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Abstract—Compared to normal learning algorithms, for
example backpropagation, Kalman filter-based algorithm has
some better properties, such as faster convergence, although
this algorithm is more complex and sensitive to the nature of
noises. In this paper, extended Kalman filter is applied to train
state-space recurrent neural networks for nonlinear system
identification. In order to improve robustnees of Kalman filter
algorithm dead-zone robust modification is applied to Kalman
filter. Lyapunov method is used to prove that the Kalman filter
training is stable.

I. INTRODUCTION

Resent results show that neural network technique seems
to be very effective to identify a broad category of com-
plex nonlinear systems when complete model information
cannot be obtained. Neural networks can be classified as
feedforward and recurrent ones [7]. Feedforward networks,
for example Multilayer Perceptrons (MLP), are implemented
for the approximation of nonlinear functions in the right
hand side of dynamic model equations. The main drawback
of these neural networks is that the weights’ updating do
not utilize information on the local data structure and the
function approximation is sensitive to the training data
[13]. Since recurrent networks incorporate feedback, they
have powerful representation capability and can successfully
overcome disadvantages of feedforward networks [8]. Even
though backpropagation (BP) has been widely used as a prac-
tical training method for neural networks, the limitations are
that it may converge very slowly, there exists local minima
problem and, the training process is sensitive to measurement
noise. The stability of modified backpropagation algorithm
is proved in [20].

Gradient-like learning laws are relatively slow. In order
to solve this problem, many descendent methods in the
identification and filter theory have been proposed to estimate
the weights of neural networks. For example the extended
Kalman filter is applied to train neural networks in [1],
[9], [17], [18] and [19], they can give solutions of least-
square problems. Most of them use static neural networks,
sometimes the output layer must be linear and the hidden
layer weights are chosen at randomly [3]. A faster conver-
gence with the extended Kalman filter is reached, because
it employes less interaction [9]. However, the computational
complexity in each interaction is increased, it require of large
amount of memory. Decoupling technique is used to decrease
computational burden [14], the decoupled Kalman filter with
diagonal matrix is similar to gradient algorithm [7].
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There are not so many stability analyses for Kalman filter
training, in spite of reported successful Kalman filter appli-
cations. [6] analyzed convergence and stability properties of
the Kalman filter for linear stochastic time-varying regression
models. [16] proved that the estimation error of Kalman
filter remains bounded if the system satisfies a detectability
condition. [15] stated that the Kalman filter is exponentially
stable when the covariance is bounded and filter error is
small enough, these conditions are very hard. [4] presented
a new approach to finite-horizon guaranteed state prediction
for discrete-time systems affected by bounded noise and
unknown-but-bounded parameter uncertainty. There are only
a few published results on stability analysis of neural net-
works training with Kalman filter. [12] used H -learning to
improved the robustness of Kalman filter training. By using
results on stochastic stability of Kalman filter, [1] analyzed
the convergence of the weights of neural networks with the
assumption of the covariance being bounded. The lack
of robustness in Kalman filter with respect to noise was
demonstrated in [12]. Several robust modification techniques
were proposed for the least square algorithm [5] which is
special cases of Kalman filter. To the best of our knowledge,
Kalman filter training for recurrent neural networks and
Lyapunov stability analysis have not yet been established
in the literature.

In this paper the extended Kalman filter is modified with
dead-zone technique, and is applied for state-space recurrent
neural networks training. Both hidden layers and output
layers can be updated. Stability analysis of identification
error with the Kalman filter algorithm is given by the
Lyapunov stability technique. A simple simulation gives the
effectiveness of the suggested algorithm.

II. RECURRENT NEURAL NETWORKS TRAINING WITH
EXTENDED KALMAN FILTER

Consider following unknown discrete-time nonlinear sys-
tem

( + 1) = [ ( ) ( )] (1)

where ( ) < is the input vector, | ( )|2 ( )
< is a state vector, is general nonlinear smooth function

We use the following state-space recurrent neural
network to identify the nonlinear plant (1)

b( +1) = b( )+ 1 [ 1 ( )]+ 2 [ 2 ( )] ( )
(2)

where b ( ) < represents the internal state of the neural
network . The matrix < × is a stable diagonal matrix
which will be specified after, = ( ) | | 1.
The weights in output layer are 1 2

× , the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuA15.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 2562



weights in hidden layer are 1 2
× is

dimension vector function = [ 1 · · · ] , (·) is
< × diagonal matrix. According to the Stone-Weierstrass
theorem and density properties of recurrent neural networks
[8], the unknown nonlinear system (1) can be written in the
following form

( + 1) = ( ) + 1 [ 1 ( )]
+ 2 [ 2 ( )] ( ) ( )

(3)

where ( ) = [ ( ) ( )] ( ) 1 [ 1 ( )]

2 [ 2 ( )] ( ) is modeling error with respect to the
weights 1 , 2 2 and 2 they are time-varying
weights which will be updated by identification error. By
[8] we know that the term ( ) can be made arbitrarily
small by simply selecting appropriate the number of neurons
in the hidden layer (in this paper, it is ). In the case of
two independent variables, a smooth function has Taylor
formula as

=
1X
=0

1

!

