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Abstract� We consider the coupled partial differential
equations which arise in modeling linear thermoelastic
structures. We review stability properties of the dis-
tributed parameter model, particularly as related to the
choice of norm on the state space. We discuss the choice of
norm for two models - one with elastic dynamics governed
by a wave equation and the other by an Euler-Bernoulli
beam equation. We discuss the implications for stability
as well as Galerkin approximations.

I. INTRODUCTION

A thermoelastic structure is an elastic structure dis-
tinguished by a physical mechanism in which me-
chanical energy is dissipated via conversion to thermal
energy. The mathematical model for such a structure
usually consists of a pair of coupled partial differential
equations, one which models the elastic dynamics of the
structure, and the other which models thermal diffusion
in the structure. We refer to [1], [2] for references
and discussion of modeling issues. In addition a ther-
momechanical coupling models the exchange between
mechanical energy and thermal energy, and it is through
this coupling that mechanical energy is dissipated. This
type of damping is usually �weaker� than other type of
structural or mechanical damping, and this manifests it-
self in the rate at which the energy decays. The study of
the energy decay rate for various thermoelastic models
is an area of ongoing research, and we refer to [3], [4],
[5], [6] and the references therein. For thermoelastic
models it is typical that different boundary conditions
require different techniques to establish stability. One
such technique is to construct a new norm on the
underlying state space which can be used to establish a
dissipative inequality, which in turn implies exponential
stablity of the solution semigroup. In [7] we showed
how to apply this technique to establish exponential
stability for a thermoelastic wave equation with the so-
called Dirichlet-Neumann boundary conditions, and in
the next section we apply this method to a different
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set of boundary conditions. We should mention that
exponential stability has already been established by
other methods for these and other boundary conditions,
including the Dirichlet-Dirichlet boundary conditions
in [8] and [9], but so far it does not seem that the
renorming technique can be successfully applied to
the Dirichlet-Dirichlet case. Nonetheless the technique
is still useful because the norm which is constructed
can often be used to advantage in deÞning Galerkin
approximation schemes. In the third section we con-
sider a thermoelastic Euler-Bernoulli beam, where by
introducing a new norm we obtain the space on which
the semigroup generator is associated with a coercive
sesquilinear form. In the last section we discuss the
connection with Galerkin approximations.

II. THERMOELASTIC WAVE EQUATION

Let us consider the model

ytt(t, x) = yxx(t, x) − γθx(t, x)
θt(t, x) = θxx(t, x) − γytx(t, x), (1)

with initial conditions

y(0, x) = u0(x), yt(0, x) = v0(x), θ(0, x) = θ0(x),

and boundary conditions

y(t, 0) = yx(t, 1) = 0, θx(t, 0) = θ(t, 1) = 0. (2)

Here y(t, x) represents displacement (longitudinal or
transverse, depending upon the application) at time t
and position x along the interval [0, 1], and θ(t, x) rep-
resents temperature at time t and position x. The small
positive constant γ is the thermomechanical coupling
parameter. The energy of this system is given by

E(t) =
∫ 1

0

|yx(t, x)|2 + |yt(t, x)|2 + |θ(t, x)|2 dx.

A natural setting for approximation and control is to
reformulate as a Cauchy problem on the energy space.
For this model, the energy space is

X = H1
L(0, 1) × L2(0, 1) × L2(0, 1),
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where H1
L(0, 1) is the Sobolev space

H1
L(0, 1) = {f ∈ L2(0, 1) : f ′ ∈ L2(0, 1), f(0) = 0}.

The energy norm is deÞned by

‖(u, v, θ)‖2
X =

∫ 1

0

|u′(x)|2 + |v(x)|2 + |θ(x)|2 dx.

Next deÞne the operator A on the domain

domA =
{
(u, v, θ) ∈ X : u ∈ H2(0, 1), u′(1) = 0,

θ ∈ H2(0, 1), θ′(0) = θ(1) = 0,

v ∈ H1
L(0, 1)

}
,

by
A(u, v, θ) = (v, u′′ − γθ′, θ′′ − γv′).

