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Abstract— Oil well instabilities cause production losses. One
of these instabilities, referred to as the “density-wave” is
an oscillatory phenomenon occurring on gas-lift artificially
lifted well. We propose a distributed delay model of this
dynamics. In order to interpret the observed oscillations we
study the corresponding characteristic equation. Stabilization
of this system is performed through a simple control law. Its
performance is studied through realistic simulations.

I. INTRODUCTION

Producing oil from deep reservoirs and lifting it through
wells to surface facilities often requires activation to maintain
oil output at a commercial level. In the gas-lift activation
technique [3], gas is injected at the bottom of the well
through the injection valve (point C in Figure 1) to lighten
up the fluid column and to lower the gravity pressure losses.
High pressure gas is injected at well head through the
gas valve (point A in Figure 1), then goes down into the
annular space between the drilling pipe (casing, point B)
and the production pipe (tubing, point D) where it enters.
Oil produced from the reservoir (point F) and injected gas
mix in the tubing. They flow through the production valve
E located at the surface.

As wells and reservoirs get older, liquid rates begin to
decrease letting wells be more sensitive to flow instabili-
ties commonly called headings. These induce important oil
production losses (see [8]) along with possible facilities
damages. Preventing instabilities through closed loop control
has been an active field of research (see [10], [8] and [1]).
These instabilities are defined as a flow regime characterized
by regular and perhaps irregular cyclic changes in pressure at
any point in the tubing string D (see [2]). Among these, one
finds the “casing-heading” and the density-wave instability.
“Casing heading” consists of a succession of pressure build-
up phases in the casing without production and high flow
rate phases due to intermittent gas injection rate from the
casing to the tubing (see [10] for a complete description). The
dynamics of the “casing heading” is well represented by a
three balance ordinary differential equations model (proposed
in [9], [6] and used in [12]). In the density-wave instability,
which existence was first demonstrated in [8], oscillations are
confined in the tubing D while the gas injection rate through
valve C remains constant. Out-of-phase effects between the
well influx and the total pressure drop along the tubing are
usually reported at the birth of this phenomenon. In [8],

E

production valve

gas inlet

oil and gas

productionA

B

C

injection valve

casing

D

tubing

oil flow from the reservoir

F

reservoir

Fig. 1. Gas-lift activated well. Density-wave takes place in the tubing D.

dynamical choking is used to stabilise the density wave
instability. In this paper, we propose a distributed delay
model to represent and analyse the observed oscillations.
Two applications of the model are presented: first a rigorous
stability analysis demonstrating the impact of the gas flow
rate and then an alternative control solution to [8] using
the gas inlet A as an input and the downhole pressure
measurements.

The paper is organized as follows. In Section II, we detail
the observed oscillating phenomenon in gas-lift operations.
In Section III, we derive a reference distributed delay model
for the density propagation in the tubing. Main assumptions
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and the use of Riemann invariant are explicited along with
boundary conditions. In Section IV, stability analysis of the
corresponding characteristic equations is performed. Com-
parisons with OLGA�2000 are conducted and stress the role
of the amount of injected gas. In Section V, we propose a
control strategy relying on the model. Realistic simulations
show that we can stabilize the flow.

II. GAS-LIFT OPERATIONS
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Fig. 2. Density wave simulated with OLGA�2000.

Figure 2 shows an example of density wave instabil-
ity simulated with the transient multiphase flow simulator
OLGA�2000. Typically, the depth of the well is 2500 m
and the reservoir pressure is 150 bar. Oil production has an
oscillating behavior consisting of 3 phases. In phase 1, there
is no oil production at the surface but PL, the pressure at the
bottom of the well, is less than the reservoir pressure. Oil
enters the pipe, letting PL get closer to 150 bar. This is the
self regulating mechanism of the well: the more is produced
from the reservoir, the greater PL becomes and eventually
the less is produced. PL is going to reach a constant which,
in this case, is greater than 150 bar. The system switches to
phase 2. This phase is characterized by zero oil production at
the surface and from the reservoir (saturation of the oil flow
rate at the bottom of the well). The gas mass fraction, which
is close to 0 in phase 1, gets to a strictly positive constant in
phase 2. Finally, the oil produced from the reservoir in phase
1 reaches the surface creating pressure drop in the well. This
is phase 3. PL decreases below 150 bar, oil flow rate at the
bottom of the well increases and brings the fall of the gas
mass fraction.

