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Abstract— We consider the problem of achieving input-
to-state stability (ISS) with respect to external disturbances
for control systems with linear dynamics and quantized
state measurements. Quantizers considered in this paper
take finitely many values and have an adjustable “zoom”
parameter. Building on an approach applied previously to
systems with no disturbances, we develop a control method-
ology that counteracts an unknown disturbance by switching
repeatedly between “zooming out” and “zooming in”. Two
specific control strategies that yield ISS are presented. The first
one is implemented in continuous time, while the second one
incorporates time sampling. We discover that in the presence
of disturbances, time-sampling implementation requires an
additional modification which has not been considered in
previous work.

I. INTRODUCTION

The subject of this paper is feedback control of lin-

ear continuous-time systems with quantized state measure-

ments. Control problems of this kind are motivated by

numerous applications where communication between the

plant and the controller is limited due to capacity or security

constraints. This is a very active and expanding research

area [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11].

The starting point for this paper is the approach developed

in [3], [9] (see also [12, Chap. 5]) which we now briefly

recall. The quantizer is assumed to take a finite set of values

and incorporates an adjustable “zoom” parameter. The con-

trol strategy is composed of two stages. The first, “zooming-

out” stage consists in increasing the range of the quantizer

until the state of the system can be adequately measured; at

this stage, the system is open-loop. The second, “zooming-

in” stage involves applying feedback and at the same time

decreasing the quantization error in such a way as to drive

the state to the origin. This results in a hybrid control law,

in which discrete transitions are triggered by the values of

a suitable Lyapunov function.

The method of [3], [9] was shown to achieve global

asymptotic stability (GAS). The focus of the present work

is on achieving robustness with respect to disturbances. We

characterize the desired robustness by an ISS-like property

(see [13]) which involves bounded nonlinear gains from the

initial state and the supremum norm of the disturbance to the

supremum norm of the state and also from the supremum

limit of the disturbance to the supremum limit of the state.
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In [8], [5], state boundedness in the presence of bounded

disturbances is achieved by using the knowledge of a

disturbance bound. In [11], mean square stability is obtained

by utilizing statistical information about the disturbance

(a bound on its appropriate moment). In contrast to these

works, here we assume the disturbance to be completely

unknown to the controller.

Our first main result (Theorem 1 in Section II) is that

the ISS property in the presence of disturbances can be

achieved by extending the method of [3], [9]. An extension

is necessary because an unknown disturbance may force

the state outside the range of the quantizer after it has

already been inside. Thus we develop a control strategy

that switches multiple times between the zooming-out and

zooming-in stages. This strategy is still Lyapunov-based,

and its analysis is similar in spirit to that from [9] but

is significantly more difficult. When no disturbances are

present, the earlier stabilization result is recovered from our

new result as a special case.

Next, we turn to the problem of achieving the same

robustness property using sampled-data quantized feedback.

Time-sampling implementation is important because it guar-

antees a finite data rate (cf. [7]) and exposes the issue of

robustness with respect to time delays. We demonstrate that

unless proper care is taken, the straightforward sampled-

data adaptation of the continuous-time control strategy in

general fails to provide ISS (Section III-B). We then proceed

to describe a modified version of the zooming-out procedure

which yields ISS in the time-sampling context, obtaining

our second main result (Theorem 5 in Section III-C).

The proof of Theorem 5 sharply differs from that of

Theorem 1 in that it does not use a Lyapunov function

and instead is based entirely on trajectory analysis. Thus

another principal contribution of this work is a novel

alternative method for analyzing stability and robustness

of quantized feedback control schemes (this method can

be applied in continuous time as well). In particular, an

important component of this time-based analysis consists in

recognizing and utilizing a cascade structure1 of the hybrid

closed-loop system. Due to space constraints, the proofs are

omitted and can be found in the full on-line version [15].

