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Abstract— In general, better performance can be achieved
with a controlled minimum-phase system than a controlled
non-minimum phase system. We show that a wide class of
second-order infinite-dimensional systems with either velocity
or position measurements are minimum-phase. The results are
illustrated with an example.

I. INTRODUCTION

A stable finite-dimensional system is minimum phase or
outer if and only if its transfer function has no zeros in the
right half plane. A more general definition exists for infinite-
dimensional systems. For a number of reasons controller
design for minimum-phase systems is in general much easier
than for non-minimum phase systems. For example, zeros in
the right half plane restrict the achievable sensitivity. Also,
most adaptive controllers require the system to be minimum-
phase.

It is therefore advantageous to establish conditions un-
der which infinite-dimensional systems are minimum-phase.
There can be difficulties associated with computing the zeros
of an infinite-dimensional system [3], [10]. Furthermore,
there are aspects of the dynamics that can lead to non-
minimum phase behaviour besides zeros in the right half
plane. For example, the transfer function exp(−s) has no
zeros, but is clearly not minimum-phase. Thus, determining
minimum-phase behaviour is less straightforward than for
finite-dimensional systems.

There are a number of results for first-order systems that
guarantee that the transfer function is positive real [4], [6],
[5], [11]. In [4] the positive real property, together with
exponential stability of the semigroup, and the fact that the
system is relative degree one, is shown to imply convergence
and stability of an adaptive compensator. These assumptions
on the system imply that it is minimum-phase.

In [14], [15] a class of second-order systems

z̈(t) + Aoz(t) + Dż(t) = Bou(t), (1)

is examined. In these references the damping D = 1
2B∗

oBo

and the output

y(t) = −B∗
o ż(t) + u(t),

have been studied. We consider more general damping. We
also consider both velocity and position measurements. First
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consider the output

y(t) = B∗
o ż(t). (2)

This class of systems has a positive real transfer function.
We will show that with this choice of output, and certain
assumptions on the damping operator, the system is well-
posed and has an outer transfer function. This re-definition
of the output is crucial. In one space dimension, the ex-
ample in [14, sect. 7] has transfer function exp(−2s), an
inner function. With measurements (2) we obtain a transfer
function 1 − exp(−2s), an outer function.

Furthermore, we show that a class of similar systems, but
with position measurements

y(t) = B∗
oz(t) (3)

is well-posed. These systems also have an outer transfer
function. Our work is motivated by the finite-dimensional
results in [9]. Note that these systems do not have positive
real transfer functions, even in the finite-dimensional case.

A simple example of position measurements of a flexible
beam at the end of this paper illustrates our results.

II. FRAMEWORK

In common with [14], [15] we make the following as-
sumptions throughout this paper

(A1) The stiffness operator Ao : D(Ao) ⊂ H → H is
a self-adjoint, positive-definite linear operator on a Hilbert
space H with 0 ∈ ρ(Ao). Since Ao is self-adjoint and
positive definite, Aα

o is well-defined for α ≥ 0. A scale
of Hilbert spaces Hα is defined as follows: For α ≥ 0,
we define Hα = [D(Aα

o )], and H−α = H∗
α. Here the

duality is taken with respect to the pivot space H , that is,
equivalently H−α is the completion of H with respect to the
norm ‖z‖H−α = ‖A−α

o z‖H . Thus for α ∈ R, the operator
Ao extends (restricts) to Ao : Hα → Hα−1. We use the same
notation Ao to denote this extension (restriction).

We denote the inner product on H by 〈·, ·〉H or 〈·, ·〉, and
the duality pairing on H−α×Hα by 〈·, ·〉H−α×Hα . Note that
for (z′, z) ∈ H × Hα, α > 0, we have

〈z′, z〉H−α×Hα
= 〈z′, z〉H .

(A2 i) Let U be another Hilbert space. We identify U with
its dual. The control operator Bo is a linear and bounded
operator from U to H− 1

2
.

(A2 ii) The damping operator D : H 1
2
→ H− 1

2
is a self-

adjoint linear operator satisfying

〈Dz, z〉H− 1
2
×H 1

2
≥ 0, z ∈ H 1

2
.
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We note that the results of this paper can be extended to
a more general situation where y(t) := MB∗

oz(t) or y(t) :=
MB∗

o ż(t). Here M is a linear bounded operator from U to
another Hilbert space Y .