In summary, the density wave can be interpreted as the
propagation of the mass fraction at the bottom of the well
which is a result of a switching boundary condition.

Symb. Constants Values Units
R Gas perfect constant 287 S.I.
T Temperature of the well 293 K
PI Productivity Index 4e − 6 kg/s/Pa
Pr Reservoir pressure 150e5 Pa
P0 Separator pressure 10e5 Pa
g Gravity constant 9.81 m/s2

ρl Density of oil 800 kg/m3

V ∞ Slip velocity constant - m/s
Vg Gas velocity 0.8 m/s
β Threshold parameter 0.03
umin Saturation value of u 0.1 bar
uref Reference value of u 10 bar
qmin
g Saturation value of qg 0.3 kg/s

L Length of the pipe 2000 m

Symb. Variables Expressions Units
Vl(t, z) Oil velocity Vg + V ∞/Rl m/s
Rg(t, z) Gas volume fraction
Rl(t, z) Oil volume fraction Rg + Rl = 1
x(t, z) Gas mass fraction
P (t, z) Pressure of the well Pa
xL(t) Gas mass fraction at z = L
PL(t) Pressure at z = L Pa
ρg(t, z) Gas density kg/m3

ρm(t, z) Mixture density kg/m3

ql(t, z) Oil mass flux RlρlVl kg/s/m2

qg(t, z) Gas mass flux RgρgVg kg/s/m2

u(t) Control � gas injection qg/PI(1/β − 1) bar

TABLE I

NOMENCLATURE.

III. PROPOSED MODEL

We propose to study the density wave instability as a two
phases flow problem in a vertical pipe filled with a mixture
of oil and gas. The pressure at both ends are considered
constant. Flows (gas and oil) enters the pipe at the bottom.
The oil flow is given by the difference of pressure between
the bottom of the pipe and the reservoir. The gas injection
rate is considered constant (its value can be arbitrary updated
for control purposes). Notations are given in Table I. Thanks
to the choice of the slip velocity law (following [5]), we
demonstrate the existence of a Riemann invariant. This lets
the evolution of the distributed variables be summarized by
the evolution of a single variable: the pressure at the bottom
of the pipe.

A. Physics reduction

Pressure law: Using Bernoulli’s law we get

P (t, z) = P0 +

∫ z

0

ρm(t, ζ)gdζ (1)

Model (1) implies no friction term, it is consistent with the
observed low flow rates for density wave instability (see [8]).
Density of the mixture is given by

1/ρm = x/ρg + (1 − x)/ρl

To work with a linear expression of ρm we assume that

ρm ∼ xρg + (1 − x)ρl (2)

Equivalently, we assume that the gas mass density is close
to the gas volume density. Further, in the derivation of the
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gas density, gas is considered perfect and the temperature
T is constant. Besides we assume that the pressure gradient
Pr−P0

L
along the tubing is also constant and computed from

boundary condition. Simulations have shown that this simpli-
fication improves the tractability while saving the oscillatory
behavior. Using the expressions in (2) and after substitution
in (1), we get

P (t, z) =

P0 + ρlgz +

∫ z

0

x(t, ζ)g

(
(L − ζ)P0 + ζPr

LRT
− ρl

)
dζ

(3)

Slip velocity and Riemann invariant: We define the slip
velocity (see [5]) as follows

Vg − Vl =
V∞

Rl

Mass conservation laws write

∂ρgRg

∂t
+

∂qg

∂z
= 0 (4)

∂ρlRl

∂t
+

∂ql

∂z
= 0 (5)

As

x =
Rgρg

Rgρg + Rlρl

(6)

one can combine (4), (5) and (6), to obtain

∂x

∂t
+ Vg

∂x

∂z
= 0

meaning that x is a Riemann invariant (see [4]). For sake of
simplicity we assume Vg to be constant. On real wells it is
not as simple and we shall discuss the implications of this
hypothesis in Section V-C. This implies

x(t, z) = x

(
t −

L − z

Vg

, L

)
= xL

(
t −

L − z

Vg

)