·¡
1

0
1

¢
1
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where is the remainder of the Taylor formula. If we let 1
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constant weights.

1 [ 1 ( )] = 0
1

£
0
1 ( )

¤
+ 1 1 + 1 (5)

where 1 =
h

0
1

i
2 ×1

1 =h
1 1

i
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We define the modelling error ( ) =

1 + 2 ( ) substituting (5) and (6) into (3) we have
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Now we use Kalman filter technique to train the recurrent
neural networks (2) such that the identification error ( )
between the plant (1) and the neural networks (2), i.e.,
( ) = b ( ) ( ) is minimized. The parameter matrix

is assumed to be an unknown constant plus a small
random walk component, an artificial process noise is
defined to serve this change, i.e., +1 = + =
[ 1( ) · · · ( )] We rewrite (7) in state-space with single
output ½

( + 1) = ( ) + ( )
( ) = ( ) +

(8)

where = 1 · · · ( ) 4 ×1 =
[ 1 ( ) · · · ( )] ( ) = [ 1 ( ) · · · ( )] =
[ 1 ( ) · · · ( )]

( ) = ( + 1) ( )
+ 0

1

£
0
1 ( )

¤
+ ( ) 0

2

£
0
2 ( )

¤
Because ( ) is a random noise, we assumed it is inde-
pendent from ( ) so and ( ) are un-correlated,n

( )
o
= 0.

Remark 1: The state vector ( ) is assumed to be an
unknown constant with a small random walk component
to allow for adaptive estimation. This random walk serves
the role of an artificial process noise ( ). We assume it
satisfies

{ ( )} = 0 ©
( ) ( )

ª
= 1 (9)

1 can be chosen as , where is small and positive.
In fact, if we do not have a change during the interval of
time, 1 tends to zero, it becomes the least square algorithm.
The plant is not expected to change at all during the time
of interest, the covariance of ‘process noise’ can be
assumed as n o

= 2

These ideas can be also found in [2] and [3], but [3] applied
Kalman filter to feedforward neural networks. In this paper,
we use Kalman filter for recurrent neural networks.

We use Kalman filters to estimate the weights. For th
subsystem the observer is( b ( + 1) = b ( ) + [ ( ) b ( )]b ( ) = b ( ) (10)

where b ( ) is estimated state of ( ) is observer gain.
The state estimation error is defined as

e ( ) = ( ) b ( ) (11)

Substitute (8) and (10) into (11)

e ( + 1) =
£ ¤e ( ) + ( ) (12)

We define a performance index 4 ×4 which uses
the covariance

= (e ) = ½he ³e ´i he ³e ´i ¾
By (8) and [ ( )] = 0, we have [ ( + 1)] =
[ ( )] + [ ( )] = 0 [ ( + 1)] = [ ( )] =
[ (1)] = 0 Because (b ( )) = 0 (e ( )) =
( ( )) (b ( )) = 0 So

=
ne ( )e ( )

o
(13)
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Substitute (12) into (13)

+1 =
ne ( + 1)e ( + 1)

o
=

h¡ ¢e ( ) + ( )
i

×
h¡ ¢e ( ) + ( )

i
=
¡ ¢ ne ( )e ( )

o¡ ¢
+

©
( ) ( )

ª
+

n o
+cross-terms(e ( ) )

Because e ( ), ( ) and are independent, the cross
terms of (e ( ) ) are zero. So +1 is

+1 = + 1

¡
2 +

¢ 1

+
h ¡

2 +
¢ 1

i ¡
2 +

¢
×
h ¡
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i
The last term [·] ¡ 2 +

¢
[·] 0 and 0

1 0 If we want to minimize +1 we have to make the
last term zero, i.e.,

¡
2 +

¢ 1
= 0 So

the observer gain is selected as

=
¡

2 +
¢ 1 (14)

By (14), +1 becomes

+1 = + 1

¡
2 +

¢ 1

= 1 +
£ ¤

(15)
(10), (14) and (15) are the extended Kalman filter for the
training of the neural networks’ weights b ( )b ( + 1) = b ( ) ( )b ( ) = b ( )