II. LYAPUNOV-BASED CONTINUOUS-TIME APPROACH

We consider the linear system

ẋ = Ax + Bu + Dd (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, and

d ∈ R
s is a disturbance (u and d are taken to be Lebesgue

1This can be viewed as a special instance of the general small-gain
approach to stability analysis of hybrid systems proposed in [14].
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measurable and locally bounded). We assume that A is a

nonzero, non-Hurwitz matrix. We assume this system is

stabilizable, so there exist matrices K and P = P T > 0
such that A + BK is Hurwitz and

(A + BK)T P + P (A + BK) ≤ −2I . (2)

Let λmin(·) and λmax(·) denote the smallest and the largest

eigenvalue of a symmetric matrix, respectively. In what

follows, | · | denotes the Euclidean norm, ‖ · ‖ denotes the

corresponding matrix induced norm, and ‖·‖J denotes the

supremum norm of a signal on an interval J . For x ∈ R
n,

�x� is the smallest integer z ∈ N such that z ≥ x. A

continuous function ϕ : R≥0 → R≥0 is of class K∞ if it is

zero at zero, strictly increasing, and unbounded.

A quantizer is a piecewise constant function q : R
n → Q,

where Q is a finite subset of R
n. We assume that there

exist real numbers M > ∆ > 0 such that the following two

conditions hold:

|z| ≤ M ⇒ |q(z) − z| ≤ ∆ (3)

and

|z| > M ⇒ |q(z)| > M − ∆ . (4)

The first condition gives a bound on the quantization error

when the quantizer does not saturate, while the second one

provides a way to detect the possibility of saturation. We

will refer to M and ∆ as the range and the error of the

quantizer, respectively. We also assume that q(x) = 0 on

some neighborhood of the origin:

Assumption 1 There exists a number ∆0 > 0 such that for
all |z| ≤ ∆0 we have q(z) = 0.

We will be using the one-parameter family of quantizers

qµ(x) := µq
(x

µ

)
, µ > 0 .

Here µ is an adjustable parameter, which can be viewed as a

“zoom” variable. At each time t, the quantized measurement

qµ(t)(x(t)) will represent the information about x(t) which

is available to the controller. This quantity takes on a

finite number of values (equal to the cardinality of the set

Q). Geometrically, R
n is divided into a finite number of

quantization regions (each corresponding to a fixed value of

q) and the controller knows which of these regions contains

the state x at every time. The variable µ is an adjustable

parameter which we will vary in a discrete fashion in order

to extract more information about the state (cf. [3], [9]).

The problem of interest is to design a quantized feedback

control law and a scheme for updating µ to achieve the

following goal: there exist functions γ1, γ2, γ3 ∈ K∞ such

that for every initial condition x0 = x(t0) and every

bounded disturbance d we have

|x(t)| ≤ γ1(|x0|) + γ2

(‖d‖[t0,∞)

) ∀ t ≥ t0 (5)

and

lim sup
t→∞

|x(t)| ≤ γ3

(
lim sup

t→∞
|d(t)|

)
. (6)

We note that the gain functions γ1, γ2, γ3 may depend on the

choice of the initial value µ0 = µ(t0) of the zoom variable

µ, but do not depend on x0 or d. Since the closed-loop

dynamics will not explicitly depend on time t, all bounds

will also be uniform with respect to the initial time t0.

We know that for continuous systems of the form ẋ =
f(x, d), the property expressed by the two inequalities (5)

and (6) is equivalent to input-to-state stability (ISS) with

respect to d [13]. In the present case, the closed-loop system

will be a hybrid system, as it will contain an additional

discrete state µ. With some abuse of terminology, we will

refer to the above property as ISS of continuous closed-loop

dynamics.

This ISS property also implies that in the disturbance-

free case (d ≡ 0), the origin is a GAS equilibrium of the

continuous closed-loop dynamics (for a fixed µ0). Thus

we recover as a special case the property achieved by

the algorithms developed in [3], [9] for the case of no

disturbances. In fact, the algorithm presented next is a

natural extension of the ones from [3], [9].

The hybrid closed-loop system will contain continuous

states (states taking values in a continuum) and discrete

states (states taking values in a discrete set). Both contin-

uous and discrete states will be functions of the contin-

uous time t ∈ [t0,∞). The continuous variables will be

comprised of the system state x and two auxiliary reset

clock variables τout and τin, both initialized at 0. They will

take values in the intervals [0, Tout] and [0, Tin], respectively,

where Tout ≥ Tin > 0.

The discrete variables will be comprised of the zoom

variable µ and an auxiliary logical variable capt. The

variable µ will be initialized at some µ0 > 0 and will take

values in a discrete subset of (0,∞) which depends on µ0.