Therefore, knowing bottom well gas mass fraction t �→
xL(t), we get the profile (t, z) �→ x(t, z) in the tubing.
Replacing this expression in equation (3) and denoting
PL(t) = P (t, L), we find

PL(t) = P �
L +

∫ t

t−δ

k(t − τ)xL(τ)dτ (7)

with

δ = L/Vg (8)

P �
L = P0 + ρlgL (9)

and

[0, δ] � t �→ k(t) � Vgg

(
tP0 + (δ − t)Pr

δRT
− ρl

)
< 0

(10)

Notice that k is a strictly decreasing affine function.

Boundary condition: Classically, (see [3]), the oil rate ql

is given at the reservoir boundary by the Productivity Index
(PI) through

ql(t, L) = PI max(Pr − PL(t), 0) (11)

By definition,

xL(t) =
1

1 + PI/qg max(Pr − PL(t), 0)
(12)

We want to simplify this last expression in the case of large
PI . On one hand, as Pr −PL begins to be positive, xL goes
to zero. Let β denote a threshold parameter. In particular
xL < β is equivalent to PL < Pr −

qg

IP
(1/β−1). We denote

u � qg

1

PI
(1/β − 1) (13)

On the other hand, when PL > Pr, xL = 1. Therefore, we
consider xL as constant, equal to 1 when PL > Pr and equal
to 0 when PL < Pr − u. Finally, the considered expression
of xL reduces to

xL = h (X) , X � 1 −
Pr − PL

u
(14)

with

h(·) = max(min(1, ·), 0)

Equation (14) is the definition we use instead of Equa-
tion (12) from now on.

B. Density-wave as a distributed delay model

We now gather equations (7) and (14), and consider an
initial condition [−δ, 0] � t �→ φ(t) ∈ R. The following
model represents the density wave phenomenon by the
evolution of the pressure at the bottom of the well PL⎧⎪⎨

⎪⎩
PL(t) = P �

L +

∫ t

t−δ

k(t − τ)h

(
1 −

Pr − PL(τ)

u(τ)

)
dτ

PL(t) = φ(t), t ∈ [−δ, 0]
(15)

where δ is the transport delay defined in (8), P �
L, given in (9),

is the pressure at the bottom of the pipe when it is full of
oil and Pr is the pressure of the reservoir. k is an affine
function, given in (10). It depends on the considered fluids. u
is proportional to qg (see equation (13)). It can be arbitrarily
updated and thus can be considered as a control.

C. Simulation results

Figure 3 shows the simulations results of (15). When
Pr = 150 bar and u = 10 bar, we get an oscillating
trajectory which presents similarities with Figure 2. Indeed,
the periodic behavior consist of 3 phases. Alternatively, out
of phase switches of h(X(t)) and h(X(t − δ)) result in 4
slope changes of PL. These reproduce the 3 phases observed
in Figure 2: oil production from the reservoir (1), followed
by pressure buildup (2), and eventual pressure drop (3).
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Fig. 3. Density wave simulated with equation (15) in Matlab. The reservoir
pressure Pr is 150 bar and u is set at 10 bar.

D. Reference model for stability analysis

Model (15) will be used in Section V-A to design the
control law for u. To study stability it is equivalent (but
more convenient) to consider X as defined in equation (14).
It follows from (15)

X(t) = 1 −
Pr − P �

L

u
+

1

u

∫ t

t−δ

k(t − τ)h(X(τ))dτ (16)

By derivation (assuming u constant), we get

uẊ(t) =

k(0)h(X(t)) − k(δ)h(X(t − δ)) + k′(0)

∫ t

t−δ

h(X(τ))dτ

(17)

We consider the system (17) with initial condition φ defined
and continuous on [−δ, 0], satisfying:

φ(0) = 1 −
Pr − P �

L

u
+

1

u

∫ 0

0−δ

k(t − τ)h(φ(τ))dτ

For this class of initial conditions, equations (16) and (17)
have the same solutions.

