the justification of Theorem 4.2 is given as fol-
lows.

Proposition 4.3: An energy balance of (18) is equivalent
to an energy balance of Euler-Lagrange equations which
given by δL ≡ 0 in (17).

Proof: The energy-momentum tensor [14]

Tµν := −L δµ
ν +

∂L
∂φa

,µ

φa
,ν (23)

is defined by the conservation law which given by taking an
exterior differentiation of L. This satisfies ∂Tµν/∂xµ = 0.
If µ = ν = 0, then (23) means Hamiltonian density. Then,
an integration of ν = 0 components yields a total divergence
equation of energy.

∂

∂t

∫
σ

H dσ = −
∫

σ

∂

∂xi

(
∂L
∂φa

,i

φa
,0

)
dσ

= −
∫

∂σ

∂L
∂φa

,i

φa
,0 ds =

∫
∂σ

eq ∧ ep ds (24)

where ds =
∑

i dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn and the caret
denotes omission. Indeed, this is equal to the energy balance
of (18).

Even if field equations are known, Lagrangian density,
which gives the equations, is not unique. If total divergence
terms ∂µW (x) = div W (x) are added to the Lagrangian
density, same equations are obtained by the variational cal-
culation. If we identify conservation laws, which yield total
divergence terms as an equivalence class, then the quotient
space, that is, the variational complex can be defined. Such
a conservation law has been considered in relation to the
distributed port-Hamiltonian system [1], [9].

Usually, when we calculate extremals, the boundary con-
ditions of variations are fixed and then the total divergence
terms are eliminated by the integration by parts formula. If
let the variations be free, these terms remain in the variations
and we should treat them explicitly. In the framework of field
port-Lagrangian systems, the situation corresponds with an
appearance of the higher order Stokes-Dirac structure. The
concrete example will be presented in the next section.

C. Field equations via fundamental forms

Let us consider the alternate method that defines equations
of motion in the theory of field. The field equations can be
calculated with Cartan fundamental form [15]

Ω =
∫ (

πadφa − E dt
)
dζ , (25)

E = πaφa
,0 − L (26)
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where ζ ∈ Ωn(Z) and πa = ∂L/∂φa
,0. Indeed, we have

dΩ =
∫

θa(x) ∧ ρa(x) dζ (27)

θa(x) = dπa −
[

∂L
∂φa

− ∂

∂xi

(
∂L
∂φa

,i

)]
dt (28)

ρa(x) = dφa − φa
,0 dt (29)

where we assume that (∂L/∂φa
,i) dφa is zero on the bound-

ary. If we consider Xπ = ∂/∂πa and Xφ = ∂/∂φa, then

iXπ (dΩ) = 0 , iXφ
(dΩ) = 0 (30)

determine Euler-Lagrange equations.

D. Fundamental form for distributed port-Hamiltonian sys-
tems

We introduce a fundamental form for distributed port-
Hamiltonian systems. The following correspondence is ob-
tained.

Theorem 4.4: Let ΩV be a functional n-form on an
(n + 1)-dimensional manifold with a coordinate {xµ; µ =
0, · · · , n} such that

ΩV =
∫

(−1)n−qdt ∧ eq dxq̄ ∧ ep dxp̄ −H dσ (31)

where H ∈ A is a differential function, dxq̄ ∈ Ωn−q(Z) and
dxp̄ ∈ Ωn−p(Z). In this case, dΩV ≡ 0 yields a distributed
port-Hamiltonian system.

Proof: Indeed, we have

(−1)ndΩV

= (−1)n

∫
d
[
(−1)(n−q)+(n−1)eq dxq̄∧ep dxp̄∧dt−H dσ

]
=

∫ [
−(−1)rep dxp̄ ∧ d(eq dxq̄) − eq dxq̄ ∧ d(ep dxp̄)