If we set

x(t) = (y(t, x), yt(t, x), θ(t, x)),

then the system (1)-(2) can be reformulated as the
Cauchy problem

d

dt
x(t) = Ax(t),

x(0) = (u0, v0, θ0) (3)

evolving on the energy space X . The space X is called
the energy space because E(t) = ‖x(t)‖2

X . We observe
that for all x = (u, v, θ) ∈ domA,

Re 〈Ax, x〉X = Re

{∫ 1

0

(v′u′ + u′′v) − γθ′v

−γv′θ − |θ′|2 dx
}

=
∫ 1

0

−|θ′|2 dx

≤ 0. (4)

It is not difÞcult to show that A is the inÞnitesimal
generator of a C0-semigroup T (t) on X , but inequality
(4) is not enough to imply that T (t) is exponentially
stable. Instead we shall choose a norm different from
but topologically equivalent to the energy norm, and in
which an inequality stronger than (4) can be obtained.
To proceed, for positive constants α1, α2, deÞne the
norm

‖(u, v, θ)‖2
e = α1‖(u, v, θ)‖2

X + 2 Re
∫ 1

0

uv dx

+2α2 Re
∫ 1

0

θ

∫ 1

x

v(t) dt dx

= α1

∫ 1

0

|u′|2 + |v|2 + |θ|2 dx + 2 Re
∫ 1

0

uv dx

+2α2 Re
∫ 1

0

θ

∫ 1

x

v(t) dt dx.

In order to check that this is a norm equivalent to the
energy norm, recall from the Cauchy-Schwarz inequal-
ity that for any ε > 0 and any f, g ∈ L2, we have

±Re
∫ 1

0

fg dx ≤ ε

2

∫ 1

0

|f |2 dx +
1
2ε

∫ 1

0

|g|2 dx.

Also, from the Poincare inequality there exists K1 > 0
such that for any f ∈ H 1

L we have
∫ 1

0

|f |2 dx ≤ K1

∫ 1

0

|f ′|2 dx,

and similarly, there exists K2 > 0 such that for any
f ∈ L2 we have

∫ 1

0

∣∣∣∣
∫ 1

x

f(t) dt

∣∣∣∣
2

dx ≤ K2

∫ 1

0

|f |2 dx.

These inequalities imply that for all sufÞciently large
α1, the norms ‖·‖X and ‖·‖e are equivalent. That is,
there exist constants c1, c2 > 0 such that

c1‖x‖X ≤ ‖x‖e ≤ c2‖x‖x for all x ∈ X.

The norm ‖·‖e has a compatible inner product given by

〈(u, v, θ), (f, g, h)〉e
= α1

∫ 1

0

u′f
′
+ vg + θh dx +

∫ 1

0

vf + ug dx +

α2

∫ 1

0

θ

∫ 1

x

g(t) dt +
∫ 1

x

v(t) dt h dx.

Now let us check how this choice of norm changes the
dissipative inequality (4). For x = (u, v, θ) ∈ domA,
we have

Re 〈Ax, x〉e =
∫ 1

0

−α1|θ′|2 dx

+Re
∫ 1

0

(u′′ − γθ′)u + vv dx

+α2Re
∫ 1

0

(θ′′ − γv′)
∫ 1

x

v(t) dt dx

+α2Re
∫ 1

0

∫ 1

x

(u′′ − γθ′) dt θ dx.

Now several integrations by parts yield

Re 〈Ax, x〉e =∫ 1

0

(−α1|θ′|2 − |u′|2 − (α2γ − 1)|v|2) dx

+Re
∫ 1

0

−γθ′u + α2θ
′v − α2u

′θ + α2γ|θ|2dx.