The variable capt will take values in the set {“yes”, “no”}
and will be initialized at “no”; it is needed to distinguish

between the “capture” (open-loop) stage and the control

(closed-loop) stage. The control law is defined by

u(t) =

{
0 if capt = “no”

Kqµ(t)(x(t)) if capt = “yes”
. (7)

The state dynamics describing the evolution of the system

variables with respect to time are composed of continuous
evolution and discrete events. During continuous evolution

(i.e., while no discrete events occur), µ is held constant, x
satisfies (1) with u defined by (7), and the clocks satisfy

τ̇in =

{
1 if τin < Tin

0 if τin = Tin
, τ̇out =

{
1 if τout < Tout

0 if τout = Tout
.

We now describe the discrete events. Given an arbitrary

time t, we will denote by µ−(t), or simply by µ− when the

time arguments are omitted, the quantity lims↗t µ(s), and

similarly for all other variables. All system variables will

be continuous from the right by construction. Let numbers

Ωout > 1, Ωin ∈ (0, 1), Tc ∈ (0, Tout/2), and �out > �in > 0
be given. The discrete events are of three types. They are
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governed by the following rules, which we write in the

form “if <conditions> then <actions>”. The conditions are

mutually exclusive and are checked continuously in time.

Zoom-out: If

(τ−
out = Tout and capt− = “no”) or

(|qµ−(x)| ≥ �outµ
− and capt− = “yes”)

(8)

then let µ = Ωoutµ
− and τout = 0.

Capture: If

|qµ−(x)| ≤ �outµ
−, τ−

out ∈ [Tc, Tout−Tc] and capt− = “no”

(9)

then let µ = Ωoutµ
− and capt=“yes”.

Zoom-in: If

|qµ−(x)| ≤ �inµ
−, τ−

out = τ−
in = Tin and capt− = “yes”

(10)

then let µ = Ωinµ
− and τin = 0.

The functioning of the clocks can be understood as

follows. While capt = “no”, we wait at least Tout units

of time after a zoom-out before executing another zoom-

out. Moreover, we wait at least Tin units of time after the

last zoom-in or zoom-out before executing another zoom-in.

For convenience, the clock τout is also used to ensure that

the capture event is separated in time from the zoom-outs.

For each fixed value of µ, chattering on the boundaries

between the quantization regions may occur, and solutions

are to be interpreted in the sense of Filippov (this issue

does not affect the Lyapunov-based analysis). Solutions

of the overall hybrid system are defined as usual, from

one discrete event to the next. The only potential issue

is the possibility of infinitely many zoom-in/out events in

finite time (Zeno behavior), which in principle can happen

since a minimal time between zoom-outs is not enforced

while capt = “yes”. However, when the disturbance is

bounded, such behavior is ruled out by the next result,

which guarantees that µ remains bounded for all time.

Theorem 1 Consider the system (1). Pick matrices K and
P = PT > 0 satisfying (2). Let q be a quantizer satisfying
the conditions (3) and (4), where M and ∆ satisfy

M >

(
2 + 2

√
λmax(P )
λmin(P )

+
λmax(P )
λmin(P )

‖PBK‖
)

∆ . (11)

Let the control be defined by (7) and let the evolution of µ be
as described above, with an arbitrary fixed initial condition
µ0 = µ(t0) > 0. Let Ωin,Ωout, Tin, Tout, Tc be positive
numbers satisfying the inequalities Ωin < 1, Tc < Tout/2,

Tout < log Ωout/‖A‖,

Ωin

√
λmin(P )
λmax(P )

(M − 2∆) − 2∆ >

√
λmax(P )
λmin(P )

‖PBK‖∆,

(12)

Ωout >

√
λmax(P )M√

λmin(P )(M − 2∆)
(13)

(Tin > 0 is arbitrary). Define

�out := M−∆, �in := Ωin

√
λmin(P )
λmax(P )

(M−2∆)−∆. (14)

Then there exist functions γ1, γ2, γ3 ∈ K∞ such that
for every initial state x0 = x(t0) and every bounded
disturbance d the closed-loop system has the properties that
µ remains bounded and the continuous dynamics are ISS in
the sense of satisfying (5) and (6).

Remark 1 It is straightforward to verify that the inequal-

ity (11) ensures the existence of all subsequently defined

quantities. The intuitive meaning of this inequality is that

the quantizer takes sufficiently many values so that its range

M is large enough compared to the error ∆.