The position control system is equivalent to the following
standard first-order equation

ẋ(t) = Ax(t) + Bu(t) (4)

y(t) = Cpx(t) (5)

where A : D(A) ⊂ H 1
2
× H → H 1

2
× H , B : U → H 1

2
×

H− 1
2

and Cp : H 1
2
× H → U are given by

A =
[

0 I
−Ao −D

]
, B =

[
0

Bo

]
, Cp =

[
B∗

o 0
]
,

D(A) =
{

[ z
w ] ∈ H 1

2
× H 1

2
| Aoz + Dw ∈ H

}
.

The velocity control system has a first-order form that is
identical, except that y(t) = Cvx(t), where Cv : H 1

2
×H 1

2
→

U is given by
Cv =

[
0 B∗

o

]
.

Properties of the operator A

Since whether the operator generates a semigroup is
independent of the control and observation operators, the
following result is immediate.

Theorem 2.1: [14, Prop. 5.1] The operator A is the gener-
ator of a strongly continuous semigroup T (t) of contractions
on the state space X = H 1

2
× H .

This guarantees that the spectrum of A is contained in
the closed right-half plane Re(s) ≤ 0. For the main result
of this paper it is required that there is no spectrum on the
imaginary axis. This is implied by the following result.

Proposition 2.2: [15, Prop. 1.4] If there exists a constant
β > 0 such that

〈Dz, z〉H− 1
2
×H 1

2
≥ β‖z‖2

H , z ∈ H 1
2
, (6)

then A generates an exponentially stable semigroup on X .
Let σ(A) indicate the spectrum of A. The continuous

spectrum, σc(A), is the set of all λ for which λI − A is
injective, not surjective, but with range dense in X . The
residual spectrum, σr(A) consists of λ for which λI − A
is injective, but the range of λI − A is not dense. We have

σ(A) = σp(A) ∪ σc(A) ∪ σr(A)

where σp(A) indicates the point spectrum. The approximate
point spectrum, σa(A), consists of all λ for which there is a
sequence (xn)n in D(A) such that

‖xn‖X = 1 and ‖(λI − A)xn‖X → 0.

(This is different from the definitions used in [15].)
Concerning the spectrum of A on the imaginary axis we

know the following.
Theorem 2.3: If iη ∈ σ(A), then −iη ∈ σ(A), η2 ∈

σ(Ao), and iη ∈ σa(A).
Moreover if, for non-zero z ∈ H 1

2
,

〈Dz, z〉H− 1
2
×H 1

2
> 0, (7)

then the operator A has no eigenvalues on the imaginary axis
and every iη ∈ σ(A) satisfies iη ∈ σc(A).

Proof: This result was partly shown in [15]. We give
a shorter proof here using Krein spaces. In [15, Proof of
Lemma 4.5] it is shown that

A∗ = JAJ, with J =
(

I 0
0 −I

)
.

If we define on X the inner product

[x, x] := 〈x, Jx〉X , x ∈ X,

then (X, [·, ·]) is a Krein space and A is a selfadjoint
operator on the Krein space (X, [·, ·]) (see Bognar [2] for
more information). This fact implies immediately, that the
spectrum of A is symmetric to the real axis ([2, page 133]),
and thus −iη ∈ σ(A). Since A generates a bounded C0-
semigroup, we have that iη is an element of the boundary of
σ(A), which proves iη ∈ σa(A), see Engel and Nagel [7].

We now assume that 〈Dz, z〉H− 1
2
×H 1

2
is positive for every

non-zero z ∈ H 1
2

. We assume that iη ∈ σp(A). Then we can
find an x = ( z

w ) such that

A ( z
w ) = iη ( z

w ) ⇔ w = iηz, Aoz + Dw = −iηw,

which is equivalent to Aoz + iηDz = η2z. Taking the inner
product with z we get

〈Aoz + iηDz, z〉 = η2‖z‖2.

This implies that iη〈Dz, z〉 = η2‖z‖2 − ‖A 1
2
o z‖2. Since the

left side of the equation is an imaginary number and the right
side is a real number, we have η = 0 or 〈Dz, z〉 = 0. In [14]
it is shown that 0 ∈ ρ(A) and thus A has no eigenvalues
on the imaginary axis. Finally, iη ∈ σc(A) follows from [2,
page 133].