IV. STABILITY

We first study the stability of the trivial solution of the
following saturation-free model derived from equation (17).
We denote

τ � δ/u (18)

and C the (Banach) space of continuous function mapping
the interval [−τ, 0] into R. We define xt ∈ C as

[−τ, 0] � θ �→ xt(θ) = x(t + θ)

By derivation and time scaling, equations (17) rewrites{
ẋ(t) = f(xt) for t ≥ 0

x(t) = φ(t) for t ∈ [−τ, 0]
(19)

with φ ∈ C and f : C → R defined as,

f(xt) =ax(t) + bx(t − τ) +
c

τ

∫ t

t−τ

x(ζ)dζ (20)

with a + b + c = 0, b > 0, c < 0 and b + c > 0 (by
equation (10)). Referring to the formulation used in [7], one
can rewrite equation (19) as

f(xt) =

∫ 0

−τ

d(η(θ))xt(θ) (21)

With ⎧⎪⎨
⎪⎩

η(θ) = (c/τ)θ, θ ∈] − τ, 0[

η(0) = a

η(−τ) = −(c + b)

As η is continuous on ]− τ, 0[ and has bounded variation
on [−τ, 0], given any φ ∈ C, there exists a unique function xt,
continuous, that satisfies system (19). We now study stability
of (19) through the solutions of its characteristic equation.
As will appear, stability depends on τ .

A. Characteristics equation solutions

The characteristic equation associated with (19) writes

s = a + be−sτ +
c

sτ
(1 − e−sτ ) (22)

This equation is well defined by continuity at 0 and for all
τ ≥ 0, 0 is an isolated solution. Referring to the necessary
condition expressed in [13], as, for all τ ≥ 0

det(η(−τ) − η(0)) = −(a + b + c) = 0 ≤ 0,

the trivial solution is not asymptotically stable.
In the following, we characterize the location of the non

zero roots with respect to τ . In Proposition 1, we exhibit
a family (τk)k∈N at which two roots hit the imaginary axis.
Then we show that, for small τ , roots are lying on the left half
plane (Proposition 2). Further, proving that the roots cross
the imaginary axis from left to right, we conclude towards
the existence of τ� > 0 (Proposition 3) such that

• for τ ∈ [0, τ�[, all roots except 0 have strictly negative
real part

• for τ > τ�, there is at least one root with strictly
positive real part.

Proposition 1. Consider the following system

ẋ(t) = ax(t) + bx(t − τ) +
c

τ

∫ t

t−τ

x(ζ)dζ (23)

with a + b + c = 0, b > 0, c < 0, b + c > 0 and τ > 0.
Let λ = c/b. There exists (τk, ωk)k∈N ∈ R

+×R
+ such that,

for τ = τk, besides 0 which is always a solution, the pure
imaginary roots of the characteristic equation of (23) are
±jωk. This family (τk, ωk) is defined by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cos(ωkτk) = 1 +
λσk

σk − (2 + λ)

ωk sin(ωkτk) =
cσk(2 + λ)

σk − (2 + λ)

ω2
k = b2(2 + λ)2

(
−λ

2 + λ

σk

σk − 2

) (24)
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with σk = (2b + c)τk + 2 > 3 + λ.

Proof: We are now looking for pure imaginary roots of
equation (22). If there exists τ ≥ 0 such that jω is solution
then −jω is also a solution. Therefore, we restrict our study
to (τ, ω) ∈ R

+ × R
+\{0}. Equation (22) yields⎧⎨

⎩
b cos(ωτ) +

c

τω
sin(ωτ) = b + c

c

τω
cos(ωτ) − b sin(ωτ) = ω +

c

τω

(25)

This implies

ω2 = −
c

τ
(2bτ + cτ + 2) (26)

By construction, λ ∈] − 1, 0[. Note σ = (2b + c)τ + 2 ≥ 0.
Equation (25) leads to

cos(

√
−

λ

2 + λ
σ(σ − 2)) = 1 +

λσ

(σ − 2) − λ
(27)

sin(

√
−

λ

2 + λ
σ(σ − 2)) =

1

ω

cσ(2 + λ)

σ − 2 − τ
< 0 (28)

We derive from inequality (28) that σ ∈⋃
k∈N

[
1 +

√
1 + 2+λ

−λ
(2k + 1)2π2, 1 +

√
1 + 2+λ

−λ
4k2π2

]
.