Remark 2 As a corollary, we have that if d ≡ 0 then the

continuous closed-loop dynamics are GAS. In fact, the rate

of convergence of x(t) to 0 is exponential.

Note that a zoom-out is triggered immediately when the

second condition in (8) becomes true. It is clear that this

aspect of the above scheme makes it sensitive to time

delays and renders it not implementable in the sampled-

data framework. Also, in general we cannot rule out Zeno

behavior if the disturbance is not bounded. Thus the issue of

designing a suitable zooming-out procedure will be central

as we turn to the time-sampling scenario in the next section.

III. TRAJECTORY-BASED SAMPLED-DATA APPROACH

In this section, we introduce a new sampled-data stabi-

lization scheme which can be regarded as an alternative

to the scheme from the previous section. We first discuss

the simpler disturbance-free case to illustrate the approach.

Then, we study an example of a controller and zooming

protocol that do not have robustness in an ISS sense. Finally,

in the last part of the section we present a result on ISS of

the closed-loop system with respect to disturbances with a

modified zooming protocol.

A. Disturbance-free case

We consider the continuous-time linear system (1) and

assume that A is a non-zero non-Hurwitz matrix. In this

subsection, we assume that d(·) ≡ 0. We will control this

system with quantized hybrid feedback that is defined next.

Let T > 0 be a given sampling period and let tk := kT for

k ∈ N. We define x(tk) := xk and a sequence x0, . . . , xk

is denoted as x[0,k]. Our closed-loop dynamics will be:

Plant: ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ R
n (15)

Controller: u(t) = U(Ωk, µk, xk), t ∈ [tk, tk+1) (16)

Protocol: µk+1 = G(Ωk, µk, xk), µ0 ∈ R>0 (17)

Switching law: Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout
(18)

Let �out > �in > 0 be strictly positive numbers to be defined

below. To simplify the notation, we introduce qk := qµk
(xk)
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for arbitrary k ∈ N, where qµ(·) is the one-parameter family

of quantizers defined in the previous section. The variable

Ω determines the switching rules for the controller and the

zooming protocol. It can only take two values Ωout and Ωin,

with the initial value Ω−1 = Ωout. Then, we define the

following hysteresis control law and zooming protocol:

U(Ωk, µk, xk) :=

{
0 if Ωk = Ωout

Kqk if Ωk = Ωin
(19)

G(Ωk, µk, xk) :=

{
Ωoutµk if Ωk = Ωout

Ωinµk if Ωk = Ωin
(20)

H(Ωk−1, µk, xk) =

⎧⎪⎨
⎪⎩

Ωout if qk > �outµk

Ωin if qk < �inµk

Ωk−1 if qk ∈ [�inµk, �outµk]
(21)

where Ωin and Ωout are strictly positive constants to be

defined below. We introduce some notation. Note that for all

k ≥ 0 we have that Ωk = Ωout or Ωk = Ωin. In the former

case, we say that the zoom-out condition is triggered at time

k and in the latter case we say that the zoom-in condition

is triggered at time k. Given an initial condition (and a

disturbance), there is a sequence of intervals on which we

zoom in or out, i.e., we can introduce kj ∈ N such that

Ωk = Ωout if k ∈ [k2i, k2i+1 − 1] ,
Ωk = Ωin if k ∈ [k2i+1, k2(i+1) − 1] .

The above system induces the following discrete-time

system that is more amenable to analysis:

xk+1 = Φxk + ΓU(Ωk, µk, xk) x(0) = x0 (22)

µk+1 = G(Ωk, µk, xk) µ0 ∈ R>0 (23)

Ωk+1 = H(Ωk−1, µk, xk) Ω−1 = Ωout (24)

where

Φ := eAT , Γ :=
∫ T

0

eAsBds .

Note that the switching between the zoom-in and zoom-

out stages is determined by the variable ξk := xk

µk
. Hence,

the dynamical equations that describe how ξk changes are

important for understanding the operation of the system.

For instance, during the zoom-out stage we have ξk+1 =
Φξk/Ωout. During the zoom-in stage we have

ξk+1 =
1

Ωin
(Φ + ΓK)ξk +

1
Ωin

ΓKνk (25)

where νk := q(ξk) − ξk. We can state the following two

standard results.