− ∂H

∂αq
dxq̄ ∧ ∂αq

∂t
dxq − ∂H

∂αp
dxp̄ ∧ ∂αp

∂t
dxp

]
dt (32)

where r = pq + 1, dxq ∈ Ωq(Z), dxp ∈ Ωp(Z) and the
following relation is used.∫

dH dσ

=
∫ [(

∂H
∂φa

− ∂

∂xi

∂H
∂φa

,i

)
∂φa

∂t
+

(
∂H
∂πa

− ∂

∂xi

∂H
∂πa,i

)
∂πa

∂t

+
∂

∂xi

(
∂H
∂φa

,i

∂φa

∂t
+

∂H
∂πa,i

∂πa

∂t

)]
dt ∧ dσ

≡
∫ [

∂H

∂φa

∂φa

∂t
+

∂H

∂πa

∂πa

∂t

]
dt ∧ dσ

=
∫

(−1)n

[
∂H

∂αq
dxq̄∧ ∂αq

∂t
dxq+

∂H

∂αp
dxp̄∧ ∂αp

∂t
dxp

]
dt .

(33)

Here we used the relation that the third term in the first
line of (33) vanish at infinity. The second line of (33)
corresponds with the original definition of [1] as a variational

derivative [11, p.245]. The relation of Remark 3.1 is used in
the last line of (33). We redefined the differential functions as
a differential form: ∂H /∂αq is an (n− q)-form, ∂H /∂αp

is an (n − p)-form, ∂αq/∂t is a q-form and ∂αp/∂t is a p-
form. From the definition e• dx•̄ = ∂H /∂α• dx•̄, f• dx• =
−∂α•/∂t dx•, (32) can be calculated as follows:

dΩV = (−1)n

∫ [
ep dxp̄ ∧ {

fp dxp − (−1)rd(eq dxq̄)
}

+ eq dxq̄ ∧ {
fq dxq − d(ep dxp̄)

}]
dt

=
∫ [

ep ∧ {
fp − (−1)r deq

}
+ eq ∧

{
fq − dep

}]
dt ∧ dσ . (34)

From the above, if we consider Xq = ∂/∂eq and Xp =
∂/∂ep as duals of both Xπ and Xφ, then we have

iXq (dΩV ) = 0 , iXp(dΩV ) = 0 . (35)

Then the relations

fp dxp = (−1)rd(eq dxq̄) , fq dxq = d(ep dxp̄) (36)

should be satisfied. This means the distributed port-
Hamiltonian systems [1].

This result leads to the next correspondence.

Theorem 4.5: ΩV is equivalent to Ω in the sense of
fundamental forms if L is a hyper regular.

Proof: Let us consider Hamiltonian density H such that

H dσ =
∫

Z

∑
k=q,p

hk · gI
k,J dxJ

k ∧ (hk dxI
k)

=
∫

Z

∑
k=q,p

ek ∧ αk (37)

where dxI
k = dxi1∧· · ·∧dxik and dxJ

k = dxj1∧· · ·∧dxjn−k

are spatial forms such that dσ = dxI
k ∧ dxJ

k . Then we have

∗ΩV = ∗
∫

(−1)u dt ∧ ep ∧ eq − (−1)(n−p)pH dσ̄

= (−1)(n−p)p

∫
hp · hq dxi −H dt (38)

where dσ = (−1)(n−p)p dσ̄ and u = (n−q)+(n−q)q+n−p.
Next, we assume that the system satisfies the canonical

structure, then the canonical momentum πa of φa is defined
as a function of φa, φa

,0 and φa
,i. If L is a hyper regular,

then φa
,0 can be solved as a function of φa, φa

,i and πa

inversely. Let H be Hamiltonian density function such that
H ≡ φa

,0πa −L. The higher order derivations may appear in
solving for φa

,0. However we take account up to first order
and H is regard as a function of φa, φa

,i, πa and πa,i (see
(33)).

By multiplying (25) by the n-form

dξ := (−1)(n−p)p
n∑

i=0

dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn (39)
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from the right-hand side, we have

Ω̄V = ∗ΩV ∧ dξ =
∫ (

hp · hq dxi −H dt
)
dξ . (40)

By means of comparing the energy variables (19)–(20), the
dual quantities ep, eq of ΩV in the velocity state space are
defined as follows:

αp =
∂L
∂φa

,0

, αq = φa
,i . (41)

Then, by substituting hp, hq of (40) with (41), we have

Ω̄V =
∫ (

∂L
∂φa

,0

dφa − E dt

)
dξ . (42)

Note that now we are considering on a velocity state space,
then the relation H → E is used in (42). Since an annihilation
of ∗ΩV defines system equations, Ω̄V leads to the same
result for (25).