Let Cα := {s ∈ C | Re s > α} for α ∈ R. We conclude
this subsection with the following theorem, which will be
used in the next section.

Theorem 2.4: [14, Prop. 5.3] For every s ∈ ρ(A),
1) (sI−A)−1 is a bounded and invertible map from H 1

2
×

H− 1
2

to H 1
2
× H 1

2
.

2) The operator s2I + Ds + Ao ∈ L(H 1
2
, H− 1

2
) has a

bounded inverse V (s) ∈ L(H− 1
2
, H 1

2
).

3) On H 1
2
× H− 1

2
, for every non-zero s ∈ ρ(A),

(sI − A)−1 =
[

1
s [I − V (s)Ao] V (s)

−V (s)Ao sV (s)

]
. (8)

The velocity measurement system

We now study the properties of the velocity measurement
system, that is, we assume that the output is

y(t) = B∗
o ż(t) = Cvx(t), (9)

where Cv : H 1
2
× H 1

2
→ U is given by

Cv =
[

0 B∗
o

]
.

A linear control system is well-posed if the maps from
initial condition x(0) and control u ∈ L2(0, T ; U) are
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bounded on any finite-time interval. The operator B is
infinite-time admissible if the state trajectory corresponding
to x(0) = 0 is uniformly bounded for any u ∈ L2(0,∞; U).
Similarly, the operator C is infinite-time admissible if the
output y ∈ L2(0,∞; U) for any initial condition and zero
input. If for some E ∈ L(U,U), the transfer function satisfies

lim
s→+∞Gp(s)x = Ex, x ∈ X,

where X is the state space of the system, we say the system
is regular with feedthrough operator E.

In order to show well-posedness of the control system on
the state space X , we assume that the damping operator
satisfies the following:

(A3) The damping operator D : H 1
2
→ H− 1

2
is a self-

adjoint linear operator satisfying

〈Dz, z〉H− 1
2
×H 1

2
≥ β‖B∗

oz‖2, z ∈ H 1
2
,

for some β > 0.
Proposition 2.5: If, in addition to the standard assump-

tions (A1)-(A2), (A3) also holds then

1) The control operator B is infinite-time admissible for
the semigroup generated by A.

2) The observation operator Cv is infinite-time admissible
for the semigroup generated by A.

3) The system (A, B, Cv) is well-posed.
4) The transfer function of the system (A, B, Cv) is

given by Gv(s) = sB∗
oV (s)Bo and satisfies Gv ∈

H∞(C0,L(U)).
Proof: The proof of this Proposition uses the approach

in [14]. Following the proof of Proposition 5.5 in [14] we
obtain, for u ∈ H2(0,∞; U) and x(0) = zo, ż(0) = wo ∈
H 1

2
satisfying

Aozo + Dwo − Bou(0) ∈ H,

the inequality

1
2

d

dt

∥∥∥∥
(

z(t)
ż(t)

)∥∥∥∥
2

= −〈Dż(t), ż(t)〉 + Re〈Bou(t), ż(t)〉.

Using (A3) and the standard inequality that, for any ε > 0,

2Re〈a, b〉 ≤ ε ‖a‖2 +
1
ε
‖b‖2

,

we obtain

1
2

d

dt

∥∥∥∥
(

z(t)
ż(t)

)∥∥∥∥
2

≤ (−β +
ε

2
)‖B∗

o ż(t)‖2 +
1
2ε

‖u(t)‖2.

Choosing ε < 2β, there are constants c1, c2 > 0 such that

d

dt

∥∥∥∥
(

z(t)
ż(t)

)∥∥∥∥
2

≤ c1‖u(t)‖2 − c2‖B∗
o ż(t)‖2.

Rearranging and writing y(t) = B∗
o ż(t),

c2‖y(t)‖2 +
d

dt

∥∥∥∥
(

z(t)
ż(t)

)∥∥∥∥
2

≤ c1‖u(t)‖2. (10)

Integrating this inequality over time and using Theorem (2.1)
implies that B and Cv are (infinite-time) admissible and that

(A, B, Cv) is a well-posed linear system. This inequality also
implies that the control system is L2-stable and hence the
transfer function Gv is in H∞(C0,L(U)). Using Theorem
1.3 in [14] we see that the corresponding transfer function
is given by Gv(s) = sB∗

oV (s)Bo.

