
Nonlinear observer design using invariant manifolds and applications

Dimitrios Karagiannis, Alessandro Astolfi

Abstract—The problem of constructing (reduced-order) ob-
servers for general nonlinear systems is addressed. It is shown
that an asymptotic estimate of the unknown states can be
obtained by rendering attractive an appropriately selected
(invariant) manifold in the extended state space. The proposed
methodology is applicable to systems that are not necessarily
linear in the unmeasured states. This is illustrated with two
practical examples: a single-machine infinite-bus system and a
perspective vision system.

I. INTRODUCTION

The problem of constructing observers for nonlinear sys-

tems has received a lot of attention due to its importance in

practical applications, where some of the states may not be

available for measurement. In the case of linear systems, a

comprehensive theory can be found in [1]. Since then, several

attempts have been made to extend these results to nonlinear

systems.

In [2], [3] an observer is constructed by first using a

nonlinear transformation to linearize the plant up to an output

injection term and then applying standard linear observer

design techniques. The existence of such a transformation,

however, relies on a set of stringent assumptions which are

hard to verify in practice. Lyapunov-like conditions for the

existence of a nonlinear observer with asymptotically stable

error dynamics have been given in [4]. In [5], [6] an observer

for uniformly observable nonlinear systems in canonical

form has been proposed based on a global Lipschitz con-

dition and a gain assignment technique. Some extensions to

this result, which avoid the transformation to canonical form

and allow for more flexibility in the selection of the observer

gain, have been proposed in [7]. More recently, in [8], [9]

conditions for the existence of a nonlinear observer have been

given in terms of the (local) solution of a partial differential

equation, thus extending Luenberger’s early ideas [1] to the

nonlinear case. Finally, a globally convergent reduced-order

observer for systems in canonical form has been proposed

in [10] using the notion of output-to-state stability.

In the present paper the problem of constructing reduced-

order observers for general nonlinear systems is formulated

as a problem of rendering attractive an appropriately selected

invariant manifold in the extended state-space of the plant

and the observer. It is shown that a solution to this problem

can be obtained (at least locally) without resorting to high-

gain designs as in [6], [7]. The proposed methodology
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is applicable to time-varying systems and to systems that

are not necessarily linear in the unmeasured states, thus

extending our previous result in [11].

The proposed approach is illustrated with two practical

examples. The first is the problem of estimating the (time-

varying) total inductance and the rotor angle in a single-

machine infinite-bus system. The second is the problem of

estimating the three-dimensional motion of an object using

two-dimensional images obtained from a single camera. The

validity of the proposed designs is tested via simulations.

II. PROBLEM FORMULATION

We consider nonlinear, time-varying systems described by

equations of the form

η̇ = f(η, y, t) (1)

ẏ = h(η, y, t) , (2)

where η ∈ R
n is the unmeasured state and y ∈ R

m is the

measurable output. It is assumed that the vector fields f(·)
and h(·) are forward complete, i.e. trajectories starting at
time t0 are defined for all times t ≥ t0.

Definition 1: The dynamical system

˙̂η = α(y, η̂, t) (3)

with η̂ ∈ R
p, p ≥ n, is called a (local) observer for the

system (1)-(2), if there exist mappings

β(·) : R
m × R

p × R → R
p and φ(·) : R

n → R
p,

with φ(·) (locally) left-invertible1, such that the manifold

Mt = {(η, y, η̂) ∈ R
n ×R

m ×R
p : β(y, η̂, t) = φ(η)} (4)

has the following properties.

1) All trajectories of the extended system (1)-(2)-(3) that

start on the manifoldMt at time t remain there for all
future times τ > t, i.e.Mt is positively invariant.

2) All trajectories of the extended system (1)-(2)-(3) that

start in a neighborhood ofMt asymptotically converge

toMt.

The above definition is in the spirit of the definition given

in [4] and implies that an asymptotic estimate of the state η
is given by φL(β(y, η̂, t)), where φL denotes the left-inverse

of φ.

1A mapping φ(·) : R
n → R

p is left-invertible if there exists a mapping
φL(·) : R

p → R
n such that φL(φ(x)) = x, for all x ∈ R

n.
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III. MAIN RESULT

In this section we present the main result of the paper,

namely a tool for constructing a nonlinear observer of the

form given in Definition 1.