Let us conclude this section by giving the next theorem.

Theorem 4.6: If L is a hyper regular, the correspondence
between distributed port-Hamiltonian systems (18) and field
equations δL ≡ 0 is one-to-one on the quotient space
concerning Noether currents.

Proof: The mapping from field equations to distributed
port-Hamiltonian systems is presented by Theorem 4.2, (18)
and (19)–(20). In the proof of Theorem 4.2, the invariance
of E holds regardless of the regularity of L. If L is hyper
regular, a Hamiltonian density which corresponds to the
Legendre transformation is defined by Theorem 4.5.

V. EXAMPLES

In this section, two examples of modeling of field port-
Lagrangian systems are presented.

First example is an equation of elastic thin films. The
system has the complex energy variables. Then it is difficult
to find such a pair of energy variables with modeling methods
based on observation. But the calculation can be carried
out by the relation above mentioned automatically. The
second example is a potential Boussinesq equation which
expresses behavior of waves on shallow waters [13, pp.237].
This shows the relation between higher order Stokes-Dirac
structures and boundary conditions of variations.

A. An equation of elastic thin films

We consider a stationary homogeneous elastic thin film on
x = (x1, x2) ∈ Z ⊂ R

2. Then the equation of motion is

ρwtt − µ
2∑

i=1

∂xi

(
Φ−1wxi

)
= 0 , (43)

where Φ =
[
1+

∑2
i=1 w2

xi

]1
2 and we assume that the tension

µ and the film density ρ are constant. The Lagrangian of the
film on the displacement w(x) is L = T − U where

T =
1
2

∫
Z

ρw2
t dx , U =

∫
Z

µ (Φ − 1) dx . (44)

The equation (43) can be given by the variational derivative
of L .

δL =
∫

Z

(
ρwt dwt − µΦ−1wxi dwxi

)
dx . (45)

Now we define the following energy variables.

fp = −∂t ρ wt , ep = −wt ;
fq1 = −∂t wx1 , eq1 = −µΦ−1wx1 ;
fq2 = −∂t wx2 , eq2 = −µΦ−1wx2 .

(46)

Then we obtain the field port-Lagrangian system of (43):⎡
⎣ fp

fq1

fq2

⎤
⎦=

⎡
⎣ 0 Dx1 Dx2

Dx1 0 0
Dx2 0 0

⎤
⎦
⎡
⎣ ep

eq1

eq2

⎤
⎦,

[
fb

eb

]
=

[
ep |

∂Z−(eq1 + eq2) |∂Z

]
.

(47)

B. Potential Boussinesq equation

The potential Boussinesq equation

uxxtt +
1
2
D2

x(u2
xx) + uxxxxxx = 0 (48)

is obtained by the stationary condition of the action integral

L =
∫ [

1
2
u2

xt +
1
6
u3

xx − 1
2
u2

xxx

]
dx . (49)

The variational derivative of (49) results the Euler-Lagrange
equation. Let us consider two type of the representation of
field port-Lagrangian systems.

First, we assume that all boundary conditions of variations
are fixed by 0 (that is, Casimir functions [1]). The following
energy variables are defined.

fp = ∂tuxxt , ep = −dut ;
fq1 = −∂tdu , eq1 = uxxxxxx ;
fq2 = −∂tdux , eq2 = − 1

2Dx

(
u2

xx

)
.

(50)

Then we have⎡
⎣ fp

fq1

fq2

⎤
⎦ =

⎡
⎣ 0 −I Dx

I 0 0
Dx 0 0

⎤
⎦
⎡
⎣ ep

eq1

eq2

⎤
⎦ ,

[
fb

eb

]
=

[
ep|

∂Z−eq2|
∂Z

]
.