The position measurement system

We now study the properties of the position measurement
system

y(t) = B∗
oz(t) = Cpx(t), (11)

where Cp : H 1
2
× H → U is given by

Cp =
[

B∗
o 0

]
.

Proposition 2.6: If, in addition to the standard assump-
tions (A1)-(A2), (A3) also holds then

1) The observation operator Cp is a bounded operator
from X to U and Cp is thus admissible for the
semigroup generated by A.

2) The system (A, B, Cp) is regular with feedthrough 0.
3) The transfer function of the system (A, B, Cp) is

given by Gp(s) = B∗
oV (s)Bo and satisfies Gp ∈

H∞(C0,L(U)).
Proof: The observation operator Cp is a bounded op-

erator on the state space, and thus Cp is an admissible
observation operator for the semigroup generated by A. In
Proposition 2.5 we showed that B is an infinite-time admissi-
ble control operator for the semigroup generated by A. Thus
(A, B, Cp) is a well-posed linear system. Using Proposition
2.4 we see that the corresponding transfer function is given
by Gp(s) = B∗

oV (s)Bo. In Proposition 2.5 we proved that
Gv(s) = sGp(s) is a bounded holomorphic function on the
right half plane. Since C0 ⊂ ρ(A), the transfer function
Gp(s) is an analytic function on the right half plane, bounded
as |s| → ∞, Re(s) > 0. It remains to show that Gp is
bounded on the right half plane. The function Gp has an
analytic extension to a neighborhood of 0, since 0 ∈ ρ(A)
(see [14]). Thus the boundedness of Gp on the right half
plane follows from the fact that sGp(s) is bounded on the
right half plane. Since sGp(s) is uniformly bounded in the
right half plane,

lim
s→+∞Gp(s) = 0,

and therefore (A, B, Cp) is a regular linear system with zero
feedthrough.

III. MINIMUM-PHASE BEHAVIOUR

Throughout this section we assume that (A1)–(A3) are
satisfied. We start with the following useful lemma.

Lemma 3.1: If Bo �= 0, then s2Gp(s) �→ 0 as s tends to
infinity.

Proof: For s > 0 we define X(s) := A
− 1

2
o (s2I + sD +

Ao)A
− 1

2
o . Then X(s) is a linear, bounded operator on H (see

Proposition 2.4), and it is easy to show that X(s) is positive
definite. Thus, there exists for every s > 0 a unique positive
definite operator Y (s) on H with

X(s) = Y (s)2.
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For z ∈ H we have

‖Y (s)z‖2=〈z, X(s)z〉
≤‖X(s)‖ ‖z‖2

≤(‖A−1
o ‖s2 + ‖A− 1

2
o DA

− 1
2

o ‖s + 1)‖z‖2.

Now

‖Gp(s)‖ = sup
u, v ∈ U,

‖u‖ = ‖v‖ = 1

|〈v, B∗
oV (s)Bou〉|,

and

|〈v, B∗
oV (s)Bou〉|=|〈A− 1

2
o Bov, A

1
2
o V (s)Bou〉|

=||〈A− 1
2

o Bov, A
1
2
o V (s)A

1
2
o A

− 1
2

o Bou〉|
=|〈A− 1

2
o Bov, (X(s))−1A

− 1
2

o Bou〉|.
It follows that

sup
u, v ∈ U,

‖u‖ = ‖v‖ = 1

|〈v, B∗
oV (s)Bou〉| = ‖(Y (s))−1A

− 1
2

o Bo‖2

and so

‖s2Gp(s)‖
≥(‖A−1

o ‖ + ‖A− 1
2

o DA
− 1

2
o ‖s−1 + s−2)−1‖A− 1

2
o Bo‖2.

Thus s2Gp(s) �→ 0 as s tends to infinity.
In the following we assume that U is finite-dimensional,

that is, U = C
m. For G : C → L(U) the normal rank r of

G is given by
r := max

s∈C0
rankG(s).

Clearly r ≤ m. In general r = m.
Definition 3.2: Let G : C → L(U). Then z ∈ C0 is a

transmission zero if G(z) has less than normal rank.
Lemma 3.3: Assume that the normal rank of the transfer

function Gp is m. Then the transfer functions Gp(s) and
Gv(s) have no transmission zeros in the open right half
plane.