In addition to the inequalities mentioned above, the
Poincare inequality also imlplies that there exists K3 >
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0 such that for any f ∈ H 2(0, 1) satisfying f ′(0) =
f(1) = 0 we have∫ 1

0

|f |2 dx ≤ K3

∫ 1

0

|f ′|2 dx.

Thus

−Re
∫ 1

0

γθ′udx ≤ γ2

2ε1

∫ 1

0

|θ′|2dx+
K1ε1

2

∫ 1

0

|u′|2dx,

−Re
∫ 1

0

α2θ
′vdx ≤ α2

2

2

∫ 1

0

|θ′|2dx +
1
2

∫ 1

0

|v|2dx,

−Re
∫ 1

0

α2u
′θdx ≤ ε2

2

∫ 1

0

|u′|2dx+
α2

2K3

2ε2

∫ 1

0

|θ′|2dx,

and

α2γ

∫ 1

0

|θ|2dx ≤ α2γK3

∫ 1

0

|θ′|2dx.

We continue from above to get

Re〈Ax, x〉e ≤
−[1 − K1ε1

2
− ε2

2
]
∫ 1

0

|u′|2

−[α2γ − 1 − 1
2
]
∫ 1

0

|v|2dx

−[α1 − γ2

2ε1
− α2

2

2
− α2

2K3

2ε2
− α2γK3]

∫ 1

0

|θ′|2dx

Now choose ε1, ε2 sufÞciently small that 1 > (K1ε1 +
ε3)/2, and choose α2 sufÞciently large that α2γ > 3/2.
For these choices of α2, ε1, ε2, choose α1 sufÞciently
large that ‖·‖e is a norm and such that

α1 >
γ2

2ε1
+

α2
2

2
+

α2
2K3

2ε2
+ α2γK3.

Thus there exists ω > 0 for which

Re〈Ax, x〉e ≤ −ω‖x‖2
X

for all x ∈ domA. Since the norms are equivalent, it
follows that

Re〈Ax, x〉e ≤ − ω

c2
2

‖x‖2
e

for all x ∈ domA, which is the improved dissipative
inequality we want. In particular, this implies that

‖T (t)‖e ≤ e−ω/(c2
2)t.

To summarize, this new norm implies exponential sta-
bility of the thermoelastic system (1)-(2), which is
already known from other methods, and allows an
estimate of the decay rate −ω/c2

2, which is not readily
available with other methods. More importantly, we
shall discuss in section IV how the new norm is used
to construct Galerkin approximations and how these
approximation schemes compare with those constructed
in the energy norm. Before we do that, we consider a
thermelastic beam model.

III. THERMOELASTIC BEAM EQUATION

We consider the case in which the elastic structure
is an Euler-Bernoulli beam, namely

ytt(t, x) + yxxxx(t, x) − γθxx(t, x) = 0
θt(t, x) − θxx(t, x) + γytxx(t, x) = 0. (5)

Initial conditions are given by

y(0, x) = u0(x), yt(0, x) = v0(x), θ(0, x) = θ0(x),

and various boundary conditions are possible (e.g.
clamped, free, hinged, supported, as well as thermal
boundary conditions). We restrict consideration to the
following simply-supported, Þxed temperature bound-
ary conditions:

y(t, 0) = y(t, 1) = 0, yxx(t, 0) = yxx(t, 1) = 0,

θ(t, 0) = θ(t, 1) = 0. (6)

These boundary conditions are useful because the new
norm to be constructed, motivated by the results in
[10], involves the square root of the fourth derivative
operator which appears naturally in the model, and for
these boundary conditions the square root operator is
also a differential operator (of second order). For other
boundary conditions the square root operator is not a
differential operator and the norm is less convenient to
work with.

In (5)-(6) y(t, x) represents transverse displacement
at time t and position x along a beam of length 1 lying
on the interval [0, 1], and θ(t, x) represents temperature
at time t and position x. As in the wave equation model,
the small positive constant γ is a thermomechanical
coupling parameter. The energy of this system is given
by

E(t) =
∫ 1

0

|yxx(t, x)|2 + |yt(t, x)|2 + |θ(t, x)|2 dx.