+1 = 1 +
£ ¤

=
¡

2 +
¢ 1

(16)

where ( ) = b ( ) ( ).
Remark 2: The Kalman error ( ) is not the same as

the identification error ( ) = b ( ) ( ), but they are
minimized at the same time. From (2) and (3), we have

( + 1) = ( ) + ( ) (17)

By the relation (2) = (1) + (1) = 2 (0) +

(0) + (1) ( ) = (0) +
1X

=0

1 ( ), and

| | 1

| ( )| | (0)|+
1X

=0

| ( )|

Since (0) is a constant, the minimization of the Kalman
error ( ) means the upper bound of the identification error
( ) is minimized
Remark 3: The observer (10) is for each subsystem. This

method can decrease computational burden when we esti-
mate the weights of the recurrent neural network, see [7] and

[14]. By (5) and (6) we know the data matrix depends on
the parameters 1 and 2 , this will not effect parameter
updating algorithm (16), because the unknown parameterb ( + 1) is calculated by the known parameters b ( ) and
data . For each element of and in (16), we have

1 +1 = 1
2+

[ 1 ( )] ( )

1 +1 = 1
2+

0 [ 1 ( )] 1 ( ) ( )

(18)
It has the same form as the backpropagation [7], but
the learning rate is not positive constant, it is a matrix

2+
which changes though the time. That is main

reason why Kalman filter training has a faster convergence
speed. As [14] point out, 2 0 can increase convergence
speed.

III. STABILITY ANALYSIS

In this section we will use Lyapunov stability theory to
prove that the Kalman filter algorithm (16) with dead zone
is stable for system identification.
Lemma 1: If the neural network ( 1 2 1 2 ))

is the optimal model of the system as in (3) for
some data ( ( )), there exist at least one
( 1 2 1 2 ) such the modelling error

( ) is also minimized, and and satisfy

=
= 1 (19)

where 4 ×4 is a linear transformation, it is an
invertible matrix.

Proof: From (7) ( ) = + ( ) we know

= ( )

Choose an invertible matrix compute according to
(19)

=
¡

1
¢
( ) =

So
( ) ( ) = ( ) (20)

that is, the function reconstruction error remains unchanged.

Because of there exists ( 1 2 1 2 ) such
that the model error is minimized, we can design an al-
gorithm to find an acceptable solution. This Lemma gives
conditions for an exact match of the optimal error vector.
However, for all practical purposes, it is sufficient that neural
networks generate error

= ( ) ( )

that is, the two errors are similar in the sense of the norm
but they are not required to match.

By (8), (10) becomes

( ) = e ( ) + (21)
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where e ( ) = ( ) b ( ) = 1 · · · We modify the
extended Kalman filter (16) as dead-zone Kalman filterb ( + 1) = b ( ) 1b ( ) = b ( ) (22)

where = 2 + =(
( ) 2( ) 3

2 AND 1
1

0 2( ) 3
2 OR 1

1

,

is the upper bound of the uncertainty
¯̄ ¯̄

.
Theorem 1: The dead-zone Kalman filter algorithm (22)

can assure the identification error ( ) and the weights of
the neural networks bounded. For any (0 ) the output
error ( ) converges to the residual set

=
n
( ) | 2( ) 3

2
o

(23)
Proof: We define the following Lyapunov function

( ) = e ( ) 1e ( ) (24)

Let us define +1 =
£ ¤

because +1 =

+1 + 1 1 0 so +1 +1 0 and
1
+1

1
+1 0 Apply to (24)

( ) = e ( + 1) 1
+1
e ( + 1) e ( ) 1e ( )e ( + 1)

1
+1
e ( + 1) e ( ) 1e ( )

(25)
First, we consider the case 2( ) 3

2 and
1

1 So = ( ) Substituting
(21) into (22) givese ( + 1) = e ( ) 1 e ( ) 1

( )

(26)
From (22), (21) and (26), we havee ( + 1) = e ( ) 1 ( )e ( + 1) =

h
1

ie ( ) 1

(27)
From (15) we know +1 = +1 + 1 So +1 =
1

+1
1 = 1 (27) becomes

1
+1
e ( + 1) = 1e ( ) 1 1

+1 (28)

substituting (28) into (25) gives
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here
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( ) 1 e ( ) e ( ) 1 e ( )
1 e ( + 1)

1
+1

(30)
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Now we apply the matrix inversion lemma to +1 =
1

( + ) 1 = 1 1
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with 1 = = 1 = 2 = =
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Using (21) (32) tells us

( ) 1 [ 2( )
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1 +
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+
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1 h
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where
¯̄ ¯̄