Right hand side of equation (27) approaches 0 < 1 + λ < 1
as σ goes to infinity. The left hand side is oscillating thanks
to the cos function and equation (27) has an infinite number
of solutions. Among these, we keep those compatible with
equation (28) and gather them in (σi)i∈N, an increasing
sequence. By construction,

lim
i→∞

σi = +∞

and

σi ∼i+∞

√
2 + λ

−λ
2iπ

Further, for all k ∈ N

1 +

√
1 +

2 + λ

−λ
(2k + 1)2π2 > 1 +

√
1 + π2 > 3 + λ

The set (σi)i∈N is thus bounded by below

∀k ∈ N, σk > 3 + λ (29)

This set defines a family of solutions of equation (25),
(τk, ωk)k∈N using equation (26)

τk =
σk − 2

2b + c

ω2
k = b2(2 + λ)2

(
−λ

2 + λ

σk

σk − 2

)

Lemma 1. Define s a non zero root of the characteristic
equation (22). For all α > −1, β > 0 and τα > 0 there
exists τ ≤ τα such that:

|s(τ)| > βτα

Proof: Assume that one can find (α, τα, β) (α > −1,
β > 0 and τα > 0) such that for all τ ≤ τα

|s| ≤ βτα

Thus |sτ | → 0 as τ → 0. A second order development
of (22) yields

1

τ
= −b −

c

2
+

(
b

2
+

c

6

)
sτ + o(sτ)

The right hand side of this development goes to −b − c/2
as τ → 0 and the left hand side to +∞. This cannot be,
therefore, the assumption is false.

Lemma 2. Define s a non zero root of the characteristic
equation (22). For all τr, there exists τ ≤ τr such that

Re(s(τ)) < 0

Proof: Assume that there exists τr such that for all
τ ≤ τr

Re(s(τ)) ≥ 0

It follows that |e−sτ | ≤ 1 and that | 1−e−sτ

sτ
| ≤ 1. Using

Equation (22) we get

|s(τ)| ≤ |a| + |b| + |c|

which is in contradiction with Lemma 1.

Proposition 2. There exists τ > 0 such that for all τ ≤ τ
the roots of the characteristic equation (22) that are not zero
are strictly lying on the left half plane.

Proof: Consider a non zero root. From Proposition 1,
we know that, for τ < τ1, it does not intersect the imaginary
axis. Further, we know, from Lemma 2, that there exists
τ < τ1 such that the root lies on the left half plane. As the
real part of the root is continuous with respect to τ (by the
implicit function theorem), the root cannot go to the right
part without crossing the imaginary axis. This implies that,
for all τ < τ1 the root is in the left half plane. Finally, for
all τ ∈ [0, τ1[, all roots except 0 have strictly negative real
part. This concludes the proof.

Proposition 3. There exists τ∗ such that for all τ ∈ [0, τ∗[
the characteristic equation (22) has one root at 0 and all
other roots strictly in the left part of the complex plane. For
all τ > τ∗ there exists at least one root lying strictly on the
right half plane.

Proof: Let τ be positive. As proven in Proposition 2, for
small τ all roots except 0 lie in the left half plane. To know
whether these roots become unstable or come back to the left
hand side, we compute Re ∂s

∂τ |±jωk
. We use equations (24)

and after some computations we get

∂s

∂τ |s=jω
=

−bω2e−jωτ + c
τ2 (1 − e−jωτ ) − cjω

τ
e−jωτ

−2jω − b − c + be−jωτ − bjωτe−jωτ + ce−jωτ
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and

Re
∂s

∂τ |±jωk

=

−
λb2(2 + λ)3(σk − 3 − λ)

(σ2
k + (2λ2 − 2 + 5λ)σk − 2λ(3 + λ)2)(uk − 2)

From (29) and noticing that σ2
k +(2λ2−2+5λ)σk −2λ(3+

λ)2 > 0 for σk > 2, we have

Re
∂s

∂τ |±jωk

> 0

Therefore, after crossing the imaginary axis the roots always
go to the right half plane. Thus simply, τ∗ = τ1 = σ1−2

2b+c
.