It is known (see [1], [5]) that the energy decays
exponentially for this model and for other boundary
conditions as well.

To proceed, deÞne the energy space

X = H2(0, 1) ∩ H1
0 (0, 1) × L2(0, 1) × L2(0, 1), (7)

where

H1
0 (0, 1) = {f ∈ H1(0, 1) : f(0) = f(1) = 0}. (8)

The energy norm is given by

‖(u, v, θ)‖2
X =

∫ 1

0

|u′′|2 + |v|2 + |θ|2 dx. (9)

Next deÞne the operator Ã : dom Ã ⊂ X → X on the
domain

dom Ã =
{
(u, v, θ) ∈ X : u ∈ H4(0, 1), u′′(0) = 0,

u′′(1) = 0, v, θ ∈ H2(0, 1) ∩ H1
0 (0, 1)

}
,
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by

Ã(u, v, θ) = (v,−u′′′′ + γθ′′, θ′′ − γv′′).

If we set

x(t) = (y(t, x), yt(t, x), θ(t, x)),

then the system (5)-(6) can be reformulated as the
Cauchy problem

d

dt
x(t) = Ãx(t),

x(0) = (u0, v0, θ0) (10)

evolving on the energy space X . As was the case for
the wave equation model, it is not difÞcult to show that
Ã is the inÞnitesimal generator of a C0-semigroup T̃ (t)
on X , and satisÞes

Re 〈Ãx, x〉X ≤ 0 (11)

for all x = (u, v, θ) ∈ dom Ã. We shall construct a new
norm to improve the dissipative inequality (11), but our
result will be even stronger than the one obtained in
the previous section. That is, we will Þnd a space V
compactly embedded in X which satisÞes dom Ã ⊂ V
and

Re 〈Ãx, x〉e ≤ −ω‖x‖2
V (12)

for all x = (u, v, θ) ∈ dom Ã. This implies not only
that the solution semigroup T̃ (t) is exponentially stable,
but also that it is analytic, and that Ã is m-sectorial
and associated with a coercive sesquilinear form. In
particular, for positive constants α1, α2, deÞne on X
the norm

‖(u, v, θ)‖2
e = α1‖(u, v, θ)‖2

X − 2 Re
∫ 1

0

u′′ v dx

−2α2 Re
∫ 1

0

θ v dx

= α1

∫ 1

0

|u′′|2 + |v|2 + |θ|2 dx − 2 Re
∫ 1

0

u′′ v dx

−2α2 Re
∫ 1

0

θ v dx.

Arguments similar to those in the previous section show
that for α1 sufÞciently large this is a norm is equivalent
to the energy norm on X . Next deÞne the space

V =
{
(u, v, θ) ∈ X : u ∈ H3(0, 1),

u′′(0) = u′′(1) = 0, v, θ ∈ H1
0 (0, 1)

}
,

with norm

‖(u, v, θ)‖2
V =

∫ 1

0

|u′′′|2 + |v′|2 + |θ′|2 dx.

Clearly dom Ã ⊂ V ⊂ X and the embedding is com-
pact. For any x = (u, v, θ) ∈ dom Ã, a straightforward

calculation similar to the one in the previous section
yields

Re 〈Ãx, x〉e =∫ 1

0

−α1|θ′|2 − |u′′′|2 − α2|v′|2 dx

+Re
∫ 1

0

|v′|2 + γθ′u′′′ dx

+Re
∫ 1

0

α2θ
′v′ − α2u

′′′θ′ + α2γ|θ′|2 dx.