Because 2( ) 3
2 and 0, so

( ) 0 Also

e ( ) 1e ( ) e (1) 1
1
e (1) max

¡
1

1

¢ °°°e (1)°°°2
From (16) we know +1 = 1 +

1 because 1
1, 1

+1
1

min

¡
1

1

¢ °°°e ( )°°°2 e ( ) 1
1
e ( ) e ( ) 1e ( )

we choose min

¡
1

1

¢ 6= 0 so°°°e ( )°°°2 max

¡
1

1

¢
min

¡
1

1

¢ °°°e (1)°°°2
b ( ) is bounded. On the other side, if 2( ) 3

2 or
1

1 = 0 b ( + 1) = b ( ), b ( )
is bounded. For the all case, the weights b ( ) are bounded.
Form (21) we know the boundness of e ( ) and
mean ( ) is bounded, is also bounded by (13). From
(1) and (2) the identification error ( ) is bounded.

Because 2( ) is bounded, the total time during which
2( ) 3

2 is finite. Let denotes the time interval during
which 2( ) 3

2 (a) If only finite times that 2( ) stay
outside the circle of radius 3 2 (and then reenter), 2( )
will eventually stay inside of this circle. (b) If 2( ) leave
the circle infinite times, since the total time 2( ) leave the
circle is finite, X

=1

lim = 0 (34)
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So 2( ) is bounded via an invariant set argument. Let 2 ( )
denote the largest tracking error during the interval. Then
(34) and bounded 2 ( ) imply that

lim
h
2 ( ) 3

2
i
= 0

So 2 ( ) will convergence to 3 2 (23) is achieved.
Remark 4: The dead-zone depends on the two system

noise in (8), ( ) (corresponds to 1) and (corresponds
to 2). If the weights converge to some constants (not optimal
weights), (9) can be expressed as

{ ( )} = 0 ©
( ) ( )

ª
= 1 =

1
1

We can change the dead-zone as =(
( ) 2( ) 3

2

0 2( ) 3
2 which only depends on the

. In the proof of Theorem 1, after (33) we have

e ( + 1) 1
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e ( + 1) e (1) 1

1
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¡
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From (16) we know
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+ 1 1 + 1 = 1 + 1

So 1
+1

¡
1 + 1

¢ 1

e ( + 1) 1
+1
e ( + 1) e ( + 1)
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³¡
1 + 1

¢ 1
´
6= 0 so°°°e ( + 1)

°°°2 max
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The same results as Theorem 1 can be reached.

IV. SIMULATIONS

We will use the nonlinear system which proposed [11]
to illustrate the behavior of the dead zone Kalman filter
algorithm proposed in this paper

1 ( + 1) = 1( ) 2( ) 3( )

1+ 1( )
2+ 2( )

2+ 3( )
2 + 2 ( )

where 2 ( + 1) = 1 ( ) 3 ( + 1) = 2 ( ) and
4 ( ) = ( ). The unknown nonlinear system has the

standard form (1), we use the recurrent neural network
(series-parallel model) given in (2) to identify it, whereb ( ) 4, 4×4 is a stable diagonal matrix which
is specified as = (0 1). In this paper, in order to
exam the effectiveness of the Kalman filter training, we use
1 node in the hidden layer. The weights in output layer
are 1

4×1, the weights in hidden layer are 1
1×4 = [ 1] , (·) is an element. The elements of the

initial weights 1 0 and 1 0 are chosen in random number
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Fig. 1. Comparison of Kalman filter with dead zone
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Fig. 2. Identification for 2

between (0 1) The input is ( ) = 0 3 sin (3 ) +
0 1 sin (4 ) + 0 6 sin ( )

We select = (100) 4×4
1 = (0 1)

4×4
2 = 1 2 The dead zone is selected as = 0 1.

We compare the normal Kalman filter (16) with dead-zone
Kalman filter (22). The identification results for 2( ) are
shown in Fig.1. We can see that dead-zone Kalman filter has
more robustness than normal one, but has bigger steady-state
error.

Now we use the dead zone Kalman filter with back-
propagation algorithm [7] with learning rate 0 02 and also
recursive least square method [5] to train the neural network
given in (2). we define the mean squared error for finite time
as ( ) = 1

2

P
=1

2 ( ) The identification results for
2 and ( ) are shown in Fig.2and Fig. 3. We find that

Kalman filter has best convergence property.

V. CONCLUSIONS

A novel method of neural identification with Kalman filter
training. The normal Kalman filter is modified with dead-
zone such that it is not sensitive to system noise. Both
hidden layers and output layers of the state-space recurrent
neural networks can be updated. Lyapunov technique is used
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Fig. 3. Errors comparison

to prove that the Kalman filter training is stable. From
a dynamic systems point of view, such training can be
useful for all neural network applications requiring real-time
updating of the weights.
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