Proof: It is enough to show the statement for Gp. The
proof is similar to that for finite-dimensional second-order
systems in [9]. From Theorem (2.1), it follows that Gp(s) is
well-defined in the right half plane C0.

Suppose s0 ∈ C0 is such that there exists uo ∈ U such that
Gp(s0)uo = 0 or, from the representation above of Gp(s),

B∗
oV (s0)Bouo = 0.

Define zo = V (s0)Bouo. If zo = 0 then Bouo = 0 and
G(s)uo = 0 for all s. Unless uo is also zero, this contradicts
the assumption that the normal rank of the Gp is the number
of columns. Assume then zo �= 0. Noting that zo ∈ H 1

2
we

can write

(s2
0I + s0D + Ao)zo − Bouo = 0

B∗
ozo = 0

where the first equation holds in H− 1
2

and the second in U .
Thus,

〈(s2
0I + s0D + Ao)zo − Bouo, zo〉H− 1

2
,H 1

2
= 0.

Using B∗
ozo = 0, this becomes

〈(s2
0I + s0D + Ao)zo, zo〉H− 1

2
,H 1

2
= 0. (12)

Decompose s0 into real and imaginary parts, s0 = σ + iη
where σ > 0. The imaginary part of (12) is:

η〈[2σI + D]zo, zo〉 = 0.

Since zo �= 0, this is only zero if η = 0. The real part of
(12) is

〈[(σ2 − η2)I + σD + Ao]zo, zo〉 = 0.

Since η = 0 then this equation is not satisfied for any non-
zero z0. Thus, G(z)uo = 0 implies uo = 0 and there are no
transmission zero of G with positive real part.

Next we show that the transfer function Gp has minimum-
phase if U = C. It is well-known that every bounded
holomorphic function f : C0 → C can be uniquely factored
as f(s) = j(s)h(s), where j is an inner function, that is,
|j(s)| ≤ 1 for s ∈ C0, and |j(iη)| = 1 for almost every
η ∈ R, and h is an outer function, that is,

h(s) := exp
[

1
π

∫ ∞

−∞
log |f(it)| ts + i

t + is

dt

1 + t2

]
. (13)

We note that |h(iη)| = |f(iη)| for a.e. η ∈ R, and that
|h(s)| ≥ |f(s)| on C0. Moreover, an outer function has no
zeros in the right half plane. For more results on the inner-
outer factorization of bounded, holomorphic functions we
refer the reader to [13].

We summarize some results on inner functions. Let
{βn}n∈N be a sequence of points in C0 satisfying the
Blaschke condition

∞∑
n=1

Re βn

1 + |βn|2 < ∞. (14)

Then the Blaschke product Θ corresponding to the sequence
{βn}n∈N is given by

Θ(s) =
∏
n∈N

|1 − β2
n|

1 − β2
n

s − βn

s + βn

, (15)

where |1−β2
n|

1−β2
n

is assumed to be 1 if βn = 1. The function Θ
is in H∞(C0) and the zeros of Θ are precisely the points βn,
each zero having multiplicity equal to the number of times it
occurs in the sequence. Moreover, |Θ(s)| ≤ 1 for all s with
positive real part, and |Θ(iη)| = 1 for almost all real η’s.
Thus every Blaschke product is an inner function. However,
not every inner function can be written as a Blaschke product.
Another class of inner functions are the singular functions.
A singular function is a holomorphic function S : C0 → C

which can be written as

S(s) = e−ρs exp
[
−

∫
R

ts + i

t + is
dµ(t)

]
, (16)

where µ is a finite singular positive measure on R and ρ is
a non-negative real number. Every inner function f can be
written as

f(s) = eiaΘ(s)S(s), (17)
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where a is a real number, Θ is a Blaschke product and S is
a singular function.

Theorem 3.4: Assume that the second-order system (1)
satisfies assumptions (A1)-(A3) with Bo �= 0. If in addition,
the resolvent of A contains the imaginary axis, then Gp(s)
and Gv(s) are outer functions times a constant of modulus
one.