Lemma 1 Suppose that Φ+ΓK is Schur. Then, there exists
Ω∗

in ∈ (0, 1), such that for all Ωin ∈ [Ω∗
in, 1),

(Φ + ΓK)/Ωin (26)

is Schur. Moreover, for any such Ωin, there exist strictly
positive L1, λ1, γ1 such that the solutions of the system (25)
satisfy the following:

|ξk| ≤ L1 exp(−λ1k)|ξ0| + γ1 ‖ν‖ ∀k ≥ 0 .

Note that Lemma 1 imposes a lower bound on Ωin, which

is similar to the condition (12) from the previous section.

Corollary 2 Let Ωin come from Lemma 1. Then, there exist
strictly positive M,∆ and ∆M , with ∆M − ∆ > 0 such
that whenever |ξ0| ≤ ∆M and ‖ν‖ ≤ ∆, we have

qµk
(xk) ≤ (M − ∆)µk and |ξk| ≤ M ∀k ≥ 0 . (27)

Corollary 2 has an appropriate interpretation via Lyapunov

functions that links results of this section with the previous

section. Indeed, since we assume that 1
Ωin

(Φ+ΓK) is Schur,

there exists a quadratic Lyapunov function V (ξ) := ξT Pξ
such that for some a > 0 the solutions of the system (25)

satisfy |ξk| ≥ a |νk| ⇒ V (ξk+1) < V (ξk). Suppose that ∆
is given. Then, one possible choice of M,∆M ,∆ is

∆M > max{1, a}∆ (28)

and

M − 2∆ >
√

λmax(P )/λmin(P ) · ∆M . (29)

A geometrical interpretation of (29) is that the smallest level

set of V containing the ball of radius ∆M is inside the

largest level set of V contained in the ball of radius M−2∆.

If (28) holds, then V decreases for ξ in the annulus between

these two level sets as long as ‖ν‖ is smaller than ∆. Hence

for νk = q(ξk)−ξk the conditions (27) are satisfied because

ξk stays within the range of q. The inequalities (28) and (29)

basically say that M should be large enough compared to

∆, which is similar to the condition (11).

Theorem 3 Consider the system (15) and suppose Assump-
tion 1 holds. Suppose that for the given T > 0 the pair
(Φ,Γ) is stabilizable. Let K be such that (Φ+ΓK) is Schur.
Let Ωin be such that (26) is Schur and let Ωout > |Φ|. Let
the range M of the quantizer be sufficiently larger than
the error ∆ of the quantizer so that Corollary 2 holds
with M , ∆ and some ∆M . Define �out := M − ∆ and
�in := ∆M −∆ in (21). Then, µk is bounded for all k ≥ 0
and the system (15), (16), (17), (18), (19), (20), (21) is
globally asymptotically stable. More precisely, there exists
ϕ : R≥0 × R≥0 → R≥0 which is of class K∞ in its first
argument for any fixed value of its second argument and
such that for all x0 ∈ R

n and any µ0 we have

|xk| ≤ ϕ(|x0|, µ0) ∀k ≥ 0 (30)

and limk→∞ |xk| = 0, exponentially fast.

Remark 3 It is not hard to show that the stability bound

valid only at the sampling instants tk, provided by Theorem

3, can be extended to all t ≥ 0. The same is true for our

ISS results in Section III-C. For similar results, see [16].
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A more general result for the disturbance case is pre-

sented in Section III-C. The control law and protocol (19),

(20), (21) are novel in that hysteresis switching is used

to switch between the zoom-in and zoom-out stages. This

switching strategy simplifies analysis of the time-driven

sampling scheme. In particular, the underlying cascaded

structure of the system during the zoom-in stage is obtained

and used for the first time to establish stability.

While it can be shown that for any fixed µ > 0 we

can take ϕ(·, µ) ∈ K∞ in Theorem 3, we have at the

same time that for any fixed s > 0 the following holds:

limµ→0 ϕ(s, µ) = ∞. Hence, the overshoot of the x-

subsystem is non-uniform in small µ0. While initializing the

system at a particular µ0 gives a constant overshoot for the

x variable and one can prove stability of the x-subsystem,

the lack of uniformity of the overshoot leads to an inherent

lack of robustness, as the following example illustrates.

B. Example: lack of robustness

Consider the plant

xk+1 = Φxk + Γuk + wk

with (16), (17), (19), (20) and suppose that all conditions

of Theorem 3 hold for this closed-loop system. Note that

we assume that the system is controllable from disturbance

in one step to simplify the analysis.