Proposition 1: Consider the system (1)-(2)-(3) and sup-
pose that there exist mappings β(·) : R

m × R
p × R → R

p,

φ(·) : R
n → R

p and a (local) left-inverse φL(·) : R
p → R

n

such that the following hold.

(A1) det(
∂β

∂η̂
) �= 0 .

(A2) The system

ż =
∂β

∂y

(
h(η, y, t) − h(φL(φ(η) + z), y, t)

)
−

∂φ

∂η
f(η, y, t)

+
∂φ

∂η

∣∣∣∣
η=φL(φ(η)+z)

f(φL(φ(η) + z), y, t) (5)

has a (locally) asymptotically stable equilibrium at z = 0,
uniformly in η, y, t.
Then there exists a function α(·) such that (3) is an

observer for the system (1)-(2).

Proof: Consider the variable

z = β(y, η̂, t) − φ(η) , (6)

where β(·) is a continuous mapping such that (A1) holds.
Note that z represents the distance at time t of the system
trajectories from the manifold Mt defined in (4). The

dynamics of z are given by

ż =
∂β

∂y
h(η, y, t) +

∂β

∂η̂
α(y, η̂, t) +

∂β

∂t
−

∂φ

∂η
f(η, y, t) .

Using (A1), the function α(·) in (3) can be selected as

α(y, η̂, t) =
(∂β

∂η̂

)−1(
−

∂β

∂y
h(φL(β(y, η̂, t)), y, t)

−
∂β

∂t
+

∂φ

∂η

∣∣∣∣
η=φL(β(y,η̂,t))

f(φL(β(y, η̂, t)), y, t)
)
(7)

yielding the dynamics (5). It follows from (A2) that the

distance z from the manifold Mt converges asymptotically

to zero. Note, moreover, thatMt is invariant, i.e. if z(t) = 0
for some t, then z(τ) = 0 for all τ > t. Hence, by
Definition 1, the system (3) with α(·) given by (7) is a
(reduced-order) observer for (1)-(2).

Remark 1: The proof of Proposition 1 provides an implicit
description of the observer dynamics (3) in terms of the

mappings β(·), φ(·) and φL(·) which must then be selected
to satisfy (A2).2 Hence the problem of constructing an
observer for the system (1)-(2) is reduced to the problem of
rendering the system (5) asymptotically stable by assigning

the functions β(·), φ(·) and φL(·). This non-standard stabi-
lization problem can be extremely difficult to solve, since, in

general, it relies on the solution of a set of partial differential

equations. However, in many cases of practical interest, these

equations are solvable, as demonstrated in the following two

examples.

2Note, however, that the function α(·) in (7) renders the manifold Mt

invariant for any mappings β(·) and φ(·).

E
V

G

Fig. 1. Diagram of the single-machine infinite-bus system with TCSC.

IV. EXAMPLE 1: A SINGLE-MACHINE INFINITE-BUS

SYSTEM WITH TCSC

In this section the approach outlined in Proposition 1 is

used to design an observer for a single-machine infinite-

bus system driven by a thyristor-controlled series capacitor

(TCSC). These devices are a special class of Flexible AC

Transmission Systems (FACTS), which are extensively used

for enhancing transient stability in power systems, see [12],

[13] for more details. The proposed observer yields asymp-

totic estimates of the machine angle and the (time-varying)

inductance using measurements of the rotor velocity. This

partly extends the result in [14], where the problem of

controlling the TCSC using measurements of both angle

and velocity has been addressed based on the reduced-order

observer proposed in [11].