Therefore

Re 〈Ãx, x〉e ≤
−(α1 − γ

2ε1
− α2

2
− α2

2ε2
− α2γ)

∫ 1

0

|θ′|2 dx

−(1 − γ

2
ε1 − α2

2
ε2)

∫ 1

0

|u′′′|2 dx

−(
α2

2
− 1)

∫ 1

0

|v′|2 dx.

The positive numbers α1, α2, ε1, ε2 can be chosen so
that there exists ω > 0 such that

Re 〈Ãx, x〉e ≤ −ω‖x‖2
V (13)

for all x = (u, v, θ) ∈ dom Ã. In particular, we can
deÞne the sesquilinear form σ1 : V × V → C| by

σ1((u, v, θ), (f, g, h)) =∫ 1

0

α1[v′f ′′′ − u′′′g′ + σθ′g′ + θ′h′ − γv′h′] dx

−
∫ 1

0

[v′g′ − u′′′f ′′′ + γθ′f ′′′] dx

−
∫ 1

0

α2[θ′g′ − γv′g′ − u′′′h′ + γθ′h′] dx,

for all (u, v, θ), (f, g, h) ∈ V . The form σ1 is V -
bounded and has the property that

σ1(x, y) = 〈−Ãx, y〉e (14)

for all x ∈ dom Ã and y ∈ V . The above inequality
veriÞes that σ1 is V -coercive. It follows from results in
[11] that T̃ (t) is analytic. We turn in the next section
to a discussion of Galerkin approximation schemes and
the implication of a new norm.

IV. GALERKIN APPROXIMATIONS

A standard approach to constructing Galerkin ap-
proximation schemes for models like (1)-(2) or (5)-
(6) is to start with a weak form of the equations. For
example, the weak form of the thermoelastic beam
model (5)-(6) is given by∫ 1

0

ytt(t, x)f(x) + yxx(t, x)f ′′(x)+

γθx(t, x)f ′(x) dx = 0, (15)
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∫ 1

0

θt(t, x)g(x) + θx(t, x)g′(x)−
γytx(t, x)g′(x) dx = 0, (16)

for all f ∈ H2(0, 1) ∩ H1
0 (0, 1), g ∈ H1

0 (0, 1). For
any set of Þnite element basis functions {ai(x)}n

i=1 ⊂
H2∩H1

0 (0, 1), {bi(x)}n
i=1 ⊂ H1

0 (0, 1), one deÞnes the
Þnite element solution yn(t, x) =

∑n
i=1 yi(t)ai(x) and

θn(t, x) =
∑n

i=1 θi(t)bi(x). Then yn(t, x) and θn(t, x)
are determined from (15)-16), and in particular y(t) =
[y1(t), . . . , yn(t)] and θ(t) = [θ1(t), . . . , θn(t)] satisfy

M1ÿ(t) + K1y(t) + γD1θ(t) = 0,

M2θ̇(t) + K2θ(t) − γD2ẏ(t) = 0. (17)

The n × n mass, damping and stiffness matrices
are deÞned by M1(i, j) =

∫ 1

0
aiaj dx, K1(i, j) =∫ 1

0
a′′

i a′′
j dx, D1(i, j) =

∫ 1

0
b′ia

′
j dx, M2(i, j) =∫ 1

0
bibj dx, K2(i, j) =

∫ 1

0
b′ib

′
j dx, D2 = DT

1 . If we
then in a standard way deÞne z(t) = [y(t), ẏ(t), θ(t)],
the matrix representation for the Þnite element approx-
imation becomes

d

dt
z(t) = ANz(t) (18)

=

⎡
⎣ 0 I 0
−M−1

1 K1 0 −γM−1
1 D1

0 γM−1
2 D2 −M−1

2 K2

⎤
⎦ z(t).