We show that the closed-loop system does not have a

finite ISS gain from an additive plant disturbance to x. We

do this by showing that for any C1 > 0, any ε > 0, any

x0 ∈ Rn and any µ0 > 0 there exists an additive plant

disturbance wε such that ‖wε‖ ≤ ε and the following holds:

lim supk→∞ |x(k, x0, µ0, w
ε
[0,k])| > C1. Let C1 > 0 and

ε > 0 be arbitrary. Suppose without loss of generality that

there is a positive real eigenvalue λm of Φ larger than one

and let ζm be its corresponding eigenvector with |ζm| = 1.

Let ε̂ > 0 and ε1 > 0 be such that

ε1 (|Φ + ΓK| + |ΓK|∆) + ε̂ < ε . (31)

Let C1 and ε̂ generate

T :=

⌈
ln

(
C1
ε̂

)
ln(λm)

⌉
. (32)

Let T generate C2 > 0 via

C2 > max

{
�in ·

∣∣∣∣∣
(

ΩT
out

ΦT

)∣∣∣∣∣ , �out

}
. (33)

Let C2 and ε̂ generate ε̄2 as follows:

ε̄2 :=
ε̂

ΩinC2
. (34)

Finally, using ε̄1 and ε̄2 define

ε̄ := min{ε̄1, ε̄2} . (35)

Note that since the system without disturbance is stable,

as shown in the previous section, then for any x0 ∈ R
n,

µ0 > 0 there exists k∗
0 > 0 such that with wk ≡ 0 we have

max{|xk∗
0
|, µk∗

0
} ≤ ε̄ and |ξk∗

0
| ≤ M. (36)

We now start the construction of the disturbance. Let the

disturbance satisfy

wε
k = 0 k ∈ [0, k∗

0 − 1] (37)

Hence, (36) holds. Let now

wε
k∗
0

= −(Φ + ΓK)xk∗
0
− ΓKµk∗

0
(qk∗

0
− ξk∗

0
) + ε̂ζm .

This disturbance will yield xk∗
0+1 = ε̂ζm. The conditions

(31) and (35) guarantee that |wε
k∗
0
| ≤ ε. The conditions (34)

and (35) guarantee that∣∣ξk∗
0+1

∣∣ =
∣∣∣∣ xk∗

0+1

Ωinµk∗
0

∣∣∣∣ ≥ ε̂

Ωinε̄2
= C2 , (38)

and hence at time k∗
0+1 the zoom-out condition is triggered.

Since the ξ dynamics with wk ≡ 0 evolve according to

ξk+1 = Φξk/Ωout ,

there exists an integer k∗
1 such that if wε

k = 0 for all k ∈
[k∗

0 +1, k∗
1 −1], then

∣∣ξk∗
1

∣∣ ≤ �in and the zoom-in condition

is triggered at k = k∗
1 . Moreover, from (32) and (33) we

have k∗
1 − k∗

0 − 1 ≥ T , which implies together with (38)

that

|xk∗
1
| =

∣∣∣λk∗
1−k∗

0−1
m ζmε̂

∣∣∣ ≥ λT
mε̂ ≥ C1 .

Again via stability of the disturbance-free (x, µ) system,

there exists k∗
2 such that if wε

k = 0 for all k ∈ [k∗
1 , k∗

2 − 1],
then we have

max{|xk∗
2
|, µk∗

2
} ≤ ε̄ and |ξk∗

2
| ≤ M . (39)

Continuing in a similar manner, we construct the distur-

bance which satisfies ‖wε‖ ≤ ε and yields

|xk∗
2j+1

| > C1 ∀j ∈ N .

The possible non-robustness of the control law in the

above example actually holds for a large class of plants,

control laws, and zooming protocols. Indeed, the crucial

ingredients of closed-loop systems that will exhibit this type

of non-robustness are as follows:

1) The closed-loop system has to have the property that

in the absence of disturbances, both x and µ converge

to zero. Moreover, given any initial conditions x0 and

µ0 > 0 the zoom-out stage is bounded;

2) The closed-loop system is such that the x component

is completely controllable locally around the origin

with arbitrarily small disturbances ‖w‖ ≤ ε;

3) For all k ≥ 0, the zooming protocol takes the form

µk+1 = γk(µk) where γk are continuous, zero at

zero, locally invertible and uniformly lower and upper

bounded;

4) If the measurement overflows, the controller is

switched off.