Assuming a first-order model for the TCSC, the dynamics

of the single-machine infinite-bus system, depicted in Fig-

ure 1, are described by the equations [15]

δ̇ = ω

ω̇ =
1

T
(Pm − Dω − EV λ sin(δ)) (8)

λ̇ =
1

Tdc

(−λ + λ∗ + u) ,

where δ ∈ [0, 2π) is the rotor angle, ω is the angular velocity
of the rotor, λ is the total inductance of the bus, T , Pm, D,
E and V are constants representing the inertia, mechanical
power, damping coefficient, generator voltage and bus volt-

age respectively, Tdc is the time constant and u is the control
signal. It is assumed that only ω is available for measure-
ment. The operating point for the system (8) is defined as

(δ∗, 0, λ∗). Note that, for this point to be an equilibrium, λ∗

must satisfy the condition λ∗ = Pm/ (EV sin(δ∗)).
To motivate the observer design we first develop a state

feedback control law using arguments pertaining to Hamilto-

nian systems and passivity-based control. To this end, define

the state vector x = [δ, ω, λ] and note that the system (8)
can be put in port-controlled Hamiltonian form

ẋ = (J(δ) − R)
∂H(x)

∂x
+ g

(
1

Tdc

u − EV sin(δ)ω

)
, (9)

where

J(δ) =

⎡
⎢⎢⎢⎢⎣

0
1

T
0

−
1

T
0 −

EV

T
sin(δ)

0
EV

T
sin(δ) 0

⎤
⎥⎥⎥⎥⎦ ,
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R =

⎡
⎢⎢⎢⎣

0 0 0

0
D

T 2
0

0 0
1

Tdc

⎤
⎥⎥⎥⎦ , g =

⎡
⎣ 0

0
1

⎤
⎦

and

H(x) = −Pm (δ − δ∗) − EV λ∗ (cos(δ) − cos(δ∗))

+
1

2
Tω2 +

1

2
(λ − λ∗)

2
. (10)

Note that the Hamiltonian function (10) has a minimum at

the desired equilibrium (δ∗, 0, λ∗). Hence, the control law

u = TdcEV sin(δ)ω − K (λ − λ∗) (11)

withK > −1 is such that the closed-loop system (8)-(11) has
an asymptotically stable equilibrium at (δ∗, 0, λ∗). However,
the controller (11) requires measurement of sin(δ) and λ
which are assumed unknown.

A. Observer design

We now proceed to the design of an observer for the

unmeasured states δ and λ. Let

φ(δ, λ) =
[

sin(δ) cos(δ) λ
]T

(12)

which satisfies the invertibility condition in Proposition 1,

and define the error variable

z = β(ω, η̂) − φ(δ, λ) , (13)

where η̂ ∈ R
3 is the observer state and

β(ω, η̂) =
[

β1(ω, η̂) β2(ω, η̂) β3(ω, η̂)
]T

is a mapping to be defined. The dynamics of z are given by

ż =
∂β

∂η̂
˙̂η +

∂β

∂ω

1

T

(
Pm − Dω

−EV (β3(ω, η̂) − z3) (β1(ω, η̂) − z1)
)

−

⎡
⎢⎣

ω (β2(ω, η̂) − z2)
−ω (β1(ω, η̂) − z1)

1

Tdc

(z3 − β3(ω, η̂) + λ∗ + u)

⎤
⎥⎦ .

Provided that the Jacobian matrix ∂β/∂η̂ is invertible, the
observer dynamics can be selected as in the proof of Propo-

sition 1, namely

˙̂η = −

(
∂β

∂η̂

)−1
∂β

∂ω

1

T

(
Pm − Dω − EV β3(ω, η̂)β1(ω, η̂)

)

+

(
∂β

∂η̂

)−1

⎡
⎢⎣

ωβ2(ω, η̂)
−ωβ1(ω, η̂)

1

Tdc

(−β3(ω, η̂) + λ∗ + u)

⎤
⎥⎦ , (14)

yielding the error dynamics

ż =

⎡
⎢⎢⎣

0 ω 0

−ω 0 0

0 0 −
1

Tdc

⎤
⎥⎥⎦ z

+
EV

T

∂β

∂ω

[
β3(ω, η̂) 0 sin(δ)

]
z .