It is possible to deÞne approximation schemes di-
rectly from the abstract formulations (3) and (10). For
(10) for example, deÞne the space V2 = H2(0, 1) ∩
H1

0 (0, 1)× H2(0, 1) ∩ H1
0 (0, 1)× H1

0 (0, 1) with norm
‖(u, v, θ)‖2

V2
=

∫ 1

0 |u′′|2 + |v′′|2 + |θ′|2 dx, and the
sesquilinear form σ2 : V2 × V2 → C| by

σ2((u, v, θ), (f, g, h)) =
∫ 1

0

−v′′f ′′ + u′′g′′ (19)

+γθ′g′ + θ′h′ − γv′h′ dx.

We note that Ã is related to σ2 via the energy norm,
since

σ2(x, y) = 〈−Ãx, y〉 (20)

for all x ∈ dom Ã and y ∈ V2, but the space V2 is
not compactly embedded in X , and the form σ2 is not
coercive. Nevertheless σ2 and V2 can still be used to
construct a Galerkin approximation scheme, which in
fact is precisely the same as (18). In particular, for
any Þnite-dimensional subspace V N ⊂ V2, V N =
span{ei}N

i=1, the form σ2 deÞnes an operator AN :
V N → V N by the relationship

−〈ANx, y〉Z = σ2(x, y)

for all x, y ∈ V N . The matrix representation of AN

is given by M−1QT , where the matrices M and Q
are deÞned by M(i, j) = 〈ei, ej〉X and Q(i, j) =

−σ2(ei, ej). Let us in particular deÞne the basis func-
tions ei as follows. For i = 1, . . . , n, deÞne ei =
(ai, 0, 0), en+i = (0, ai, 0), e2n+i = (0, 0, bi). Then

M(i, j) = 〈ei, ej〉X =

⎡
⎣ K1 0 0

0 M1 0
0 0 M1

⎤
⎦

and

Q(i, j) = −σ2(ei, ej) =

⎡
⎣ 0 −K1 0

K1 0 γD2

0 −γD1 −K2

⎤
⎦ .

We have arrived at the same matrix representation as
the �usual� one in (18), since AN = M−1QT . It is
natural to investigate what is the effect, if any, of using
the new norms ‖·‖e instead of the energy norms in the
construction. For the beam equation, this means using
the space V , the sesquilinear form σ1, and the norm
‖·‖e instead of the space V2, the sesquilinear form σ2,
and the energy norm. It may be necessary to choose
different basis functions, since the Þnite dimensional
spaces V N must be subspaces of V instead of V2. If
AN : V N → V N is the Þnite dimensional operator
constructed using the energy norm, then the semigroup
T N(t) converges to T̃ (t) in the energy norm ‖·‖X .
However if ÃN : V N → V N is the Þnite dimensional
operator constructed using the norm ‖·‖e, then the
semigroup T̃ N(t) converges to T̃ (t) in the stronger
norm ‖·‖V . This is one very signiÞcant advantage of
the norm ‖·‖e over the energy norm ‖·‖X . We point
out that if one uses the �usual� approach and starts with
the weak form of the equations (15), it is impossible to
obtain the approximations ÃN , because it is impossible
to obtain the space V without the new norm.

Substantially the same idea is used to construct a
Galerkin Þnite element approximation for the thermoe-
lastic wave equation (1)-(2). For the wave equation
(with other boundary conditions than those considered
here) it was shown in [7] that the eigenvalues of the
Þnite dimensional operators AN constructed using the
energy norm are not uniformly bounded away from the
imaginary axis, a failure which is corrected with the
operators constructed with the new norm. The same be-
havior occurs with the boundary conditions considered
here, and we illustrate this in Fig. 1 and Fig. 2. (We
note that due to scaling, some negative real eigenvalues
have been left off of the plots). It is still unclear all
of the implications of using Galerkin approximations
constructed with norms other than the energy norm,
especially when the approximation schemes are applied
to optimal control problems, and especially when the
new norm yields a coercive estimate (the case for the
beam equation but not the wave equation). This issue
is open for investigation.
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Fig. 1. Eigenvalues of AN , energy norm
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Fig. 2. Eigenvalues of AN , new norm
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