B. Conclusion

Parameter τ has a direct impact on the roots location
of the characteristic equation. Increasing the time delay τ
or letting the roots be unstable are equivalent. Recalling
τ = δ

u
, this last remark means that there exists a minimal gas

injection rate that guarantees stability of the roots. Study of
the characteristic equation is a key to the interpretation of the
observed oscillating behavior. Depending on u trajectories
of model (17) behave as follows. Unstable solutions of the
model (17), which, initially match with unstable solutions
of a linear system of type (20), finally reach saturation
yielding behaviors depicted in Figure 3. Stable solutions
remain bounded and if the initial condition is well chosen
(e.g. constant) they do not reach the saturation.

V. CONTROL

In this section, we design control laws to steer system (15)
to a predefined steady state.

A. Control laws definition

We look for control laws u such that PL converges
to a chosen constant Pref ∈

]
P �

L +
∫ δ

0
k(τ)dτ, P �

L

[
. The

corresponding steady state value of X defined in (14) is

Xref = −
P �

L − Pref∫ δ

0
k(τ)dτ

∈]0, 1[ (30)

We note uref the value of u at steady state. It satisfies

Xref(uref) =
P �

L − Pr + uref

uref −
∫ δ

0
k(τ)dτ

(31)

Our (closed-loop) control law is, simply,

u(t) =
Pr − PL(t)

1 − Xref
(32)

This control strategy feeds system (15), which has finite
memory δ, with a constant term. By direct computation, this
straightforward approach provides convergence. We can state
the following proposition.

Proposition 4. With control law (32), PL which dynamics is
defined by system (15) converges to Pref in finite time δ for
any initial condition [−δ, 0] � t �→ φ(t) ∈ R.

Yet, the expression u defined in (32) does not take into
account actuation saturations. Here, the most limiting factor

in practice is a lower bound umin > 0 on the control. It is
often reached with this naive approach. We now propose the
saturated control law⎧⎨

⎩u =
Pr − PL(t)

1 − Xref
, for PL < Pr − umin(1 − Xref)

u = umin, for PL ≥ Pr − umin(1 − Xref)

(33)

Proposition 5. Assume that

Xref ≥
P �

L − Pr + umin

umin −
∫ δ

0
k(τ)dτ

(34)

With the (saturated) control law (33), PL which dynamics is
defined by system (15), converges to Pref in finite time 2δ for
any initial condition [−δ, 0] � t �→ φ(t) ∈ R.

Proof: We now show that for t ≥ δ, the control law is
unsaturated. Indeed, for t > 0

h

(
1 −

Pr − PL(t)

u(t)

)
≥ Xref

Therefore, for all t ∈ [δ, +∞[,

PL(t) ≤ P �
L + Xref

∫ δ

0

k(τ)dτ

Assuming (34), a simple computation yields

∀t ≥ δ, PL(t) ≤ Pr − umin(1 − Xref)

By equation (33), we get that, for all t ≥ δ, u is simply
defined by

u =
Pr − PL(t)

1 − Xref

The control is thus unsaturated and, by Proposition 4, we
conclude that system (15) converges towards Pref in 2δ.

In practice, one must choose Pref in accordance to the
minimum value umin such that equation (31) holds. This
choice implies that assumption (34) holds.

Indeed, if Pr > P �
L+

∫ δ

0
k(τ)dτ , which simply means that

the pressure at the bottom of pipe when it is full of gas is
smaller than the reservoir pressure, then uref �→ Xref(uref),
given in (31), is increasing. Therefore, if u > umin

X >
P �

L − Pr + umin

umin −
∫ δ

0
k(τ)dτ

The meaning of assumption (34) is that one should not define
Pref outside the range of X that can be reached with u >
umin.