The above system is simplified by selecting

β2(ω, η̂) = η̂2 , β3(ω, η̂) = η̂3 ,

which yields

ż =

⎡
⎢⎢⎢⎢⎢⎣

∂β1

∂ω

EV

T
η̂3 ω

∂β1

∂ω

EV

T
sin(δ)

−ω 0 0

0 0 −
1

Tdc

⎤
⎥⎥⎥⎥⎥⎦ z . (15)

Selecting the function β1(·) as

β1(ω, η̂) = η̂1 − γ
T

EV
η̂3ω (16)

with γ < 4/Tdc ensures that (A1) in Proposition 1 is satisfied

and the equilibrium z = 0 is globally stable. Moreover, using
the candidate Lyapunov function V (z) = 1

2 |z|
2 it can be

easily shown that

lim
t→∞

z1 = 0 , lim
t→∞

z3 = 0 ,

provided that λ is bounded away from zero. As a result,
from (12)-(13) an asymptotic estimate of sin(δ) and λ is
given by β1(ω, η̂) and β3(ω, η̂) = η̂3 respectively.

B. Simulation results

To test the performance of the proposed observer, the

system (8)-(14) with u = 0 (which implies λ(t) > 0 for
all t) has been simulated using the parameters given in [13],
namely Pm = 0.8 p.u., D = 1 p.u., E = 1.06679 p.u.,
V = 1 p.u., T = 0.05 s, and Tdc = 0.05 s. The rotor angle
at the operating point is δ∗ = π/13.671 rad. The observer
gain has been set to γ = 50 and the initial conditions to
η̂(0) = [0, 1, 1]T . The system is considered to be at an
equilibrium at t = 0 s. At t = 0.4 s a three-phase fault
occurs at the generator bus and it is cleared at t = 0.6 s.
Figure 2 shows the time histories of the rotor angle and

velocity and of the observation errors. We see that z1 and z3

converge asymptotically to zero. Note, however, that during

the fault the stability properties of z1 and z2 are lost, since

the dynamics of the machine become

δ̇ = ω , ω̇ =
1

T
(Pm − Dω) ,

hence δ becomes undetectable. However, after the fault has
been cleared, z1 converges asymptotically to zero.

V. EXAMPLE 2: A PERSPECTIVE VISION SYSTEM

A classical problem in machine vision is to determine

the position of an object moving in the three-dimensional

space by observing the motion of its projected feature on

the two-dimensional image space of a charge-coupled device

(CCD) camera. The case where the motion of the object is

described by linear (possibly time-varying) dynamics with

known parameters has received particular attention, see e.g.
[16], [17], [18]. The systems that arise in this case are

known as perspective dynamical systems and the problem
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Fig. 2. Time histories of the rotor angle δ, rotor velocity ω and of the
observation errors z1, z2 and z3.

of determining the object space co-ordinates reduces to the

problem of estimating the depth (or range) of the object.

In this section a solution to the range identification prob-

lem is presented based on the nonlinear observer design

of Section III. The proposed scheme achieves asymptotic

convergence of the observation error to zero and is con-

siderably simpler than the fourth-order asymptotic observer

proposed in [18], as well as the fifth-order approximate

observer in [17]. Moreover, it can be easily tuned to achieve

the desired convergence rate. As a result, the performance is

greatly enhanced.

The motion of an object undergoing rotation, translation

and linear deformation can be described by the affine system⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ +

⎡
⎣ b1

b2

b3

⎤
⎦ , (17)

where (x1, x2, x3) ∈ R
3 are the unmeasurable co-ordinates

of the object in an inertial reference frame with x3 being per-

pendicular to the camera image space, as shown in Figure 3.

The motion parameters aij , bi are possibly time-varying and

are assumed known. Using the perspective (or “pinhole”)

x1

x2

x3

y1

y2

Fig. 3. Diagram of the perspective vision system.

model for the camera, the measurable co-ordinates on the

image space are given by

y =
[

y1, y2

]T
= ε

[ x1

x3
,

x2

x3

]T

, (18)

where ε is the focal length of the camera, i.e. the distance
between the camera and the origin of the image-space axes.

Without loss of generality, we assume that ε = 1.
The perspective system (17) must satisfy the following

assumption.