Proof: It is enough to show the result for Gp(s). Above
we have seen that Gp(s) can be factored as Gp(s) =
eiaΘ(s)S(s)h(s), where a is a real number, Θ(s) is a
Blaschke product, S(s) is a singular function and h(s) is
an outer function. In Lemma 3.3 it was shown that G has
no zeros in the right half plane, and so the Blaschke product
is only 1. Lemma 3.1 implies that lims→∞ s2Gp(s) �= 0,
and thus the constant ρ in (16) is zero. It remains only to
show that the measure µ in (16) is zero. However, since the
resolvent set of A contains the imaginary axis, it is possible
to extend the resolvent to an open subset of C containing
the closed right half plane. Thus also the transfer function
Gp has a continuation to a holomorphic function on Ω. (For
more details concerning the continuation of transfer functions
we refer the reader to [16].) Since the transfer function has
this analytic continuation [13, page 142] implies that µ = 0.
There is therefore no singular part to the transfer function.
This shows that the transfer function of Gp is an outer
function times a constant of modulus 1.

In particular, if A generates an exponentially stable C0-
semigroup and B0 �= 0 then the transfer function is an outer
function times a constant of modulus one.

IV. EXAMPLE

Consider a Euler-Bernoulli beam of unit length pinned at
each end and let z(r, t) denote the deflection of the beam
from its rigid body motion at time t and position r. Use
of the Kelvin-Voigt damping model leads to the following
description of the beam vibrations:

∂2z

∂t2
+

∂2

∂r2

[
E

∂2z

∂r2
+ Cd

∂3z

∂r2∂t

]
= 0, 0 < r < 1.

Here E and Cd are positive physical constants. The beam is
pinned at each end so

z(0, t) = 0,
[
E ∂2z

∂r2 + Cd
∂3z

∂r2∂t

]
r=0

= 0,

z(1, t) = 0,
[
E ∂2z

∂r2 + Cd
∂3z

∂r2∂t

]
r=1

= 0.

A force u is applied at some point ξ, 0 < ξ < 1, with
position measurement at the same point:[

E
∂3z

∂r3
+ Cd

∂4z

∂r3∂t

]
r=ξ

= u(t),

z(ξ, t) = y(t).

Let x(t) = (z(·, t), ż(·, t)).
We will put this control system into the framework of this

paper. Here H is L2(0, 1) and Ao = E d4

dr4 with D(Ao) given
by{

z ∈ H4(0, 1) : z(0) =
d2z

dr2
(0) = z(1) =

d2z

dr2
(1) = 0

}
.

Also,

H 1
2

=
{
z ∈ H2(0, 1) : z(0) = z(1) = 0

}
with inner product 〈z, v〉 1

2
= E〈z′′, v′′〉 and X = H 1

2
×

L2(0, 1). The damping operator D : H 1
2
→ H− 1

2
is defined

by

〈Dz, φ〉H− 1
2

,H 1
2

=
Cd

E
〈z, φ〉 1

2

for z, φ ∈ H 1
2

. The operator Bo = δξ and Co = B∗
oz =

z(ξ). Sobolev’s Inequality implies that evaluation at a point
is bounded on H 1

2
and so the output operator Co is bounded

from H 1
2

to R. Assumptions (A1)-(A2) are satisfied. Notice
that the damping and control in this example is not included
in the special class covered in [14], [15].

The inequality

〈Dz, z〉− 1
2 , 1

2
≥ Cd

E
|z|21

2
≥ α|z|2

for positive constant α, implies the well-known result that A
generates an exponentially stable analytic semigroup on X .
Furthermore, for z ∈ H 1

2
,

〈Dz, z〉 =
Cd

E
|z|21

2

≥ β|z(ξ)|2
= β|B∗

oz|2

for some β > 0 by Sobolev’s Inequality. Thus (A3) is
also satisfied, implying well-posedness of the control system
(Prop. 2.6)). Theorem 3.4 implies that the transfer function
is an outer function.

If the position measurement is replaced by velocity mea-
surement, the same conclusions hold.

For this simple example, the conclusion of no zeros in
the right half plane could be seen by analysis of the transfer
function, although this is not straightforward. Determining
that there is no part e−ρs is more difficult. However, the
main advantage of the results in this paper is that they can
be applied to vibrations on general domains. They also apply
to wave problems such as [14, sect. 7],[15, sect. 5.2].
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