(51)

We can see that (51) is the standard form of field port-
Lagrangian systems. Note that when the calculation of (51),
we used the relation that the following boundary conditions
are zero to eliminate the total divergence terms.∫

∂Z

uxt dutdx ,
1
2

∫
∂Z

u2
xx duxdx ,

∫
∂Z

uxxx duxxdx ,

−
∫

∂Z

uxxxx duxdx ,

∫
∂Z

uxxxxx dudx (52)

Next, another expression is considered without the inte-
gration by part formula. We define the energy variables

f ′
p = ∂tuxxt , e′p = −dut ;

f ′
q1 = −∂tduxxx , e′q1 = −uxxx ;

f ′
q2 = −∂tdux , e′q2 = 1

2u2
xx

(53)
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and we have the next higher order representation.⎡
⎣ f ′

p

f ′
q1

f ′
q2

⎤
⎦ =

⎡
⎣ 0 D3

x −D2
x

D3
x 0 0

D2
x 0 0

⎤
⎦
⎡
⎣ e′p

e′q1
e′q2

⎤
⎦ ,

f ′
b =

⎡
⎢⎢⎢⎢⎣

D2
xe′p|∂Z

Dxe′p|∂Z

e′p|∂Z

Dxe′p|∂Z

e′p|∂Z

⎤
⎥⎥⎥⎥⎦ , e′b =

⎡
⎢⎢⎢⎢⎣

−e′q1|∂Z

Dxe′q1|∂Z

−D2
xe′q1|∂Z

−e′q2|∂Z

Dxe′q2|∂Z

⎤
⎥⎥⎥⎥⎦ . (54)

This is not as the same system essentially as it looks,
but there exists the next relation. If we substitute the zero
boundary conditions of (52) to the boundary ports of (54),
then fb = f ′

b, eb = e′b. Then we can see that (54) is the
representation with free boundary conditions of variations
(that is, conservation laws [1], [9]).

VI. CONCLUSIONS

This paper presented the relationship of distributed port-
Hamiltonian formulations to general field equations based on
the Euler-Lagrange formalism of the variational complex.
This result suggests that a lot of systems calculated by
variational problems can be rewritten as distributed port-
Hamiltonian systems systematically.

The study of the system construction procedure in the
case of an unknown Lagrangian can be considered as future
works. An interesting topic may be drawn by further analysis
of this formulation in terms of symmetry.
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APPENDIX A
PROOF OF Theorem 3.1

Lemma A.1: For any functions φ, η ∈ A , the following
relations holds.

n∑
i=1

(−1)iDx(Dn−i
x φ ∧ Di−1

x η)

+ Dn
xφ ∧ η − (−1)nφ ∧ Dn

xη = 0 . (55)

Proof of Theorem 3.1: The statement follows from the
proof of the original [1] and [7].

First D ⊂ D
⊥ is showed. Indeed, if we substitute (13) for

the right side of (12) with Lemma A.1, we see that the first
term is∫

Z

[−e1
p ∧ (−Dx)ne2

q + e1
q ∧ Dn

xe2
p

− e2
p ∧ (−Dx)ne1

q + e2
q ∧ Dn

xe1
p

]
dx

=
∫

Z

−
[ n∑

i=1

(−1)iDx(Dn−i
x e1

p ∧ Di−1
x e2

q)

+
n∑

i=1

(−1)iDx(Dn−i
x e2

p ∧ Di−1
x e1

q)
]

dx , (56)

the second term is∫
∂Z

(
f1

b ∧ e2
b + f2

b ∧ e1
b

)
dx (57)

and the sum of these terms is equal to zero. Then D ⊂ D
⊥.

Next, we will show D
⊥ ⊂ D. Let us consider a condition

of (f1, e1) ∈ D
⊥ such that (12) is zero for all (f2, e2) ∈ D.

Then we consider∫
Z

[−e1
p ∧ (−Dx)ne2

q + e1
q ∧ Dn

xe2
p + e2

p ∧ f1
p + e2

q ∧ f1
q

]
dx

+
∫

∂Z

[ n∑
i=1

(
f1

b ∧ (−1)iDi−1
x e2

q + Dn−i
x e2

p ∧ e1
b

)]
dx = 0

(58)

Then if (58) holds for every (f2, e2) ∈ D, then each wedge
products have to be zero. Using Lemma A.1 again, we can see
that (f1, e1) ∈ D also. Namely, this implies that D

⊥ ⊂ D.
As a result we have D = D

⊥.
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