Assumption 1: The parameters aij , bi in (17) and the co-

ordinates y1, y2 in (18) are bounded functions of time, i.e.
aij(t), bi(t) ∈ L∞, ∀i, j = 1, 2, 3 and y(t) ∈ L∞. Moreover,

aij(t) and bi(t) are first-order differentiable and x3(t) >
ε,∀t, where ε is an arbitrarily small positive constant.
Remark 2: Assumption 1 is motivated by the physical
properties of the perspective system, see [16], [18]. Note

that in [18] it is further assumed that the functions bi(t) are
twice differentiable and that x3(t) ∈ L∞.

The design objective is to reconstruct the co-ordinates x1,

x2, x3 from measurements of the image-space co-ordinates

y1, y2.

A. Observer design

As in [17], [18], the first step is to define the (unmeasur-

able) variable

η =
1

x3

and rewrite the system (17)-(18) in the form (1)-(2), namely

η̇ = − (a31y1 + a32y2 + a33) η − b3η
2 (19)

ẏ =

[
a11 − a33 a12

a21 a22 − a33

]
y +

[
a13

a23

]

−yyT

[
a31

a32

]
+

[
b1 − b3y1

b2 − b3y2

]
η . (20)

Note that, if η is known, then the co-ordinates x1, x2, x3 can

be directly obtained from (18), hence the problem reduces

to constructing an asymptotic observer for the state η.
To this end, consider a reduced-order observer of the

general form (3) and the error variable

z = β(y, η̂, t) − η , (21)
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where α(·) and β(·) are continuous mappings to be defined.
Note that in this case we have taken φ(·) to be the identity.
The dynamics of z are given by

ż =
∂β

∂y

([
a11 − a33 a12

a21 a22 − a33

]
y +

[
a13

a23

]

−yyT

[
a31

a32

]
+

[
b1 − b3y1

b2 − b3y2

]
(β(y, η̂, t) − z)

)
+(a31y1 + a32y2 + a33) (β(y, η̂, t) − z)

+b3 (β(y, η̂, t) − z)
2

+
∂β

∂η̂
α(y, η̂, t) +

∂β

∂t
,

where
∂β

∂y
=

[
∂β

∂y1
,

∂β

∂y2

]
.

Noting that

(β(y, η̂, t) − z)
2

= β(y, η̂, t)2 − β(y, η̂, t)z − ηz

and provided that ∂β/∂η̂ is invertible, the function α(·) can
be selected as in (7), namely

α(y, η̂, t) =

(
∂β

∂η̂

)−1
(

− (a31y1 + a32y2 + a33) β(y, η̂, t)

−b3 (β(y, η̂, t))
2
−

∂β

∂t

−
∂β

∂y

([
a11 − a33 a12

a21 a22 − a33

]
y +

[
a13

a23

]

−yyT

[
a31

a32

]
+

[
b1 − b3y1

b2 − b3y2

]
β(y, η̂, t)

) )
, (22)

yielding the error dynamics

ż = −
(
a31y1 + a32y2 + a33 + 2b3η

+
∂β

∂y

[
b1 − b3y1

b2 − b3y2

])
z − b3z

2. (23)

Note that the foregoing selection for the function α(·)
ensures that the manifold z = 0 is invariant. It remains to
find a mapping β(·) such that it is also attractive, i.e. the
system (23) is asymptotically stable. The procedure can be

outlined in the following statement.

Proposition 2: Consider the system (19)-(20)-(3), where
α(·) is given by (22), and suppose that

(b1 − b3y1)
2

+ (b2 − b3y2)
2

> δ (24)

for some δ > 0. Then there exists a function β(y, η̂, t) (with
∂β/∂η̂ invertible) such that the system (23) is asymptotically
stable.

Proof: To begin with, note that by Assumption 1 there
exists a positive constant c such that

| a31y1 + a32y2 + a33 + 2b3η | < c .

Consider now a function of the form

β(y, η̂, t) = η̂ + f(y, t) , (25)

where f(·) satisfies the partial differential equation

∂f

∂y1
(b1 − b3y1) +

∂f

∂y2
(b2 − b3y2) = κ(t)

with κ(t) ≥ c. A solution to the above equation is given by

f(y, t) =
λ

2

[(
−y2

1 − y2
2

)
b3 + 2b1y1 + 2b2y2

]
(26)

with

κ(t) = λ
[
(b1 − b3y1)

2
+ (b2 − b3y2)

2
]
,

where λ > 0 is a design parameter such that λδ ≥ c. It
remains to show that, for any set of initial conditions z(0),
there exists λ such that the trajectories z(t), t ≥ 0, are
bounded and asymptotically converge to zero.