B. Simulation

Figure 4 shows an example of stabilization with the
saturated control law (33). Choosing u = 10 bar and using
equations (30) and (31) we compute the corresponding
steady states Pref = 145 bar and Xref = 0.464. We define
umin = 0.1, which satisfies assumption (34). Until tc the
system is left open loop. At t = tc, the controller is
turned on. From tc to tc + δ, the gas mass fraction h(X(t))
remains between Xref and 1. Therefore, for t > tc + δ, Pl(t)
remains below Pmax = Pr − umin(1 − Xref) = 150 bar and
h(X(t)) = Xref. Pressure PL converges to Pref in finite time.
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Fig. 4. Stabilization of equation (15) using the saturated control law (33).
Control is switched on after approximatively 3.4 hours of open loop. PL

reaches Pref and X reaches Xref in finite time 2δ.

An alternative view is given in Figure 5. Left three
snapshots describe the open-loop behavior. Gas mass fraction
profile, x(t, z), is represented in white (complementary black
part stands for oil mass fraction). Boundary condition qg is
constant and ql is defined by equation (11). Finally, the right
scheme represents the transient obtained with closed loop
control. The feeds keep the gas mass ratio constant at Xref.
During the transient, qg is permanently adapted to counteract
the effect of the state x(t, z), z ∈ [0, L], onto ql. This yields
a constant X(t, L) which progressively steers the system to
steady state through the transport equation.

qgqgqg

P0

Pr

Xref

x(t, z)

xL(t)
qg

qlqlqlql

Fig. 5. Comparison of open loop (3 schemes on the left) and closed loop
behavior.

C. Stabilization of the well simulated in OLGA�2000

The closed loop control law can be tested in OLGA�2000
Transient Multiphase Flow Simulator. A realistic dynamic

oil-gas model is used along with semi-implicit numerical
solver (see [11] for details).

In Section III-A, we assume the gas velocity to be con-
stant, i.e. we neglect the impact of the gas mass fraction
on the gas velocity. Therefore, when the gas mass flow
rate is high enough, this assumption only results in a time
depending time dilatation. But when the gas inlet is too low
the well production eventually stops, which is not represented
by the simple model. Therefore we want the gas injection
rate to remain above a minimum, qmin

g , guaranteeing the flow
in the pipe. This defines a lower bound for our control law.
Following the same lines as in the previous section, we define
the control qg , corresponding to u (see equation (13)), to
keep xL at a predefined constant, Xref . Using xL given in
equation (12), our control law writes

qg(t) = max

(
Xref

1 − Xref

IP (Pr − PL(t)), qmin
g

)
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Fig. 6. Stabilization of density wave instability simulated in OLGA�2000.
Xref = 0.0568 and qmin

g = 0.3.

Figure 6 shows an example of stabilization of density wave
instability. We define qmin

g = 0.3 kg/s and Xref = 0.0568.
The controller is switched on at the black line and steers
the well to the steady state corresponding to the initial gas
injection rate. As the period of the oscillations corresponds
approximately to the travel time δ, we see in Figure 6 that
the well is stabilized in 2δ. As shown in Proposition 5, 2δ
corresponds to the time needed by the well to forget its initial
condition.

VI. CONCLUSION

In this paper we propose an interpretation of the observed
oscillations in the tubing of gas lifted wells. A distributed
parameter model has been derived for the propagation of
pressure (system (15)). It describes the dynamics as a trans-
port phenomenon with state dependent boundary condition.
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This equation is shown to be equivalent to a saturated
linear delay model (equation (17)) involving the gas fraction.
Analysis of the underlying characteristic equation is per-
formed (for unsaturated solutions) and show that the critical
parameter is the amount of injected gas. This is consistent
with state-of-the-art and suggests a simple control strategy.
Performance of the derived control strategy is demonstrated
through OLGA

�

2000 simulations, proving that it is possible
to obtain a steady flow with the same amount of injected
gas, after a finite time transient during which the oscillation
is cancelled. The main restriction of this strategy is that
downhole measurements are often not available. Therefore
we are investigating a way to maintain the gas mass fraction
constant at the entrance of the tubing using only topside
measurements.
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