8201



Hence, a suitable modification in the zooming-out procedure

needs to be adopted in order to achieve ISS. We will

provide a modification of the zooming-out procedure (see

(43) below) and the closed-loop system with the modified

scheme will be ISS. In particular, our modification violates

the above item 3 and this is sufficient to achieve ISS.

C. Input-to-state stability

Consider the plant with disturbance (1), together with the

controller and zooming protocol introduced in Section III-

A. The corresponding discrete-time system is

xk+1 = Φxk + ΓU(Ωk, µk, xk) + wk, x(0) = x0 (40)

µk+1 = G(Ωk, µk, xk), µ0 > 0 (41)

Ωk = H(Ωk−1, µk, xk), Ω−1 = Ωout (42)

where U and H are defined in (19), (21) and wk :=∫ (k+1)T

kT
eA((k+1)T−s)Dd(s)ds. We use a new protocol:

G(Ωk, µk, xk) :=

{
Ωout[µk + c] if Ωk = Ωout

Ωinµk if Ωk = Ωin
(43)

where c > 0. The use of this constant c violates item 3

above, and this will be shown to fix the problem.

Next we introduce a discrete-time version of the def-

inition of ISS. This will suffice for our analysis in this

section since the discrete-time ISS can be used to prove an

appropriate version of continuous-time ISS that takes inter-

sample behavior into account (see Remark 3). The system

(40), (41) is said to be ISS if there exist γ1, γ2, γ3 ∈ K∞
such that the solutions of the system satisfy the following

for all x0 ∈ R
n and all w:

|xk| ≤ γ1(|x0|) + γ2(‖w‖) ∀k ≥ 0 , (44)

lim supk→∞|xk| ≤ γ3 (lim supk→∞|wk|) . (45)

We note that the functions γ1, γ2, γ3 depend on µ0 > 0 but

are independent of x0 or w.

Again, we consider the dynamics of the variable ξk :=
xk

µk
. During the zoom-in stage we have that:

ξk+1 =
1

Ωin
(Φ + ΓK)ξk +

1
Ωin

ΓKνk +
1

Ωin
ζk , (46)

where νk := q(ξk) − ξk and ζk := wk

µk
.

Lemma 2 Suppose that 1
Ωin

(Φ+ΓK) is Schur2. Then, there
exist strictly positive L1, λ1, γ1, γ2 such that the solutions
of the system (46) satisfy the following:

|ξk| ≤ L1 exp(−λ1k)|ξ0| + γ1 ‖ν‖ + γ2 ‖ζ‖ ∀k ≥ 0 .

Corollary 4 Let Ωin come from Lemma 2. Then, there exist
strictly positive ∆, ∆M and ∆w, with ∆M − ∆ > 0 such
that whenever |ξ0| ≤ ∆M , ‖ν‖ ≤ ∆ and ‖ζ‖ ≤ ∆w, we
have

q(µk, xk) ≤ (M − ∆)µk and |ξk| ≤ M ∀k ≥ 0 .

2In Lemma 1 we showed that we can find an appropriate Ωin ∈ (0, 1)
so that this holds whenever (Φ + ΓK) is Schur.

Theorem 5 Consider the system (40), (41), (42) and sup-
pose that Assumption 1 holds. Suppose that for the given
T > 0 the pair (Φ,Γ) is stabilizable. Let K be such that
(Φ+ΓK) is Schur. Let Ωin be such that (26) is Schur and let
Ωout > |Φ|. Let the range M of the quantizer be sufficiently
larger than the error ∆ of the quantizer so that Corollary 4
holds with M , ∆ and some ∆M ,∆w. Define �out := M−∆
and �in := ∆M − ∆ in (21). Then, µk is bounded for all
k ≥ 0 and the system (40), (41), (42) is ISS.

Remark 4 It is worth noting that the modified zooming

protocol of the form (43) can be used in the event-based

scheme and it would not change the ISS properties of the

system. Actually, this modification would have the added

benefits of reducing the number of zoom-outs and providing

robustness of the event-based scheme to time delays.
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[15] D. Liberzon and D. Nešić, “Input-to-state stabilization of linear
systems with quantized feedback,” 2005, preprint. [Online].
Available: http://decision.csl.uiuc.edu/˜liberzon/publications.html
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