To this end, consider again the system (23) with β(·)
defined by (25)-(26) and the candidate Lyapunov function

V (z) =
1

2
z2,

whose time-derivative along the system trajectories satisfies

V̇ ≤ − (λδ − c) z2 − b3z
3

= −z2 [(λδ − c) + b3z] .

As a result, the origin z = 0 is a uniformly asymptotically
stable equilibrium for the system (23) with a region of

attraction containing the invariant set

B = { z ∈ R : |z| <
λδ − c

b+
3

} , (27)

where

b+
3 = max

t≥0
|b3| .

The proof is completed by noting that, for any set of initial

conditions z(0), there exists λ (sufficiently large) such that
z(0) ∈ B.
Remark 3: In order to obtain a more practically useful
condition on the parameter λ, suppose that the observer is
initialized according to

β(y(0), η̂(0), 0) ≥
1

ε
= 1 .

Then from (21) and Assumption 1 we have

|z(0)| = |β(y(0), η̂(0), 0) − η(0)| < β(y(0), η̂(0), 0) .

Hence, the selection

λ ≥
b+
3 β(y(0), η̂(0), 0) + c

δ
(28)

is such that z(0) ∈ B, where B is given by (27).

B. Simulation results

In this section the proposed controller is tested via numer-

ical simulations and compared with the one in [18]. Consider

the example given in [17], [18] of the perspective system⎡
⎣ ẋ1

ẋ2

ẋ3

⎤
⎦ =

⎡
⎣ −0.2 0.4 −0.6

0.1 −0.2 0.3
0.3 −0.4 0.4

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦ +

⎡
⎣ 0.5

0.25
0.3

⎤
⎦

with the initial conditions[
x1(0) x2(0) x3(0)

]T
=

[
1 1.5 2.5

]T
.
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Fig. 4. Time history of the observation error for ideal measurements (top
graph) and for measurements corrupted by noise (bottom graph). Solid line:
Proposed observer. Dashed line: Observer in [18].

Note that the proposed first-order observer is described by

the equations (3) and (22), where the mapping β(·) is given
by (25)-(26). The estimate of the range x3 is given by

3

x̂3 =
1

β(y, η̂, t)
.

The constant λ in (26) has been selected sufficiently large
so as to satisfy the constraints set out in the proof of

Proposition 2. In this case, for δ = 0.1, c = 0.5 and
β(y(0), η̂(0), 0) = 1, from (28) we obtain λ ≥ 8.
Figure 4 shows the time history of the observation error

e = x3 − x̂3 for different values of the gain λ, namely
λ = 10, λ = 20 and λ = 30, and for the observer proposed
in [18], for the case of ideal measurements and for the

case when the measurements of y1 and y2 are corrupted by

1% random noise. We see that the transient performance of
the proposed observer is significantly superior to the one

in [18]. Moreover, the convergence rate can be arbitrarily

increased simply by increasing the parameter λ. However,
the sensitivity to the presence of noise also increases in this

case.

VI. CONCLUSIONS

The problem of constructing (reduced-order) observers

for general nonlinear systems has been addressed using the

notion of invariant manifolds. The proposed methodology

consists in finding a manifold in state-space which can be

expressed in the form (4), parameterized by a mapping

β(·), and then designing the observer dynamics so that the
manifold is invariant and selecting the mapping β(·) so that
it is also attractive. A constructive proof of existence for such

3The boundedness of β(·) away from zero is ensured by the initial
condition β(y(0), η̂(0), 0) ≥ 1 and the fact that z is decreasing.

an invariant manifold has been given. However, the design

of an appropriate mapping β(·) that renders the manifold
attractive remains an open issue, since it relies on the solution

of a set of partial differential equations (or inequalities),

which in general can be extremely difficult to solve. The

method has been applied on two practical problems: a state

estimation problem for single-machine infinite-bus systems

and a range identification problem for perspective vision

systems. The efficacy of the proposed designs has been

validated via simulations.
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